首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Four different expression systems were developed for expression of the cDNA encoding human basic fibroblast growth factor (hbFGF), using Escherichia coli as host organism. The hbfgf structural gene was cloned into four expression vectors, pET-3a, pTrc99A, pPR37 and pKK223-3 differing only in their promoters, which were T7, trc, PR and tac respectively. Expression of the gene was induced by adding 0.5 mM (final concentration) of isopropyl--D-thio-galactopyranoside (IPTG) for the vectors carrying T7, trc and tac promoters or by a temperature shift from 30 to 42 °C for the vector carrying PR. The highest level of expression was observed in pET-1005 (a pET-3a derivative)/BL21 (DE3) system with 18.5 mg/l rhbFGF and the second high level expression was in pR37-1007 (pPR37 derivative) BL21 (DE3) system with 5 mg of rhbFGF/l. Since in the latter system a temperature shift was used for induction, 29% of the hbFGF was recovered as inclusion bodies in the insoluble cell fraction. The level of expression for the two other systems (pTrc-1006 and pKK-1008) was very low.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Laminin is a multifunctional heterotrimeric protein present in extracellular matrix where it regulates processes that compose tissue architecture including cell differentiation. Laminin γ1 is the most widely expressed laminin chain and its absence causes early lethality in mouse embryos. Laminin γ1 chain gene (LAMC1) promoter contains several GC/GT-rich motifs including the bcn-1 element. Using the bcn-1 element as a bait in the yeast one-hybrid screen, we cloned the gut-enriched Kruppel-like factor (GKLF or KLF4) from a rat mesangial cell library. We show that GKLF binds bcn-1, but this binding is not required for the GKLF-mediated activation of the LAMC1 promoter. The activity of GKLF is dependent on a synergism with another Kruppel-like factor, Sp1. The LAMC1 promoter appears to have multiple GKLF- and Sp1-responsive elements which may account for the synergistic activation. We provide evidence that the synergistic action of GKLF and Sp1 is dependent on the promoter context and the integrity of GKLF activation and DNA-binding domain. GKLF is thought to participate in the switch from cell proliferation to differentiation. Thus, the Sp1–GKLF synergistic activation of the LAMC1 promoter may be one of the avenues for expression of laminin γ1 chain when laminin is needed to regulate cell differentiation.  相似文献   

15.
16.
PACE4 is a member of the mammalian subtilisin-like proprotein convertase (SPC) family, which contribute to the activation of transforming growth factor (TGF) beta family proteins. We previously reported that PACE4 is highly expressed in syncytiotrophoblasts of human placenta [Tsuji et al. (2003) BIOCHIM: Biophys. Acta 1645, 95-104]. In this study, the regulatory mechanism for PACE4 expression in placenta was analyzed using a human placental choriocarcinoma cell line, BeWo cells. Promoter analysis indicated that an E-box cluster (E4-E9) in the 5'-flanking region of the PACE4 gene acts as a negative regulatory element. The binding of human achaete-scute homologue 2 (Hash-2) to the E-box cluster was shown by gel mobility-shift assay. The overexpression of Hash-2 caused a marked decrease in PACE4 gene expression. When BeWo cells were grown under low oxygen (2%) conditions, the expression of Hash-2 decreased, while that of PACE4 increased. In both cases, other SPCs, such as furin, PC5/6, and PC7/8, were not affected. Further, PACE4 expression was found to be developmentally regulated in rat placenta. By in situ hybridization, Mash-2 (mammalian achaete-scute homologue 2) mRNA was found to be expressed in the spongiotrophoblast layer where PACE4 was not expressed. In contrast, the PACE4 mRNA was expressed mainly in the labyrinthine layer where Mash-2 was not detected. These results suggest that PACE4 expression is down-regulated by Hash-2/Mash-2 in both human and rat placenta and that many bioactive proteins might be regulated by PACE4 activity.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号