首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We constructed an arming (cell-surface-engineered) yeast displaying two types of agglutinin (modified a-agglutinin and alpha-agglutinin) on the cell surface, with agglutination being independent of both mating type and pheromones. The modified a-agglutinin was artificially prepared by the fusion of the genes encoding Aga1p and Aga2p. The modified a-agglutinin could induce agglutination of cells displaying Agalpha1p (alpha-agglutinin). The upstream region of the isocitrate lyase gene of Candida tropicalis (UPR-ICL), active at a low glucose concentration, was used as the promoter to express the modified a-agglutinin- and alpha-agglutinin-encoding genes. The arming yeast displaying both agglutinins agglutinated and sedimented in response to decreased glucose concentration. When the glucose concentration was high, the arming yeast grew normally. In the late log phase, when the glucose concentration became very low, agglutination occurred suddenly and drastically and yeast cells sedimented completely. Sedimentation was confirmed by weighing the aggregated cells after filtration of the broth. Strains in which aggregation can be genetically controlled can be used in industrial processes in which the separation of yeast cells from the supernatant is necessary.  相似文献   

2.
Huang G  Zhang M  Erdman SE 《Eukaryotic cell》2003,2(5):1099-1114
Adherence of fungal cells to host substrates and each other affects their access to nutrients, sexual conjugation, and survival in hosts. Adhesins are cell surface proteins that mediate these different cell adhesion interactions. In this study, we examine the in vivo functional requirements for specific posttranslational modifications to these proteins, including glycophosphatidylinositol (GPI) anchor addition and O-linked glycosylation. The processing of some fungal GPI anchors, creating links to cell wall β-1,6 glucans, is postulated to facilitate postsecretory traffic of proteins to cell wall domains conducive to their functions. By studying the yeast sexual adhesin subunit Aga1p, we found that deletion of its signal sequence for GPI addition eliminated its activity, while deletions of different internal domains had various effects on function. Substitution of the Aga1p GPI signal domain with those of other GPI-anchored proteins, a single transmembrane domain, or a cysteine capable of forming a disulfide all produced functional adhesins. A portion of the cellular pool of Aga1p was determined to be cell wall resident. Aga1p and the α-agglutinin Agα1p were shown to be under glycosylated in cells lacking the protein mannosyltransferase genes PMT1 and PMT2, with phenotypes manifested only in MATα cells for single mutants but in both cell types when both genes are absent. We conclude that posttranslational modifications to Aga1p are necessary for its biogenesis and activity. Our studies also suggest that in addition to GPI-glucan linkages, other cell surface anchorage mechanisms, such as transmembrane domains or disulfides, may be employed by fungal species to localize adhesins.  相似文献   

3.
For direct and efficient ethanol production from cellulosic materials, we constructed a novel cellulose-degrading yeast strain by genetically codisplaying two cellulolytic enzymes on the cell surface of Saccharomyces cerevisiae. By using a cell surface engineering system based on α-agglutinin, endoglucanase II (EGII) from the filamentous fungus Trichoderma reesei QM9414 was displayed on the cell surface as a fusion protein containing an RGSHis6 (Arg-Gly-Ser-His6) peptide tag in the N-terminal region. EGII activity was detected in the cell pellet fraction but not in the culture supernatant. Localization of the RGSHis6-EGII-α-agglutinin fusion protein on the cell surface was confirmed by immunofluorescence microscopy. The yeast strain displaying EGII showed significantly elevated hydrolytic activity toward barley β-glucan, a linear polysaccharide composed of an average of 1,200 glucose residues. In a further step, EGII and β-glucosidase 1 from Aspergillus aculeatus No. F-50 were codisplayed on the cell surface. The resulting yeast cells could grow in synthetic medium containing β-glucan as the sole carbon source and could directly ferment 45 g of β-glucan per liter to produce 16.5 g of ethanol per liter within about 50 h. The yield in terms of grams of ethanol produced per gram of carbohydrate utilized was 0.48 g/g, which corresponds to 93.3% of the theoretical yield. This result indicates that efficient simultaneous saccharification and fermentation of cellulose to ethanol are carried out by a recombinant yeast cells displaying cellulolytic enzymes.  相似文献   

4.
The Saccharomyces cerevisiae cell adhesion protein a-agglutinin is composed of an anchorage subunit (Aga1p) and an adhesion subunit (Aga2p). Although functional a-agglutinin is expressed only by a cells, previous results indicated that AGA1 RNA is expressed in both a and α cells after pheromone induction. Expression of the Aga2p adhesion subunit in a cells allowed a-agglutinability, indicating that a cells express the a-agglutinin anchorage subunit, although no role for Aga1p in α cells has been identified. Most of the a-specific agglutination-defective mutants isolated previously were defective in AGA1; a single mutant (La199) was a candidate for an aga2 mutant. Expression of AGA2 under PGK control allowed secretion of active Aga2p from control strains but did not complement the La199 agglutination defect or allow secretion of Aga2p from La 199, suggesting that the La199 mutation might identify a new gene required for a-agglutinin function. However, the La199 agglutination defect showed tight linkage to aga2::URA3 and did not complement aga2::URA3 in a/a diploids. The aga2 gene cloned from La199 was nonfunctional and contained an ochre mutation. The inability of pPGK-AGA2 to express functional Aga2p in La199 was shown to result from an additional mutation(s) that reduces expression of plasmid-borne genes. AGA2 was mapped to the left arm of chromosome VII approximately 28 cM from the centromere.  相似文献   

5.
Jue CK  Lipke PN 《Eukaryotic cell》2002,1(5):843-845
In W303-derived strains, disruption of FIG2 increased agglutinability of α cells, but not a cells, and did not alter expression of α-agglutinin, binding of 125I-labeled α-agglutinin, or mating efficiency. Fig2p overexpression led to α-cell-specific suppression of agglutinability. These results imply that Fig2p is an indirect masker of the active sites in α-agglutinin.  相似文献   

6.
A whole-cell biocatalyst with the ability to induce synergistic and sequential cellulose-degradation reaction was constructed through codisplay of three types of cellulolytic enzyme on the cell surface of the yeast Saccharomyces cerevisiae. When a cell surface display system based on α-agglutinin was used, Trichoderma reesei endoglucanase II and cellobiohydrolase II and Aspergillus aculeatus β-glucosidase 1 were simultaneously codisplayed as individual fusion proteins with the C-terminal-half region of α-agglutinin. Codisplay of the three enzymes on the cell surface was confirmed by observation of immunofluorescence-labeled cells with a fluorescence microscope. A yeast strain codisplaying endoglucanase II and cellobiohydrolase II showed significantly higher hydrolytic activity with amorphous cellulose (phosphoric acid-swollen cellulose) than one displaying only endoglucanase II, and its main product was cellobiose; codisplay of β-glucosidase 1, endoglucanase II, and cellobiohydrolase II enabled the yeast strain to directly produce ethanol from the amorphous cellulose (which a yeast strain codisplaying β-glucosidase 1 and endoglucanase II could not), with a yield of approximately 3 g per liter from 10 g per liter within 40 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.45 g/g, which corresponds to 88.5% of the theoretical yield. This indicates that simultaneous and synergistic saccharification and fermentation of amorphous cellulose to ethanol can be efficiently accomplished using a yeast strain codisplaying the three cellulolytic enzymes.  相似文献   

7.
The Saccharomyces cerevisiae cell adhesion protein a-agglutinin is composed of an anchorage subunit (Aga1p) and an adhesion subunit (Aga2p). Although functional a-agglutinin is expressed only by a cells, previous results indicated that AGA1 RNA is expressed in both a and cells after pheromone induction. Expression of the Aga2p adhesion subunit in a cells allowed a-agglutinability, indicating that a cells express the a-agglutinin anchorage subunit, although no role for Aga1p in cells has been identified. Most of the a-specific agglutination-defective mutants isolated previously were defective in AGA1; a single mutant (La199) was a candidate for an aga2 mutant. Expression of AGA2 under PGK control allowed secretion of active Aga2p from control strains but did not complement the La199 agglutination defect or allow secretion of Aga2p from La 199, suggesting that the La199 mutation might identify a new gene required for a-agglutinin function. However, the La199 agglutination defect showed tight linkage to aga2::URA3 and did not complement aga2::URA3 in a/a diploids. The aga2 gene cloned from La199 was nonfunctional and contained an ochre mutation. The inability of pPGK-AGA2 to express functional Aga2p in La199 was shown to result from an additional mutation(s) that reduces expression of plasmid-borne genes. AGA2 was mapped to the left arm of chromosome VII approximately 28 cM from the centromere.  相似文献   

8.
Since Saccharomyces cerevisiae lacks the cellulase complexes that hydrolyze cellulosic materials, which are abundant in the world, two types of hydrolytic enzymes involved in the degradation of cellulosic materials to glucose were genetically co-immobilized on its cell surface for direct utilization of cellulosic materials, one of the final goals of our studies. The genes encoding FI-carboxymethylcellulase (CMCase) and β-glucosidase from the fungus Aspergillus aculeatus were individually fused with the gene encoding the C-terminal half (320 amino acid residues from the C terminus) of yeast α-agglutinin and introduced into S. cerevisiae. The delivery of CMCase and β-glucosidase to the cell surface was carried out by the secretion signal sequence of the native signal sequence of CMCase and by the secretion signal sequence of glucoamylase from Rhizopus oryzae for β-glucosidase, respectively. The genes were expressed by the glyceraldehyde-3-phosphate dehydrogenase promoter from S. cerevisiae. The CMCase and β-glucosidase activities were detected in the cell pellet fraction, not in the culture supernatant. The display of CMCase and β-glucosidase proteins on the cell surface was confirmed by immunofluorescence microscopy. The cells displaying these cellulases could grow on cellobiose or water-soluble cellooligosaccharides as the sole carbon source. The degradation and assimilation of cellooligosaccharides were confirmed by thin-layer chromatography. This result showed that the cell surface-engineered yeast with these enzymes can be endowed with the ability to assimilate cellooligosaccharides. This is the first step in the assimilation of cellulosic materials by S. cerevisiae expressing heterologous cellulase genes.  相似文献   

9.
Direct and efficient production of ethanol by fermentation from raw corn starch was achieved by using the yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylase by using the C-terminal-half region of α-agglutinin and the flocculation functional domain of Flo1p as the respective anchor proteins. In 72-h fermentation, this strain produced 61.8 g of ethanol/liter, with 86.5% of theoretical yield from raw corn starch.  相似文献   

10.
β-lapachone (β-lap) is a novel anticancer agent that selectively induces cell death in human cancer cells, by activation of the NQO1 NAD(P)H dehydrogenase and radical oxygen species (ROS) generation. We characterized the gene expression profile of budding yeast cells treated with β-lap using cDNA microarrays. Genes involved in tolerance to oxidative stress were differentially expressed in β-lap treated cells. β-lap treatment generated reactive oxygen species (ROS), which were efficiently blocked by dicoumarol, an inhibitor of NADH dehydrogenases. A yeast mutant in the mitocondrial NADH dehydrogenase Nde2p was found to be resistant to β-lap treatment, despite inducing ROS production in a WT manner. Most interestingly, DNA damage responses triggered by β-lap were abolished in the nde2Δ mutant. Amino acid biosynthesis genes were also induced in β-lap treated cells, suggesting that β-lap exposure somehow triggered the General Control of Nutrients (GCN) pathway. Accordingly, β-lap treatment increased phosphorylation of eIF2α subunit in a manner dependent on the Gcn2p kinase. eIF2α phosphorylation required Gcn1p, Gcn20p and Nde2p. Gcn2p was also required for cell survival upon exposure to β-lap and to elicit checkpoint responses. Remarkably, β-lap treatment increased phosphorylation of eIF2α in breast tumor cells, in a manner dependent on the Nde2p ortholog AIF, and the eIF2 kinase PERK. These findings uncover a new target pathway of β-lap in yeast and human cells and highlight a previously unknown functional connection between Nde2p, Gcn2p and DNA damage responses.  相似文献   

11.
Pheromone-regulated Genes Required for Yeast Mating Differentiation   总被引:24,自引:1,他引:23       下载免费PDF全文
Yeast cells mate by an inducible pathway that involves agglutination, mating projection formation, cell fusion, and nuclear fusion. To obtain insight into the mating differentiation of Saccharomyces cerevisiae, we carried out a large-scale transposon tagging screen to identify genes whose expression is regulated by mating pheromone. 91,200 transformants containing random lacZ insertions were screened for β-galactosidase (β-gal) expression in the presence and absence of α factor, and 189 strains containing pheromone-regulated lacZ insertions were identified. Transposon insertion alleles corresponding to 20 genes that are novel or had not previously been known to be pheromone regulated were examined for effects on the mating process. Mutations in four novel genes, FIG1, FIG2, KAR5/ FIG3, and FIG4 were found to cause mating defects. Three of the proteins encoded by these genes, Fig1p, Fig2p, and Fig4p, are dispensible for cell polarization in uniform concentrations of mating pheromone, but are required for normal cell polarization in mating mixtures, conditions that involve cell–cell communication. Fig1p and Fig2p are also important for cell fusion and conjugation bridge shape, respectively. The fourth protein, Kar5p/Fig3p, is required for nuclear fusion. Fig1p and Fig2p are likely to act at the cell surface as Fig1:: β-gal and Fig2::β-gal fusion proteins localize to the periphery of mating cells. Fig4p is a member of a family of eukaryotic proteins that contain a domain homologous to the yeast Sac1p. Our results indicate that a variety of novel genes are expressed specifically during mating differentiation to mediate proper cell morphogenesis, cell fusion, and other steps of the mating process.  相似文献   

12.
Ruminococcus gnavus belongs to the 57 most common species present in 90% of individuals. Previously, we identified an α-galactosidase (Aga1) belonging to glycoside hydrolase (GH) family 36 from R. gnavus E1 (M. Aguilera, H. Rakotoarivonina, A. Brutus, T. Giardina, G. Simon, and M. Fons, Res. Microbiol. 163:14–21, 2012). Here, we identified a novel GH36-encoding gene from the same strain and termed it aga2. Although aga1 showed a very simple genetic organization, aga2 is part of an operon of unique structure, including genes putatively encoding a regulator, a GH13, two phosphotransferase system (PTS) sequences, and a GH32, probably involved in extracellular and intracellular sucrose assimilation. The 727-amino-acid (aa) deduced Aga2 protein shares approximately 45% identity with Aga1. Both Aga1 and Aga2 expressed in Escherichia coli showed strict specificity for α-linked galactose. Both enzymes were active on natural substrates such as melibiose, raffinose, and stachyose. Aga1 and Aga2 occurred as homotetramers in solution, as shown by analytical ultracentrifugation. Modeling of Aga1 and Aga2 identified key amino acids which may be involved in substrate specificity and stabilization of the α-linked galactoside substrates within the active site. Furthermore, Aga1 and Aga2 were both able to perform transglycosylation reactions with α-(1,6) regioselectivity, leading to the formation of product structures up to [Hex]12 and [Hex]8, respectively. We suggest that Aga1 and Aga2 play essential roles in the metabolism of dietary oligosaccharides and could be used for the design of galacto-oligosaccharide (GOS) prebiotics, known to selectively modulate the beneficial gut microbiota.  相似文献   

13.
Hemicellulose is one of the major forms of biomass in lignocellulose, and its essential component is xylan. We used a cell surface engineering system based on α-agglutinin to construct a Saccharomyces cerevisiae yeast strain codisplaying two types of xylan-degrading enzymes, namely, xylanase II (XYNII) from Trichoderma reesei QM9414 and β-xylosidase (XylA) from Aspergillus oryzae NiaD300, on the cell surface. In a high-performance liquid chromatography analysis, xylose was detected as the main product of the yeast strain codisplaying XYNII and XylA, while xylobiose and xylotriose were detected as the main products of a yeast strain displaying XYNII on the cell surface. These results indicate that xylan is sequentially hydrolyzed to xylose by the codisplayed XYNII and XylA. In a further step toward achieving the simultaneous saccharification and fermentation of xylan, a xylan-utilizing S. cerevisiae strain was constructed by codisplaying XYNII and XylA and introducing genes for xylose utilization, namely, those encoding xylose reductase and xylitol dehydrogenase from Pichia stipitis and xylulokinase from S. cerevisiae. After 62 h of fermentation, 7.1 g of ethanol per liter was directly produced from birchwood xylan, and the yield in terms of grams of ethanol per gram of carbohydrate consumed was 0.30 g/g. These results demonstrate that the direct conversion of xylan to ethanol is accomplished by the xylan-utilizing S. cerevisiae strain.  相似文献   

14.
15.
16.
β-Glucans are the main components of the fungal cell wall. Fission yeast possesses a family of β-glucan synthase-related genes. We describe here the cloning and characterization of bgs3+, a new member of this family. bgs3+ was cloned as a suppressor of a mutant hypersensitive to Echinocandin and Calcofluor White, drugs that interfere with cell wall biosynthesis. Disruption of the gene is lethal, and a decrease in Bgs3p levels leads to rounded cells with thicker walls, slightly reduces the amount of the β-glucan, and raises the amount of α-glucan polymer. These cells finally died. bgs3+ is expressed in vegetative cells grown in different conditions and during mating and germination and is not enhanced by stress situations. Consistent with the observed expression pattern, Bgs3-green fluorescence protein (GFP-Bgs3p) was found at the growing tips during interphase and at the septum prior to cytokinesis, always localized to growth areas. We also found GFP-Bgs3p in mating projections, during the early stages of zygote formation, and at the growing pole during ascospore germination. We conclude that Bgs3p localization is restricted to growth areas and that Bgs3p is a glucan synthase homologue required for cell wall biosynthesis and cell elongation in the fission yeast life cycle.  相似文献   

17.
Candida wickerhamii NRRL Y-2563 expressed β-glucosidase activity (3 to 8 U/ml) constitutively when grown aerobically in complex medium containing either glycerol, succinate, xylose, galactose, or cellobiose as the carbon source. The addition of a high concentration of glucose (>75 g/liter) repressed β-glucosidase expression (<0.3 U/ml); however, this yeast did produce β-glucosidase when the initial glucose concentration was ≤50 g/liter. When grown aerobically in medium containing glucose plus the above-listed carbon sources, diauxic utilization of the carbon source was observed and the expression of β-glucosidase was glucose repressed. Surprisingly, glucose repression did not occur when the cells were grown anaerobically. When grown anaerobically in medium containing 100 g of glucose per liter, C. wickerhamii produced 6 to 9 U of enzyme per ml and did not demonstrate diauxic utilization of glucose-cellobiose mixtures. To our knowledge, this is the first report of apparent derepression of a glucose-repressed enzyme by anaerobiosis.  相似文献   

18.
The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in vivo. Expression levels of the genes encoding α1 type IV collagen and transforming growth factor-β1 in the kidney were assayed. Our results demonstrated that glucose tolerance was normal in the recipients of bone marrow transplants from both diabetic and control donors. However, compared with recipients of the control bone marrow transplant, the urinary albumin/creatinine ratio, glomerular size, and the mesangial/glomerular area ratio increased 3.3-fold (p < 0.01), 1.23-fold (p < 0.01), and 2.13-fold (p < 0.001), respectively, in the recipients of the diabetic bone marrow transplant. Expression levels of the genes encoding glomerular α1 type IV collagen and transforming growth factor-β1 were also significantly increased (p < 0.01) in the recipients of the diabetic bone marrow transplant. Our data suggest that bone marrow cells from the STZ-induced diabetic mice can confer a diabetic phenotype to recipient control mice without the presence of hyperglycemia.  相似文献   

19.
Glucosidase II (GII) plays a key role in glycoprotein biogenesis in the endoplasmic reticulum (ER). It is responsible for the sequential removal of the two innermost glucose residues from the glycan (Glc3Man9GlcNAc2) transferred to Asn residues in proteins. GII participates in the calnexin/calreticulin cycle; it removes the single glucose unit added to folding intermediates and misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. GII is a heterodimer whose α subunit (GIIα) bears the glycosyl hydrolase active site, whereas its β subunit (GIIβ) role is controversial and has been reported to be involved in GIIα ER retention and folding. Here, we report that in the absence of GIIβ, the catalytic subunit GIIα of the fission yeast Schizosaccharomyces pombe (an organism displaying a glycoprotein folding quality control mechanism similar to that occurring in mammalian cells) folds to an active conformation able to hydrolyze p-nitrophenyl α-d-glucopyranoside. However, the heterodimer is required to efficiently deglucosylate the physiological substrates Glc2Man9GlcNAc2 (G2M9) and Glc1Man9GlcNAc2 (G1M9). The interaction of the mannose 6-phosphate receptor homologous domain present in GIIβ and mannoses in the B and/or C arms of the glycans mediates glycan hydrolysis enhancement. We present evidence that also in mammalian cells GIIβ modulates G2M9 and G1M9 trimming.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号