首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple, sympatric morphotypes of rainbow smelt (Osmerus mordax) are known in Lake Utopia, New Brunswick. The largest, ‘giant’ form is predominantly a piscivore, the smaller, ‘dwarf’ form are predominantly planktivores, and there is an intermediate body-sized form. The forms exhibit some genetic variability, but it is body size that best defines morphotypes, trophic status, and spawning behaviour. We compared egg size, spawning date, incubation time, size at hatching, and daily and annual growth to determine when divergence in body size occurs among morphotypes. Giant form larvae hatched earlier and grew faster during their first year. Dwarf and intermediate form larvae displayed inter-annual variability in degree of overlap and divergence in growth which occurred in their first growing season or at age 1+ or 2+. We conclude that earlier hatching, early growth trajectories, and later niche shifting are linked to the persistence of morphotypes, i.e., the process is controlled by the environment and sustained to some degree by spawning segregation.  相似文献   

2.
Spawning of the Hawaiian coral-reef goby Asterropteryx semipunctata was diurnal, occurring at various times throughout the day. Mean length of eggs deposited in nests was 0·76 mm (range 0·67–0·84); mean egg width was 0·47 mm (range 0·41–0·52). Clutch size varied from 296 to 1552 eggs (mean=886±309), and was independent of standard length, total body weight, and body condition. Mean relative clutch size was 1·59 eggs mg-1 total body weight (range 0·84–2·43). Clutches hatched 4–5 nights after being deposited in a nest. Mean notochord length of newly-hatched larvae was 1·88 mm (range 1·60–2·04). The minimum period of time that elapsed between egg deposition and subsequent growth of a new batch of oocytes to spawning size was 5–6 days, providing a reasonable estimate of minimum spawning interval. Compared with other gobiids, tropical species tend to have shorter incubation periods, smaller eggs and smaller larvae at hatching.  相似文献   

3.
California grunion Leuresthes tenuis synchronize spawning with tidal cycles, so the embryos incubate in a terrestrial environment, delay hatching until cued by a specific environmental trigger, and may extend incubation for up to an additional four weeks. These adaptations, however, do not appear to alter the morphology or sequence of early developmental stages as compared to other Atherinomorph fishes in the Orders Beloniformes and Cyprinodontiformes. Embryonic development is described in a series of 30 stages based on morphology observed by light microscopy. Stages are placed in five periods: zygote and cleavage, blastula, gastrula, segmentation and organogenesis, and hatching competence. Embryos from a southern population of L. tenuis in Los Angeles are compared with embryos found >560 km north in San Francisco Bay. Northern L. tenuis embryos developed more slowly at several stages than southern embryos and reached hatching competence later, but both locations maintained synchrony with the tidal cycle for both spawning and hatching. The variation in rates of development and stage at hatching readiness are forms of developmental heterochrony that may be associated with evolutionary adaptation or morphological plasticity within this highly successful clade.  相似文献   

4.
Unlike most embryos that hatch on a predetermined timetable, California Grunion Leuresthes tenuis can prolong the embryonic period up to three times longer than the time required for hatching readiness. L. tenuis are teleosts that spawn tidally around the highest spring tides of spring and summer, incubating eggs above the water line. Embryos are competent to hatch in 10 days, however they do not hatch until triggered by an environmental cue, agitation in seawater, as the next spring tides rise. This study examined the growth and survival of L. tenuis embryos and larvae that were all fertilized on the same day, then triggered to hatch after different durations of incubation, up to 35 days post fertilization. L. tenuis embryos that survive extended incubation had decreased yolk reserves and did not advance appreciably in morphological development, even when incubation time was extended to its upper limit. After extended incubation, length of hatchlings was significantly longer than hatchlings from the primary incubation time. Regardless of the duration of incubation, larvae provided food ad libitum grew rapidly and were not significantly different in length at three weeks post hatch. Dry mass increased over time and was not significantly different between larval groups within any post-hatch age. Larval growth and survival after one additional tidal cycle of incubation are not adversely affected, but longer incubation significantly decreases embryonic and larval survival. Large reproductive output, environmentally cued hatching, and plasticity in incubation duration enable L. tenuis to reproduce successfully in the unpredictable sandy intertidal ecosystem.  相似文献   

5.
The embryonic and larval development of Thai pangas was investigated during peak (May-July 1995) and late spawning (August-October 1995) periods. The fertilized eggs are adhesive and spherical with a yellowish or greenish-brown egg capsule. The yolk sac is yellowish-brown in color and 1.20-1.80 mm in diameter. Nine hours post-fertilization, the first cleavage stage, embryonic shield, head, tail region, neural grooves and somites were evident. The incubation period ranges from 24-36 h at a temperature of 20-30 degrees C. The newly hatched larvae are quite transparent and light yellowish in color with a body length of 2.98-3.10 mm. Eye pigments appear and the heart starts to work within 12-14 h of hatching. In 1-day-old pro-larvae, the mouth becomes well developed; barbules are elongated, prominent and look like tiny threads. The yolk sac is fairly well absorbed and the palatine teeth are fully developed during the 3 day pro-larval stage. At the end of 12 days of larval development, the stomach becomes functional and aerial respiration starts. After 2 weeks, the young fry is well-developed, and is of an adult appearance, that is, measuring up to 13.56 mm in length.  相似文献   

6.
Size variation among propagules is ubiquitous and small initial differences in size can be critical to survival, particularly in taxa where initial survival is variable and strongly size-dependent. Despite this, the sources of size variation among fish at hatching are rarely investigated. This study examined spatial position within egg clutches as a source of size variation at hatching of the benthic spawning fish Amphiprion melanopus. We quantified within-clutch size variation at hatching and found that newly hatched larvae from the periphery (5 mm from edge) of 2-dimensional clutches were smaller in standard length, cranial depth, eye diameter and body area (7%, 8%, 4% and 11%, respectively) than larvae from the interior positions within clutches. To investigate the source of this variation, sizes of embryos at different locations with clutches were measured within 2 h of fertilisation (8 d before hatching). Newly laid embryos from the clutch periphery were smaller in length and volume than embryos from the clutch interior (> 2% and 4-6%, respectively). These eggs from the periphery also had a 33% lower rate of oxygen consumption than did embryos from the clutch interior, throughout development. The relationships between position within a clutch and egg size, oxygen consumption and larval size imply that size variation in larval fish at hatching is partly generated during early embryogenesis, either from maternal endowment or maternal nest design, and was amplified throughout development.  相似文献   

7.
Egg size for Fundulus heteroclitus (L.) populations is concordant with the distribution of the two F . heteroclitus subspecies, i.e. F. h. heteroclitus eggs are considerably larger than F. h. macrolepidotus eggs. The influence of egg size on survival of embryos during incubation and survival and growth of newly-hatched larvae was estimated for four populations representing both subspecies along the Atlantic coast of the United States and in Delaware Bay. Survival of embryos was determined for incubation periods of 14, 21 and 28 days. Greatest differences in survival were detected following the longest incubation period where less than 50 per cent of the smaller F. h. macrolepidotus eggs survived while little or no mortality was detected among the larger F. h. heteroclitus eggs . Influence of egg size on larval survival was also greatest among those larvae hatched after 28 days where F. h. macrolepidotus larvae survived without food, for an average of 6 days, while F. h. heteroclitus larvae survived 11–12 days. F. h. heteroclitus larvae were significantly larger at hatching than F. h. macrolepidotus larvae. Larval growth rates were the same (0.4 mm day−1) in both subspecies. As a result, size differences at hatching were still maintained after 42 days of growth. The differences in egg size along with other morphological and reproductive characteristics of F. heteroclitus populations probably represent genetically based adaptations to environmental conditions, of which the length of the spawning season is one of the major components stimulating the coevolution of these traits.  相似文献   

8.
The effect of temperature on the rates of development and hatching of artificially fertilized eggs of the scad, Trachurus trachurus L., was studied using a thermal gradient incubator. Development of eggs through to hatching occurred within the temperature range 10.5–21.2° C, with greatest survival between 12.2 and 15.8° C. The mean egg diameter was 0.94 mm and mean length of larvae on hatching 2.46 mm. Regressions of development time on mean incubation temperature are presented. The data are compared with those reported in the literature and related to sea temperatures in scad spawning grounds.  相似文献   

9.
The spawning behavior and early embryogenesis of Palythoa tuberculosa (Anthozoa, Zoantharia) were observed in August 2009 off Okinawa Island, Japan. P. tuberculosa released zygotes just after high tide around new moon nights. The mean diameter of zygotes was 365.6 ± s.d.14.8 μm, and zygotes did not contain any symbiotic algae (zooxanthellae). About 2 h after spawning, the first cleavage furrow appeared on one side of the zygotes, although it was uncertain when eggs were fertilized. After second cleavage, the arrangement of blastomeres was pseudospherical. At 9 h after spawning, the embryo became a concave-convex dish shape, then gastrulation occurred and the blastopore was formed. Seven-day old larvae were ellipsoid and about 700 μm long, with an open mouth at one end. Two weeks after spawning, the larvae developed a longitudinal band of long cilia (= ventral ciliate band) that is characteristic of zoanthella larvae. In P. tuberculosa, larvae show a non-radial body plan and then metamorphose to almost-radial (in outward appearance) polyps after settlement. These results may support a hypothesis that a common ancestor of Cnidaria had a bilateral body plan that has been secondarily lost in some extant cnidarians.  相似文献   

10.
为探究光照对虎斑乌贼受精卵孵化的影响,确定其胚胎发育的最佳光照条件,本研究采用单因子试验方法,分析了不同光照强度(10、30、50、70、90 μmol·m-2·s-1)和光周期L∶D(24 h∶0 h、18 h∶6 h、12 h∶12 h、6 h∶18 h、0 h∶24 h)对虎斑乌贼胚胎发育的影响.结果表明: 不同光照强度对虎斑乌贼胚胎发育的孵化率、卵黄囊断裂率、培育周期、初孵幼体体质量与胴长均影响显著;而对孵化周期和幼体出膜7 d后存活率无显著影响.其中孵化率、培育周期、初孵幼体体质量与胴长随着光照强度的增强先增大后减小,而卵黄囊断裂率则逐渐增大.最适光照强度为30 μmol·m-2·s-1,此光照强度下孵化率为(90.0±4.1)%,卵黄囊断裂率为(7.3±1.5)%,培育周期为(25.50±0.35) d,孵化周期为(8.10±0.89) d,初孵幼体体质量为(0.213±0.011) g,胴长为(1.013±0.022) cm,出膜7 d后存活率为(97.1±4.0)%.不同光周期对虎斑乌贼胚胎发育的孵化率、培育周期、孵化周期均影响显著,而对卵黄囊断裂率、初孵幼体体质量、胴长和幼体出膜7 d后存活率无显著影响.其中孵化率和孵化周期随着光照时间的增加呈现先增大后减小的变化.最适光周期为LD(12 h12 h),此光周期下孵化率达(88.7±1.8)%,卵黄囊断裂率为(8.7±1.8)%,培育周期为(25.00±0.50) d,孵化周期为(7.00±3.20) d,初孵幼体体质量为(0.209±0.005) g,胴长为(0.998±0.026) cm,出膜7 d后存活率为(96.8±7.1)%.说明弱光照强度30 μmol·m-2·s-1和半日光照强度L∶D(12 h∶12 h)更有利于虎斑乌贼的胚胎孵化.在实际生产中,应避免阳光直射,采取适当的遮光措施.  相似文献   

11.
Gifujidori hens were allowed to repeat a breeding cycle in one season. In the first breeding cycle the duration of the brooding (raising chicks) stage was limited to 3 weeks, whereas in the second breeding cycle it was limited to 1 week by removing all chicks from mother hens. In the first breeding cycle, plasma prolactin (PRL) was high during the incubation period, but rapidly decreased on the day of hatching and reached minimum values about 1 week after hatching. In contrast, plasma luteinizing hormone (LH) concentrations were low during the incubation period, but after hatching they gradually increased and reached peak values immediately after removal of chicks. Concentrations of oestradiol in plasma were low in the incubation and brooding stages but increased significantly immediately after removal of chicks. In the second breeding cycle, changes in PRL and LH concentrations were similar to those observed in the first breeding cycle except that even greater increases in plasma LH and oestradiol concentrations were observed one week after hatching when the chicks were removed. These results suggest that coexistence of newly hatched chicks may suppress LH secretion from the pituitary of the hen in the natural breeding cycle.  相似文献   

12.
The photoperiodic control of diapause induction in the larvae of the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe), was investigated using a west Japan-type population collected from Ino, Kochi Prefecture, Japan. In this population, the larvae expressed a long-day photoperiodic response with a critical daylength between 13.5 and 14 h at 25 °C ; under a long daylength, the larvae pupated after the 4th or 5th instar, while the larvae entered diapause under a short daylength after 2.3 additional molts on average. When the photoperiod was changed from a short (L12:D12) to a long (L15:D9) daylength, pupation occurred in most of the individuals irrespective of the time of the change. When the photoperiod was changed from long to short at 1 or 2 weeks after hatching, all of the larvae entered diapause, whereas when the photoperiod was changed at 5 weeks after hatching or later, most of the larvae pupated. The 2 weeks exposures to a long daylength against a 'background' of a short daylength at various times revealed that the larvae of this insect are most sensitive to the photoperiod from 4 to 6 weeks after hatching.  相似文献   

13.
This study assesses the influence of thermal regime on the development, survival rates and early growth of embryos of sea lamprey Petromyzon marinus incubated at five constant temperatures (7, 11, 15, 19 and 23° C). The time from fertilization to 50% hatching and from hatching to 50% burrowing were inversely related to incubation temperature. All the embryos incubated at 7° C died at very early stages, while those maintained at 11° C did not attain the burrowing stage. Survival from fertilization to hatching was 61, 89, 91 and 89% at 11, 15, 19 and 23° C, decreasing to 58, 70 and 70% from hatching to burrowing at 15, 19 and 23° C, respectively. Larvae reared during the first 3 months of exogenous feeding in a common environment at constant 21° C, revealed maximum survival for an incubation temperature of 15° C (43% of burrowed larvae) decreasing strongly at 19° C (16%) and 23° C (one suvivor among 240 larvae). Body length at the burrowing stage was maximum for embryos incubated at 19° C, but body mass increased in the interval 15–23° C. Mean incubation temperatures experienced by 117 broods during the embryonic development in the source river were estimated in 15·3±2·30° C and 16·7±1·76° C (mean±1 s.d .) for the periods fertilization-to-hatching and hatching-to burrowing, respectively.  相似文献   

14.
During the early ontogeny of fishes, the timing and duration of key events such as larval hatching and the switch from endogenous to exogenous feeding largely determine the offspring viability and survival. The aim of the present study was to investigate the life history traits of the early larvae of the mackerel icefish, Champsocephalus gunnari, collected in summer south of the South Shetland Islands in the Bransfield Strait and north of Elephant Island. Through the analysis of sagittal otolith microstructure, we assessed the timing and duration of egg incubation, larval hatching, first exogenous feeding, rate of yolk resorption and body growth rate. Compared to populations living further north (i.e. around South Georgia and Kerguelen Islands), mackerel icefish in the southern Scotia Arc exhibits longer egg incubation (lasting 90–120 days from winter to summer) and delayed hatching time spread over a relatively short period lasting 26 days between January and February. The first exogenous feeding takes place between 13 and 24 days after hatching still in the presence of the yolk-sac, indicating a prolonged mixed feeding afterward. The specific growth rate or daily percentage change in size (G) was 1.9 % SL day?1, corresponding to a daily growth rate at mean size of 0.31 mm day?1. While showing significant differences in early life history traits across their geographical distribution, C. gunnari populations share a common strategy, spawning a small number of large eggs that hatch in relatively large-sized larvae, at a time which may be independent of the timing of pack-ice retreat and onset of the production cycle.  相似文献   

15.
Light plays a key role in the development of biological rhythms in fish. Previous research on Senegal sole has revealed that both spawning rhythms and larval development are strongly influenced by lighting conditions. However, hatching rhythms and the effect of light during incubation are as yet unexplored. Therefore, the aim of this study was to investigate the impact of the light spectrum and photoperiod on Solea senegalensis eggs and larvae until day 7 post hatching (dph). To this end, eggs were collected immediately after spawning during the night and exposed to continuous light (LL), continuous darkness (DD), or light-dark (LD) 12L:12D cycles of white light (LD(W)), blue light (LD(B); λ(peak)?=?463?nm), or red light (LD(R); λ(peak)?=?685?nm). Eggs exposed to LD(B) had the highest hatching rate (94.5%?±?1.9%), whereas LD(R) and DD showed the lowest hatching rate (54.4%?±?3.9% and 48.4%?±?4.2%, respectively). Under LD conditions, the hatching rhythm peaked by the end of the dark phase, but was advanced in LD(B) (zeitgeber time 8 [ZT8]; ZT0 representing the onset of darkness) in relation to LD(W) and LD(R) (ZT11). Under DD conditions, the same rhythm persisted, although with lower amplitude, whereas under LL the hatching rhythm split into two peaks (ZT8 and ZT13). From dph 4 onwards, larvae under LD(B) showed the best growth and quickest development (advanced eye pigmentation, mouth opening, and pectoral fins), whereas larvae under LD(R) and DD had the poorest performance. These results reveal that developmental rhythms at the egg stage are tightly controlled by light characteristics, underlining the importance of reproducing their natural underwater photoenvironment (LD cycles of blue wavelengths) during incubation and early larvae development of fish.  相似文献   

16.
Atlantic halibut eggs and yolk-sac larvae were incubated at 1, 5 and 8° C. Eggs incubated at 8° C gave slightly shorter larvae at hatching with a significantly smaller total cross-sectional area of white muscle fibres than eggs incubated at 5° C. Transport of eggs 2 days prior to hatching gave significantly longer larvae at hatching with a significantly larger red fibre cross-sectional area than when eggs were transported shortly after the blastopore closure. A higher survival until 230 degree days after hatching was also observed in the former group. All eggs incubated at 1° C died before hatching and all larvae incubated at 1° C died before 45 degree days after hatching. From hatching until 230 degree days the total white cross-sectional area increased threefold in all temperature groups. The increase in white cross-sectional area was entirely due to hypertrophy between hatching and 150 degree days (10 mm L S). Recruitment of new white fibres increased in germinal zones at the dorsal, ventral and lateral borders of the myotome from 150 degree days onwards, but at 230 degree days (12–13 mm L S) the recruitment fibre zone constituted <10% of the total white cross-sectional area. Larval incubation at 8° C gave slightly longer larvae with a significantly larger cross-sectional area of recruitment fibres at 230 degree days than incubation at 5° C. The larval group incubated at 8° C also had a significantly lower survival until 230 degree days than did the 5° C group. Incubation temperature regimes did not affect the volume density of myofibrils in the axial muscle fibres at 230 degree days. Thus hypertrophy is the predominant mechanism of axial white muscle growth in Atlantic halibut yolk-sac larvae and an increased rearing temperature during the yolk-sac stage increases white muscle fibre hyperplasia.  相似文献   

17.
The effect of incubation temperature and pH on the hatch rate of eggs of Necator americanus, and the desiccation tolerance of the resulting infective stage-3 larvae were investigated in the laboratory under controlled conditions. Hatching did not occur below 15 C and above 35 C. A 21% hatch rate was obtained at 15 C while a 10.6% hatch rate was obtained at 35 C. The highest hatch rate (93.7%) was obtained at 30 C. The optimum pH for hatching was 6.0, but the larvae did not reach the infective stage. Incubation temperature of the eggs affected the longevity and desiccation tolerance of resultant infective larvae. Larvae hatched at 30 C and maintained at 26 C under bright fluorescent light had a 50% survival time (S50) of 4 days. In the dark or shade, the S50 for larvae raised at 30 C was 5 weeks, while that of larvae hatched at 20 C was 7 weeks. Incubation temperature also affected the desiccation tolerance of larvae. Larvae developed at 20 C were more resistant to desiccation at various relative humidity values than larvae hatched at 30 C.  相似文献   

18.
Knowledge of the effects of environment and genotype on behavior during early ontogenetic stages of many fish species including lake sturgeon (Acipenser fulvescens) is generally lacking. Understanding these effects is particularly important at a time when human activities are fundamentally altering habitats and seasonal and diel physical and biotic stream features. Artificial stream channels were used in a controlled experiment to quantify lake sturgeon yolk‐sac larvae dispersal distance and stream substrate preference from different females (N = 2) whose eggs were incubated at different temperatures (10 and 18°C) that simulated stream conditions during early and late spawning and incubation periods in the Black River, Michigan. Data revealed that yolk‐sac larvae exhibited considerable variability in dispersal distance as a function of family (genotype), temperature experienced during previous (embryonic) ontogenetic stages, and environmental ‘grain’. Yolk‐sac larvae dispersal distance varied as a function of the juxtaposition of substrate to location of egg hatch. Lake sturgeon yolk‐sac larvae dispersed from mesh screens attached to bricks and settled exclusively in gravel substrate. Dispersal distance also varied as a function of family and egg incubation temperatures, reflecting differences in offspring body size and levels of endogenous yolk reserves (yolk sac area) at hatch. Expression of plasticity in dispersal behavior may be particularly important to individual survival and population levels of recruitment contingent upon the location, size, and degree of fragmentation of suitable (gravel) habitats between adult spawning and yolk‐sac larvae rearing areas.  相似文献   

19.
Egg size is a critical life-history trait in which maternal investment is optimized to maximize maternal fitness. The adaptive significance of variable egg size among spawning groups of Ayu (Plecoglossus altivelis) landlocked in the Lake Biwa system was examined through field investigations and rearing experiments. Observed egg size variations were explained by the water temperature around spawning grounds established near the mouths of inlet streams. Two typical streams with different incubation temperatures showed similar maternal body sizes and hatchling sizes, but eggs attached to the stream bed were larger in the colder stream. An experiment that used eggs from a single clutch showed that a smaller hatchling size was obtained with a lower incubation temperature, indicating that the effect of differences in egg size on hatchling size can be canceled out by variations in incubation temperature. In general, larvae that are less than a certain threshold of effective body size are not expected to be assured of early success among conspecifics competing for foods. It is proposed that environments in which the incubation temperature varies favor variability in egg size to ensure that sufficient food is accessible to larvae.  相似文献   

20.
In bitterling Acheilognathus rhombeus , developmental arrest always occurred at stage D of the free‐embryonic phase, regardless of incubation temperature. Developmental arrest was terminated only by a cold treatment at 4° C for 60–90 days, initiated 10 days post‐hatching. After the termination of developmental arrest, free‐embryos became larvae c . 6 months after hatching, regardless of the time of initiation and duration of the cold treatment. In hybridization experiments between A. rhombeus and several species of spring‐spawning bitterlings, free‐embryos became free‐swimming larvae within 60 days after hatching in all experiments. Developmental arrest was not observed in any of the hybrids, regardless of parental sex. These results suggest that free‐embryonic diapause in A. rhombeus is not induced by environmental factors, such as cold, but by genetic factors, which are recessive to those in spring‐spawning bitterlings. Free‐embryonic diapause in A. rhombeus appears to be an adaptation to winter, which might have evolved with reproduction in autumn among autumn‐spawning bitterling species. This is the only report of free‐embryonic diapause after hatching in fishes, and only the second example of diapause in fishes, along with annual killifishes (Rivulidae).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号