首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment “ghosts” and applied 2D 13C-13C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics.  相似文献   

2.
3.
Melanin is a major virulence factor in pathogenic fungi that enhances the ability of fungal cells to resist immune clearance. Cryptococcus neoformans is an important human pathogenic fungus that synthesizes melanin from exogenous tissue catecholamine precursors during infection, but the type of melanin made in cryptococcal meningoencephalitis is unknown. We analyzed the efficacy of various catecholamines found in brain tissue in supporting melanization using animal brain tissue and synthetic catecholamine mixtures reflecting brain tissue proportions. Solid-state NMR spectra of the melanin pigment produced from such mixtures yielded more melanin than expected if only the preferred constituent dopamine had been incorporated, suggesting uptake of additional catecholamines. Probing the biosynthesis of melanin using radiolabeled catecholamines revealed that C. neoformans melanization simultaneously incorporated more than one catecholamine, implying that the pigment was polytypic in nature. Nonetheless, melanin derived from individual or mixed catecholamines had comparable ability to protect C. neoformans against ultraviolet light and oxidants. Our results indicate that melanin produced during infection differs depending on the catecholamine composition of tissue and that melanin pigment synthesized in vivo is likely to accrue from the polymerization of a mixture of precursors. From a practical standpoint, our results strongly suggest that using dopamine as a polymerization precursor is capable of producing melanin pigment comparable to that produced during infection. On a more fundamental level, our findings uncover additional structural complexity for natural cryptococcal melanin by demonstrating that pigment produced during human infection is likely to be composed of polymerized moieties derived from chemically different precursors.  相似文献   

4.
The essential fungal cell-wall polymer (1,3)β-glucan is synthesized by the enzyme (1,3)β-glucan synthase. This enzyme, which is the target of the echinocandin and pneumocandin families of fungicidal antibiotics, is a complex composed of at least two proteins, Rho1p and Fks1p. Homologs of the yeast FKS1 gene have been discovered in numerous fungi, and existing evidence points to, but has not yet proved, Fks1p being the catalytic subunit of (1,3)β-glucan synthase. We have purified (1,3)β-glucan synthase from Neurospora crassa ∼400-fold enrichment and labeled the substrate-binding protein by using a UDP-glucose analog, 5-azido-[β-32P]-UDP-glucose. UDP-glucose-binding proteins were photo-crosslinked to the substrate analog and identified from SDS-PAGE gels by Quadrupole time-of-flight mass spectrometry by sequencing the tryptic peptides. Two plasma membrane proteins were labeled FKS and H+-ATPase. These results suggest that FKS appears to be the substrate-binding subunit of (1,3)β-glucan synthase. Received: 31 May 2002 / Accepted: 27 July 2002  相似文献   

5.
Backgroundβ-(1,3)(1,6)-D-glucan is fungal cell wall component that has demonstrated immunomodulatory and anti-cancer effects. The (1,3)-β-glucan synthase is one of the main enzymes involved in its biosynthesis.AimsTo design primers to partially amplify and characterize the (1,3)-β-glucan synthase gene and to determine them in Ganoderma lucidum (G. Lucidum) strain CP-132.MethodsThe primers were designed on the basis of homologous genes in other fungi. Then, using the PCR technique, primers were tested using DNA extracted from the G. lucidum strain CP-382. Amplified sequences were compared with those from the GenBank.ResultsThree primer pairs were designed; all of them produced amplicons of the expected size. The sequences obtained with primer pairs BGS2113UmF and BGS3097UmR, and BGS547UmF and BGS2113UmR matched with 2 sections of the (1,3)-β-glucan synthase gene. The deduced amino acid sequences showed high similarity with homologous genes from other fungi, particularly with those of the Agaricomycetes class.ConclusionsThe primer design to partially amplify the (1,3)-β-glucan synthase gene of G. lucidum using sequences from homologous genes was successful. These primers will allow to characterize this important enzyme in a wide group of fungi.  相似文献   

6.
Anti-β-glucan antibodies elicited by a laminarin-conjugate vaccine confer cross-protection to mice challenged with major fungal pathogens such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. To gain insights into protective β-glucan epitope(s) and protection mechanisms, we studied two anti-β-glucan monoclonal antibodies (mAb) with identical complementarity-determining regions but different isotypes (mAb 2G8, IgG2b and mAb 1E12, IgM). C. albicans, the most relevant fungal pathogen for humans, was used as a model.Both mAbs bound to fungal cell surface and to the β1,3-β1,6 glucan of the fungal cell wall skeleton, as shown by immunofluorescence, electron-microscopy and ELISA. They were also equally unable to opsonize fungal cells in a J774 macrophage phagocytosis and killing assay. However, only the IgG2b conferred substantial protection against mucosal and systemic candidiasis in passive vaccination experiments in rodents. Competition ELISA and microarray analyses using sequence-defined glucan oligosaccharides showed that the protective IgG2b selectively bound to β1,3-linked (laminarin-like) glucose sequences whereas the non-protective IgM bound to β1,6- and β1,4-linked glucose sequences in addition to β1,3-linked ones. Only the protective IgG2b recognized heterogeneous, polydisperse high molecular weight cell wall and secretory components of the fungus, two of which were identified as the GPI-anchored cell wall proteins Als3 and Hyr1. In addition, only the IgG2b inhibited in vitro two critical virulence attributes of the fungus, hyphal growth and adherence to human epithelial cells.Our study demonstrates that the isotype of anti-β-glucan antibodies may affect details of the β-glucan epitopes recognized, and this may be associated with a differing ability to inhibit virulence attributes of the fungus and confer protection in vivo. Our data also suggest that the anti-virulence properties of the IgG2b mAb may be linked to its capacity to recognize β-glucan epitope(s) on some cell wall components that exert critical functions in fungal cell wall structure and adherence to host cells.  相似文献   

7.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS) has been used to discriminate moniliaceous fungal species; however, darkly pigmented fungi yield poor fingerprint mass spectra that contain few peaks of low relative abundance. In this study, the effect of dark fungal pigments on the observed MALDI mass spectra was investigated. Peptide and protein samples containing varying concentrations of synthetic melanin or fungal pigments extracted from Aspergillus niger were analyzed by MALDI–TOF and MALDI–qTOF (quadrupole TOF) MS. Signal suppression was observed in samples containing greater than 250 ng/μl pigment. Microscopic examination of the MALDI sample deposit was usually heterogeneous, with regions of high pigment concentration appearing as black. Acquisition of MALDI mass spectra from these darkly pigmented regions of the sample deposit yielded poor or no [M+H]+ ion signal. In contrast, nonpigmented regions within the sample deposit and hyphal negative control extracts of A. niger were not inhibited. This study demonstrated that dark fungal pigments inhibited the desorption/ionization process during MALDI–MS; however, these fungi may be successfully analyzed by MALDI–TOF MS when culture methods that suppress pigment expression are used. The addition of tricyclazole to the fungal growth media blocks fungal melanin synthesis and results in less melanized fungi that may be analyzed by MALDI–TOF MS.  相似文献   

8.
Plant endo-β-1,3-glucanases and chitinases inhibit the growth of some fungi and generate elicitor-active oligosaccharides while depolymerizing polysaccharides of mycelial walls. Overexpression of the endo-β-1,3-glucanases and/ or chitinases in transgenic plants provides, in some cases, increased protection against fungal pathogens. However, most of the phytopathogenic fungi that have been tested in vitro are resistant to endo-β-1,3-glucanases and chitinases. Furthermore, some phytopathogenic fungi whose growth is inhibited by these enzymes are able to overcome the effect of these enzymes over a period of hours, indicating an ability of those fungi to adapt to the enzymes. Evidence is presented indicating that fungal pathogens secrete proteins that inhibit selective plant endo-β-1,3-glucanases.A glucanase inhibitor protein (GIP-1) has been purified to homogeneity from the culture fluid of the fungal pathogen of soybeans, Phytophthora sojae f. sp. glycines (Psg), and two basic pathogenesis-related endo-β-1,3-glucanases (EnGLsoy-A and EnGLsoy-B) have been purified from soybean seedlings. GIP-1 inhibits EnGLsoy-A but not EnGLsoy-B. Moreover, GIP-1 does not inhibit endo-β-1,3-glucanases secreted by Psg itself nor does GIP-1 inhibit PR-2c, a pathogenesis-related endo-β-1,3-glucanase of tobacco. Evidence is presented that Psg secretes other GIPs that inhibit other endo-β-1,3-glucanase(s) of soybean. Furthermore, GIP-1 does not exhibit proteolytic activity but does appear to physically bind to EnGLsoy-A. The results reported herein demonstrate specific interactions between gene products of the host and pathogen and establish the need to consider fungal proteins that inhibit plant endo-β-1,3-glucanases when attempting to use the genes encoding endo-β-1,3-glucanases to engineer resistance to fungi in transgenic plants.  相似文献   

9.
Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant''s defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants'' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is nondegradable in plants, it is reasonable that many fungal plant pathogens utilize α-1,3-glucan in the innate immune evasion mechanism and some in maintaining the structures.  相似文献   

10.
Cryptococcus neoformans melanizes in the environment and in mammalian tissues, but the process of melanization in either venue is mysterious given that this microbe produces melanin only from exogenous substrates. Understanding the process of melanization is important because melanization is believed to protect against various stresses in the environment, including UV radiation, and pigment production is associated with virulence. Melanization in C. neoformans requires the availability of diphenolic precursors. In contrast, many bacteria synthesize melanin from homogentisic acid (HGA). We report that C. neoformans strains representing all four serotypes can produce a brown pigment from HGA. The brown pigment was acid resistant and had the electron paramagnetic resonance spectrum of a stable free radical, qualities that identified it as a melanin. Melanin “ghost”-like particles obtained from pigmented C. neoformans cells were hydrophobic, fluorescent under a variety of irradiation wavelengths, negatively charged, insoluble in organic solvents and alcohols, resistant to degradation by strong acids, and vulnerable to bleaching. HGA melanization was laccase dependent and repressed by high concentrations of glucose. The ability of C. neoformans to utilize a bacterial melanin precursor compound suggests a new substrate source for melanization in the environment.  相似文献   

11.
The interface between plants and pathogens plays an important role in their interaction. Studies of fungal cell walls are scarce and previous results show the existence of α-1,3-glucans in addition to ß-glucans. In addition, α-1,3-glucans are not present in plant cell walls, and α-glucanase activity in plants has not been described before. In a previous work, we purified and characterized an α-1,3-glucan from a binucleated, non-pathogenic Rhizoctonia isolate, which induces plant defence responses. Therefore, in order to study the architecture of the fungal cell wall, and the accessibility and localization of the α-glucan elicitor, we prepared an antibody against the α-1,3-glucan and analysed its localization by TEM. Immunolocalization showed the presence of the α-1,3-glucan in the intercellular spaces and along the cell walls, mainly on the inner layers. This result, and the presence of the α-1,3-glucan in the liquid culture medium in which binucleated non-pathogenic Rhizoctonia was grown, confirmed that the α-glucan had been secreted. The α-1,3-glucan was also immunocytolocalized on potato sprouts tissue elicited with the glucan; gold particles were observed in vacuoles and close to the plasmalemma. In addition, α-glucanase activity in potato sprouts was detected using cell wall glucans from the pathogenic isolate R. solani AG-3 as substrates; whereas, when cell wall glucans from non-pathogenic isolates were used, no α-glucanase activity was detected. Our results suggest that the presence of α-1,3-glucans could be associated with the formation and integrity of the cell wall and also with plant–fungi interactions. This is the first report to describe α-glucanolytic activity in plants.  相似文献   

12.
大量的稀土-重金属通过尾矿坝的浮尘、地表径流和渗滤液排放到周边土壤中,影响了土壤中的微生物群落结构。【目的】分析稀土和重金属复合污染土壤真菌群落结构并分离具有同时吸附稀土和重金属的菌株。【方法】本研究基于ITS基因,采用Illumina-Hiseq测序技术分析了包头稀土尾矿坝周边5份稀土-重金属污染土壤样品和距尾矿区20 km的1份相对未受污染的土壤样品的真菌群落特征,同时采用富集培养法从污染样品中筛选出金属耐性真菌,并对其进行吸附稀土-重金属的特性分析。【结果】群落结构为:在门水平,除了未分类门真菌(unclassified Fungi)外,子囊菌门(Ascomycota)真菌在所有土壤中占比较大(13.5%–90.5%);在纲水平上,除了未分类纲真菌外,粪壳菌纲(Sordariomycetes)真菌在B2 (73.1%)、B3 (28.4%)和B4 (20.8%)的丰度显著高于对照样点C (7.4%),而座囊菌纲(Dothideomycetes)在B5 (11.8%)的丰度明显高于B1 (3.5%);在属水平,除了未分类属,足孢子虫属(Podospora)是C(0.9%)和B3(23.6%)样点的优势种。曲霉属(Aspergillus)、未分类的格孢腔菌目(unclassified Pleosporales)和未分类的戴维迪科(unclassified Davidiellaceae)分别为B1 (3.0%)、B4 (10.5%)和B5(5.8%)的优势种,而蜡蚧属(Lecanicillium)真菌只在B2样点土壤存在且占优(51.6%)。Zn污染对真菌群落结构的影响大于稀土元素污染,且其浓度与优势的未分类真菌相对丰度呈负相关。从污染样品中共分离出6株真菌,它们分属于曲霉属(Aspergillus)(5株)和镰刀霉菌属(Fusarium)(1株)。所有分离菌株对镧(La~(3+))的吸附率均显著高于锌(Zn~(2+)),其中Aspergillus sp. B6-3对La~(3+)和锌Zn~(2+)的吸附率最高,分别为19.7%和3.9%。【结论】该研究为利用真菌去除稀土和重金属以优化生物吸附过程导向的环境生物修复和保护策略提供了机制基础。  相似文献   

13.
Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningitis in immunocompromised individuals. Existing antifungal treatment plans have high mammalian toxicity and increasing drug resistance, demonstrating the dire need for new, nontoxic therapeutics. Antimicrobial peptoids are one alternative to combat this issue. Our lab has recently identified a tripeptoid, AEC5, with promising efficacy and selectivity against C. neoformans. Here, we report studies into the broad-spectrum efficacy, killing kinetics, mechanism of action, in vivo half-life, and subchronic toxicity of this compound. Most notably, these studies have demonstrated that AEC5 rapidly reduces fungal burden, killing all viable fungi within 3 hours. Additionally, AEC5 has an in vivo half-life of 20+ hours and no observable in vivo toxicity following 28 days of daily injections. This research represents an important step in the characterization of AEC5 as a practical treatment option against C. neoformans infections.  相似文献   

14.
Abstract

Polyclonal and monoclonal antibodies were produced against hyphae of the arbuscular mycorrhizal fungus Glomus monosporum. The polyclonal antibodies (pAbs) were raised in a rabbit by immunizing with hyphae. They were tested for their specificity by a dot-immunoblot assay (DIBA). After the third immunization, a distinct difference in the signal strength was observed between the antisera and the preimmune serum. The pAbs showed cross-reactions to a number of fungal species, both mycorrhizal and other. For the production of monoclonal antibodies (mAbs), mice were immunized intraperitoneally with hyphae. The resulting hybridoma cell culture supernatants were tested by an indirect immunolabeling procedure. For this purpose the hyphae were immobilized on silane-coated microscopic slides. The mAb 8A7 reacted with hyphae from all Glomus isolates tested so far. Cross-reactivities were not observed with hyphae from fungi of the family Acaulosporaceae, phytopathogenic fungi tested so far, or from spores from Glomus species.  相似文献   

15.
Calcineurin is a calcium-activated phosphatase that controls morphogenesis and stress responses in eukaryotes. Fungal pathogens have adopted the calcineurin pathway to survive and effectively propagate within the host. The difficulty in treating fungal infections stems from similarities between pathogen and host eukaryotic cells. Using calcineurin inhibitors such as cyclosporin A or tacrolimus (FK506) in combination with antifungal drugs, including azoles or echinocandins, renders these drugs fungicidal, even towards drug-resistant species or strains, making calcineurin a promising drug target. This article summarizes the current understanding of the calcineurin pathway and its roles in governing the growth and virulence of pathogenic fungi, and compares and contrasts the roles of calcineurin in fungal pathogens that infect humans (Candida albicans and Cryptococcus neoformans) or plants (Magnaporthe oryzae and Ustilago maydis). Further investigation of calcineurin biology will advance opportunities to develop novel antifungal therapeutic approaches and provide insight into the evolution of virulence.  相似文献   

16.
The cell wall of the yeast form of the dimorphic fungus Paracoccidioides brasiliensis is enriched with α1,3-glucans. In Cryptococcus neoformans, α1,3-glucans interact with glucuronoxylomannan (GXM), a heteropolysaccharide that is essential for fungal virulence. In this study, we investigated the occurrence of P. brasiliensis glycans sharing properties with cryptococcal GXM. Protein database searches in P. brasiliensis revealed the presence of sequences homologous to those coding for enzymes involved in the synthesis of GXM and capsular architecture in C. neoformans. In addition, monoclonal antibodies (mAbs) raised to cryptococcal GXM bound to P. brasiliensis cells. Using protocols that were previously established for extraction and analysis of C. neoformans GXM, we recovered a P. brasiliensis glycan fraction composed of mannose and galactose, in addition to small amounts of glucose, xylose and rhamnose. In comparison with the C. neoformans GXM, the P. brasiliensis glycan fraction components had smaller molecular dimensions. The P. brasiliensis components, nevertheless, reacted with different GXM-binding mAbs. Extracellular vesicle fractions of P. brasiliensis also reacted with a GXM-binding mAb, suggesting that the polysaccharide-like molecule is exported to the extracellular space in secretory vesicles. An acapsular mutant of C. neoformans incorporated molecules from the P. brasiliensis extract onto the cell wall, resulting in the formation of surface networks that resembled the cryptococcal capsule. Coating the C. neoformans acapsular mutant with the P. brasiliensis glycan fraction resulted in protection against phagocytosis by murine macrophages. These results suggest that P. brasiliensis and C. neoformans share metabolic pathways required for the synthesis of similar polysaccharides and that P. brasiliensis yeast cell walls have molecules that mimic certain aspects of C. neoformans GXM. These findings are important because they provide additional evidence for the sharing of antigenically similar components across phylogenetically distant fungal species. Since GXM has been shown to be important for the pathogenesis of C. neoformans and to elicit protective antibodies, the finding of similar molecules in P. brasiliensis raises the possibility that these glycans play similar functions in paracoccidiomycosis.  相似文献   

17.
Many working environments are predisposed for larger than average amounts of fungi and other microorganisms often due to organic material being handled. From 2003 to 2007, the area used for strawberry production in Denmark increased by 62%. The purpose of this study was to determine the levels of exposure to microorganisms, endotoxin, (1→3)-β-d-glucan (β-glucan), and pollen in a field of strawberries. The study was carried out in eastern Denmark from the middle of June to the beginning of August 2008. The strawberries were grown organically, and microbiological pest control agents (MPCAs) were applied during this and former growth seasons. In order to measure exposure to inhalable bioaerosol components, we used stationary filter samplers. Bioaerosol sampling was performed during 4 working days, and a total of 57 samplings were performed. The filters were analysed for contents of fungi, MPCAs, endotoxin, β-glucan, and pollen. The mean exposure was 6,154 CFU Cladosporium sp. m−3, 1.0 × 105 fungal spores m−3, 4.1 × 104 hyphal fragments m−3, 5.8 × 103 pollen m−3, 57.3 ng β-glucan m−3, and 8.9 endotoxin units (EU) m−3. A significant and positive correlation was found between β-glucan and fungal spores and between CFU of Cladosporium sp. and CFU of fungi. We selected specifically for Metarhizium anisopliae, Beauveria bassiana, and the applied MPCAs Trichoderma harzianum, T. polysporum, and Bacillus thuringiensis but found none of these species. In conclusion, our study shows that berry pickers in this organic strawberry field were potentially subjected to higher levels of fungal spores, Cladosporium sp., hyphal fragments, pollen, and thus also β-glucan than is usually seen in outdoor air. Exposure to MPCAs was not seen. The exposure to endotoxin was only slightly higher than e.g. in a town.  相似文献   

18.
In this work, we biochemically characterized inositol phosphosphingolipid-phospholipase C (Isc1) from the pathogenic fungus Cryptococcus neoformans. Unlike Isc1 from other fungi and parasites which hydrolyze both fungal complex sphingolipids (IPC-PLC) and mammalian sphingomyelin (SM-PLC), C. neoformans Isc1 only exerts IPC-PLC activity. Genetic mutations thought to regulate substrate recognition in other Isc1 proteins do not restore SM-PLC activity of the cryptococcal enzyme. C. neoformans Isc1 regulates the level of complex sphingolipids and certain species of phytoceramide, especially when fungal cells are exposed to acidic stress. Since growth in acidic environments is required for C. neoformans to cause disease, this study has important implications for understanding of C. neoformans pathogenicity.  相似文献   

19.
Abstract

The effects of either synthetic or natural substances on the normal morphogenetic processes in fungi are reviewed. Original results concerning the changes induced in the dermatophyte Microsporum cookei Ajello by the UVA-activated coumarin, herniarin, are reported. Alterations in the shape and wall assembly of parietal components are discussed on the basis of the most recent knowledge on the formation and growth of fungal hyphae.  相似文献   

20.
We have previously shown that protein kinase A of the medically important zygomycete Mucor rouxii participates in fungal morphology through cytoskeletal organization. As a first step towards finding the link between protein kinase A and cytoskeletal organization we here demonstrate the cloning of the Rho1 gene and the characterization of its protein product. The RHO1 protein primary sequence shows 70–85% identity with fungal RHO1 or mammalian RhoA. Two protein kinase A phosphorylation sequences in adequate context are predicted, Ser73 and Ser135. The peptide IRRNSQKFV, containing Ser135 proved to be a good substrate for M. rouxii protein kinase A catalytic subunit. The over-expressed Rho1 fully complements a Saccharomyces cerevisiae null mutant. The endogenous protein was identified by western blot against a developed antibody and by ADP-ribosylation. Localization in germlings was visualized by immunofluorescence; the protein was localized in patches in the mother cell surface and excluded from the germ tube. Measurement of Rho1 expression during germination indicates that Rho1, at both the mRNA and protein levels, correlates with differentiation and not with growth. Rho1 has been shown to be the regulatory protein of the β-1,3-glucan synthase complex in fungi in which β-1,3-glucans are major components of the cell wall. Even though glucans have not been detected in zygomycetes, caspofungin, an echinochandin known to be an inhibitor of β-1,3-glucan synthase complex, is shown here to have a negative effect on growth and to produce an alteration on morphology when added to M. rouxii growth culture medium. This result has an important impact on the possible participation of β-1,3-glucans on the regulation of morphology of zygomycetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号