首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When yeast cells are exposed to sublethal concentrations of oxidants, they adapt to tolerate subsequent lethal treatments. Here, we show that this adaptation involves tolerance of oxidative damage, rather than protection of cellular constituents. o- and m-tyrosine levels are used as a sensitive measure of protein oxidative damage and we show that such damage accumulates in yeast cells exposed to H(2)O(2) at low adaptive levels. Glutathione represents one of the main cellular protections against free radical attack and has a role in adaptation to oxidative stress. Yeast mutants defective in glutathione metabolism are shown to accumulate significant levels of o- and m-tyrosine during normal aerobic growth conditions.  相似文献   

2.
Sources and sinks of nitrous oxide (N2O) in deep lakes   总被引:2,自引:1,他引:2  
As reported from marine systems, we found that also in15 prealpine lakes N2O concentrations werestrongly correlated with O2 concentrations. Inoxic waters below the mixed surface layer, N2Oconcentrations usually increased with decreasingO2 concentrations. N2O is produced in oxicepilimnia, in oxic hypolimnia and at oxic-anoxicboundaries, either in the water or at the sediment-waterinterface. It is consumed, however, incompletely anoxic layers. Anoxic water layers weretherefore N2O undersaturated. All studied lakeswere sources for atmospheric N2O, including thosewith anoxic, N2O undersaturated hypolimnia.However, compared to agriculture, lakes seem not tocontribute significantly to atmospheric N2Oemissions.  相似文献   

3.
4.
1-bromopropane (1-BP; n-propyl bromide) (CAS No. 106-94-5) is an alternative to ozone-depleting chlorofluorocarbons that has a variety of potential applications as a degreasing agent for metals and electronics, and as a solvent vehicle for spray adhesives. Its isomer, 2-brompropane (2-BP; isopropyl bromide) (CAS No. 75-26-3) impairs antioxidant cellular defenses, enhances lipid peroxidation, and causes DNA damage in vitro. The present study had two aims. The first was to assess DNA damage in human leukocytes exposed in vitro to 1- or 2-BP. DNA damage was also assessed in peripheral leukocytes from workers with occupational exposure to 1-BP. In the latter assessment, start-of- and end-of-work week blood and urine samples were collected from 41 and 22 workers at two facilities where 1-BP was used as a solvent for spray adhesives in foam cushion fabrication. Exposure to 1-BP was assessed from personal-breathing zone samples collected for 1-3 days up to 8h per day for calculation of 8h time weighted average (TWA) 1-BP concentrations. Bromide (Br) was measured in blood and urine as a biomarker of exposure. Overall, 1-BP TWA concentrations ranged from 0.2 to 271 parts per million (ppm) at facility A, and from 4 to 27 ppm at facility B. The highest exposures were to workers classified as sprayers. 1-BP TWA concentrations were statistically significantly correlated with blood and urine Br concentrations. The comet assay was used to estimate DNA damage. In vitro, 1- or 2-BP induced a statistically significant increase in DNA damage at 1mM. In 1-BP exposed workers, start-of- and end-of-workweek comet endpoints were stratified based on job classification. There were no significant differences in DNA damage in leukocytes between workers classified as sprayers (high 1-BP exposure) and those classified as non-sprayers (low 1-BP exposure). At the facility with the high exposures, comparison of end-of-week values with start-of-week values using paired analysis revealed non-sprayers had significantly increased comet tail moments, and sprayers had significantly increased comet tail moment dispersion coefficients. A multivariate analysis included combining the data sets from both facilities, log transformation of 1-BP exposure indices, and the use of multiple linear regression models for each combination of DNA damage and exposure indices including exposure quartiles. The covariates were gender, age, smoking status, facility, and glutathione S-transferase M1 and T1 (GSTM1, GSTT1) polymorphisms. In the regression models, start-of-week comet tail moment in leukocytes was significantly associated with serum Br quartiles. End-of-week comet tail moment was significantly associated with 1-BP TWA quartiles, and serum Br quartiles. Gender, facility, and GSTM1 had a significant effect in one or more models. Additional associations were not identified from assessment of dispersion coefficients. In vitro and in vivo results provide limited evidence that 1-BP exposure may pose a small risk for increasing DNA damage.  相似文献   

5.
DNA damage responses to oxidative stress   总被引:12,自引:0,他引:12  
Barzilai A  Yamamoto K 《DNA Repair》2004,3(8-9):1109-1115
The DNA damage response is a hierarchical process. DNA damage is detected by sensor proteins such as the MRN complex that transmit the information to transducer proteins such as ATM and ATR, which control the damage response through the phosphorylation of effector proteins. The extent of the DNA damage determines cell fate: cell cycle arrest and DNA repair or the activation of apoptotic pathways. In aerobic cells, reactive oxygen species (ROS) are generated as a by-product of normal mitochondrial activity. If not properly controlled, ROS can cause severe damage to cellular macromolecules, especially the DNA. We describe here some of the cellular responses to alterations in the cellular redox state during hypoxia or oxidative stress. Oxidative damage in DNA is repaired primarily via the base excision repair (BER) pathway which appears to be the simplest of the three excision repair pathways. To allow time for DNA repair, the cells activate their cell cycle checkpoints, leading to cell cycle arrest and preventing the replication of damage and defective DNA.  相似文献   

6.
Copper-specific damage in human erythrocytes exposed to oxidative stress   总被引:1,自引:0,他引:1  
Ascorbate and complexes of Cu(II) and Fe(III) are capable of generating significant levels of oxygen free radicals. Exposure of erythrocytes to such oxidative stress leads to increased levels of methemoglobin and extensive changes in cell morphology. Cu(II) per mole is much more effective than Fe(III). However, isolated hemoglobin is oxidized more rapidly and completely by Fe(III)- than by Cu(II)-complexes. Both Fe(III) and Cu(II) are capable of inhibiting a number of the key enzymes of erythrocyte metabolism. The mechanism for the enhanced activity of Cu(II) has not been previously established. Using intact erythrocytes and hemolysates we demonstrate that Cu(II)-, but not Fe(III)-complexes in the presence of ascorbate block NADH-methemoglobin reductase. Complexes of Cu(II) alone are not inhibitory. The relative inability of Fe(III)-complexes and ascorbate to cause methemoglobin accumulation is not owing to Fe(III) association with the membrane, or its failure to enter the erythrocytes. The toxicity of Cu(II) and ascorbate appears to be a result of site-specific oxidative damage of erythrocyte NADH-methemoglobin reductase and the enzyme's subsequent inability to reduce the oxidized hemoglobin.  相似文献   

7.
Juvenile English sole were exposed intramuscularly to nitrofurantoin (NF) and the levels of 8-hydroxy-2′deoxyguanosine (8-OH-dG) in liver, kidney and blood were determined using reversed-phase HPLC with electrochemical detection. Identification and quantitation of the 8-OH-dG in the samples was accomplished by comparison with standard 8-OH-dG, which was characterized by UV spectroscopy and fast-atom bombardment mass spectrometry. The levels of hepatic 8-OH-dG increased (r2 = 0.59, P = 0.015) with the dose of NF (0.10 – 10 mg NF/kg fish). In kidney and blood, however, the levels of 8-OH-dG were significantly higher than controls only at the highest dose tested. The level of binding in liver ranged from 0.37 to 0.76 fmol 8-OH-dG/μg DNA. The levels of hepatic 8-OH-dG reached a maximum (approx. 1 fmol 8-OH-dG/μg DNA) between 1 and 3 days after exposure, followed by a decrease to control levels (approx. 0.25 fmol 8-OH-dG/μg DNA) at 5 days post-exposure. These data demonstrate the first direct evidence for the formation of oxidized DNA bases resulting from the metabolism of a nitroaromatic compound by fish.  相似文献   

8.
Trimetazidine is a well-established anti-ischemic drug, which has been used for long time in the treatment of pathological conditions related with the generation of reactive oxygen species. However, although extensively studied, its molecular mode of action remains largely unknown. In the present study, the ability of trimetazidine to protect low-density lipoproteins (LDL) from oxidation and cultured cells from H2O2-induced DNA damage was investigated. Trimetazidine, tested at concentrations 0.02 to 2.20 mM, was shown to offer significant protection to LDL exposed to three different oxidizing systems, namely copper, Fe/ascorbate, and met-myoglobin/H2O2. The oxidizability of LDL was estimated by measuring, (i) the lag period, (ii) the maximal rate of conjugated diene formation, (iii) the total amount of conjugated dienes formed, (iv) the electrophoretic migration of LDL protein in agarose gels (REM), and (v) the inactivation of the enzyme PAF-acetylhydrolase present in LDL. In addition, the presence of trimetazidine decreased considerably the DNA damage in H2O2-exposed Jurkat cells in culture. H2O2 was continuously generated by the action of glucose oxidase at a rate of 11.8 ± 1.5 μM per min (60 ng enzyme per 100 μl), and DNA damage was assessed by the single cell gel electrophoresis assay (also called comet assay). The protection offered by trimetazidine in this system (about 30% at best) was transient, indicating modification of this agent during its action. These results indicate that trimetazidine can modulate the action of oxidizing agents in different systems. Although its mode of action is not clarified, the possibility that it acts as a lipid barrier permeable transition metal chelator is considered.  相似文献   

9.
Yao X  Zhong L 《Mutation research》2005,587(1-2):38-44
Perfluorooctanoic acid (C8HF15O2, PFOA) is widely used in various industrial fields for decades and it is environmentally bioaccumulative. PFOA is known as a potent hepatocarcinogen in rodents. But it is not yet clear whether it is also carcinogenic in humans, and the genotoxic effects of PFOA on human cells have not yet been examined. In this study, the genotoxic potential of PFOA was investigated in human hepatoma HepG2 cells in culture using single cell gel electrophoresis (SCGE) assay and micronucleus (MN) assay. In order to clarify the underlying mechanism(s) we measured the intracellular generation of reactive oxygen species (ROS) using dichlorofluorescein diacetate as a fluorochrome. The level of oxidative DNA damage was evaluated by immunocytochemical analysis of 8-hydroxydeoxyguanosine (8-OHdG) in PFOA-treated HepG2 cells. PFOA at 50-400 microM caused DNA strand breaks and at 100-400 microM MN in HepG2 cells both in a dose-dependent manner. Significantly increased levels of ROS and 8-OHdG were observed in these cells. We conclude that PFOA exerts genotoxic effects on HepG2 cells, probably through oxidative DNA damage induced by intracellular ROS.  相似文献   

10.
Pesticides are an essential part of agricultural practices that ward off pathogens and diseases from the agricultural crop. However, apart from target organisms, these chemicals also have adverse effects on non-target organisms. Dimethoate is an insecticide used extensively in agriculture and horticulture practices worldwide. We used the silkworm Bombyx mori as a model organism to study the effect of commercial formulation of dimethoate (Dimethoate-30% EC) on the gut, silk gland, and fat body tissues. LD50 of dimethoate-30% EC on silkworm (B. mori) was 997 ppm, as reported in a previous study. We used concentrations of 25, 50, and 100 ppm in our experiments. Our results showed that sub-lethal doses of dimethoate caused weight loss and induced damage at the histological level to the mid-gut, silk gland, and fat body of B. mori. It also caused a decrease in the level of antioxidants like CAT, SOD, GPx, GSH, and GST, indicating that dimethoate has produced a shift of ROS balance towards free radical generation and therefore resulted in overall damage to this organism. Sub-lethal doses of this pesticide also caused lipid peroxidation in the silk gland, gut, and fat body of B. mori, damaging these tissues. The disruption was also seen in the mid-gut and middle silk gland at the DNA level, where it caused single-strand breaks, as was revealed by single cell gel electrophoresis studies. Damage at histological, biochemical, and molecular levels was most extreme at a concentration of 100 ppm, the highest sub-lethal concentration given to B. mori.  相似文献   

11.
Juvenile English sole were exposed intramuscularly to nitrofurantoin (NF) and the levels of 8-hydroxy-2′deoxyguanosine (8-OH-dG) in liver, kidney and blood were determined using reversed-phase HPLC with electrochemical detection. Identification and quantitation of the 8-OH-dG in the samples was accomplished by comparison with standard 8-OH-dG, which was characterized by UV spectroscopy and fast-atom bombardment mass spectrometry. The levels of hepatic 8-OH-dG increased (r2 = 0.59, P = 0.015) with the dose of NF (0.10 – 10 mg NF/kg fish). In kidney and blood, however, the levels of 8-OH-dG were significantly higher than controls only at the highest dose tested. The level of binding in liver ranged from 0.37 to 0.76 fmol 8-OH-dG/μg DNA. The levels of hepatic 8-OH-dG reached a maximum (approx. 1 fmol 8-OH-dG/μg DNA) between 1 and 3 days after exposure, followed by a decrease to control levels (approx. 0.25 fmol 8-OH-dG/μg DNA) at 5 days post-exposure. These data demonstrate the first direct evidence for the formation of oxidized DNA bases resulting from the metabolism of a nitroaromatic compound by fish.  相似文献   

12.
Zhang M  Chen Z  Chen Q  Zou H  Lou J  He J 《Mutation research》2008,654(1):45-51
DNA damage of peripheral lymphocytes in 60 workers occupationally exposed to trivalent chromium [Cr(III)] in a tannery was studied using comet assay. The urinary and blood chromium levels were detected as a biomarker of internal exposure. The 90 subjects were divided into three groups: (i) exposure group I included 30 tannery workers highly exposed to chromium from tanning department; (ii) exposure group II included 30 tannery workers with moderate chromium exposure from finishing department; (iii) control group included 30 individuals without exposure to physical or chemical genotoxic agents. No significant difference was found among the three groups for age and smoking. The results showed that the medians of blood and urinary Cr of two exposure groups were significantly higher than those of control group (P<0.01). And the medians of blood and urinary Cr of exposure group I were significantly higher than those of exposure group II (P<0.05 or P<0.01). The medians of mean tail length (MTL) of the three groups were 5.33 (2.90-8.50), 3.43 (2.31-8.29) and 2.04 (0.09-3.83) microm, respectively; The medians of mean tail moment (MTM) of the three groups were 6.28 (2.14-11.81), 3.41 (1.25-11.07) and 0.53 (0.13-3.29), respectively. The MTL and MTM of two exposure groups were significantly higher than those of control group (P<0.01). The MTL and MTM of exposure group I were significantly higher than those of exposure group II (P<0.01). The results of the present investigation suggest that occupational exposure to trivalent chromium can lead to a detectable DNA damage of human peripheral lymphocytes. Moreover, DNA damage was associated with chromium levels in blood. DNA damage may serve as a valuable effective biomarker and total chromium in blood may serve as a useful internal exposure biomarker in the population occupationally exposed to trivalent chromium.  相似文献   

13.
DNA damage of peripheral lymphocytes in 60 workers occupationally exposed to trivalent chromium [Cr(III)] in a tannery was studied using comet assay. The urinary and blood chromium levels were detected as a biomarker of internal exposure. The 90 subjects were divided into three groups: (i) exposure group I included 30 tannery workers highly exposed to chromium from tanning department; (ii) exposure group II included 30 tannery workers with moderate chromium exposure from finishing department; (iii) control group included 30 individuals without exposure to physical or chemical genotoxic agents. No significant difference was found among the three groups for age and smoking. The results showed that the medians of blood and urinary Cr of two exposure groups were significantly higher than those of control group (P < 0.01). And the medians of blood and urinary Cr of exposure group I were significantly higher than those of exposure group II (P < 0.05 or P < 0.01). The medians of mean tail length (MTL) of the three groups were 5.33 (2.90–8.50), 3.43 (2.31–8.29) and 2.04 (0.09–3.83) μm, respectively; The medians of mean tail moment (MTM) of the three groups were 6.28 (2.14–11.81), 3.41 (1.25–11.07) and 0.53 (0.13–3.29), respectively. The MTL and MTM of two exposure groups were significantly higher than those of control group (P < 0.01). The MTL and MTM of exposure group I were significantly higher than those of exposure group II (P < 0.01). The results of the present investigation suggest that occupational exposure to trivalent chromium can lead to a detectable DNA damage of human peripheral lymphocytes. Moreover, DNA damage was associated with chromium levels in blood. DNA damage may serve as a valuable effective biomarker and total chromium in blood may serve as a useful internal exposure biomarker in the population occupationally exposed to trivalent chromium.  相似文献   

14.
Exposure to propylene oxide was determined previously by the degree of alkylation of hemoglobin measured on the histidine residue as N-3-(2-hydroxypropyl) histidine, using blood samples from 8 propylene oxide-exposed employees and 13 unexposed referents. Mononuclear leukocytes isolated from the same blood samples were used to quantify DNA repair proficiency following an in vitro challenge with the carcinogen, N-acetoxy-2-acetylamino-fluorene. Decreases in the DNA repair proficiency index correlated significantly to in vivo exposure levels to propylene oxide (r = –0.64, p <0.03). These data suggest a possible short-term biological assay for monitoring the in vivo genotoxic effects of propylene oxide exposure in the human population.Abbreviations EO ethylene oxide - NA-AAF N-acetoxy-2-acetylaminofluorene - HOPrHIS N-3-(2-hydroxypropyl) histidine - PO propylene oxide - UDS unscheduled DNA synthesis  相似文献   

15.
Organophosphate herbicides are among the most dangerous agrochemicals for the aquatic environment. In this context, Roundup(?), a glyphosate-based herbicide, has been widely detected in natural water bodies, representing a potential threat to non-target organisms, namely fish. Thus, the main goal of the present study was to evaluate the genotoxic potential of Roundup(?) in the teleost fish Anguilla anguilla, addressing the possible causative involvement of oxidative stress. Fish were exposed to environmentally realistic concentrations of this herbicide (58 and 116 μgL(-1)) during one or three days. The standard procedure of the comet assay was applied to gill and liver cells in order to determine organ-specific genetic damage. Since liver is a central organ in xenobiotic metabolism, nucleoids of hepatic cells were also incubated with a lesion-specific repair enzyme (formamidopyrimidine DNA glycosylase - FPG), in order to recognise oxidised purines. Antioxidants were determined in both organs as indicators of pro-oxidant state. In general, both organs displayed an increase in DNA damage for the two Roundup(?) concentrations and exposure times, although liver showed to be less susceptible to the lower concentration. The enzyme-modified comet assay showed the occurrence of FPG-sensitive sites in liver only after a 3-day exposure to the higher Roundup(?) concentration. The antioxidant defences were in general unresponsive, despite a single increment of catalase activity in gills (116 μgL(-1), 3-day) and a decrease of superoxide dismutase activity in liver (58 μgL(-1), 3-day). Overall, the mechanisms involved in Roundup(?)-induced DNA strand-breaks showed to be similar in both organs. Nevertheless, it was demonstrated that the type of DNA damage varies with the concentration and exposure duration. Hence, after 1-day exposure, an increase on pro-oxidant state is not a necessary condition for the induction of DNA-damaging effects of Roundup(?). By increasing the duration of exposure to three days, ROS-dependent processes gained preponderance as a mechanism of DNA-damage induction in the higher concentration.  相似文献   

16.
Arsenic (As) is an ubiquitous element in the environment for which the main route of human exposure is through consumption of drinking water. Reactive oxygen species generation (ROS) associated with As exposure is known to play a fundamental role in the induction of adverse health effects and disease (cancer, diabetes, hypertension, and cardiovascular and neurological diseases). However, the precise mechanisms of oxidative stress and damage from As exposure are not fully understood and moreover the use of non-invasive methods of measuring ROS generation and oxidative damage footprints in humans is no easy task. Although As induces adverse health effects not all exposed individuals develop degenerative chronic diseases or even manifest adverse effects or symptoms, suggesting that genetic susceptibility is an important factor involved in the human response to As exposure. This mini-review summarizes the literature describing the molecular mechanisms affected by As, as well as the most used biomarkers of oxidative stress and damage in human populations. The most reported biomarkers of oxidative DNA damage are the urinary excretion of 8-OHdG and the comet assay in lymphocytes, and more recently DNA repair mechanism markers from the base and nuclear excision repair pathways (BER and NER). Genetic heterogeneity in the oxidative stress pathways involved in As metabolism are important causative factors of disease. Thus further refinement of human exposure assessment is needed to reinforce study design to evaluate exposure-response relationships and study gene-environment interactions. The use of microarray-based gene expression analysis can provide better insights of the underlying mechanisms involved in As-induced diseases and could help to identify target genes that can be modulated to prevent disease.  相似文献   

17.
Isoprene and nitric oxide (NO) are two volatile molecules that are produced in leaves. Both compounds were suggested to have an important protective role against stresses. We tested, in two isoprene-emitting species, Populus nigra and Phragmites australis, whether: (1) NO emission outside leaves is measurable and is affected by oxidative stresses; and (2) isoprene and NO protect leaves against oxidative stresses, both singularly and in combination. The emission of NO was undetectable, and the compensation point was very low in control poplar leaves. Both emission and compensation point increased dramatically in stressed leaves. NO emission was inversely associated with stomatal conductance. More NO was emitted in leaves that were isoprene-inhibited, and more isoprene was emitted when NO was reduced by NO scavenger c-PTIO. Both isoprene and NO reduced oxidative damages. Isoprene-emitting leaves which were also fumigated with NO, or treated with NO donor, showed low damage to photosynthesis, a reduced accumulation of H(2)O(2) and a reduced membrane denaturation. We conclude that measurable amounts of NO are only produced and emitted by stressed leaves, that both isoprene and NO are effective antioxidant molecules and that an additional protection is achieved when both molecules are released.  相似文献   

18.
19.
To evaluate the genotoxic, physiological and immunological effects of short-term acute low temperature stress on the Pacific white shrimp, Litopenaeus vannamei, we rapidly transferred shrimp from tanks at 23±2 °C to aquaria at the same temperature (controls) or 12±2 °C for 12 h. Changes in the shrimp hemocyte respiratory burst activity and DNA damage were examined during and after exposure to the temperature stress using flow cytometry and the comet assay, respectively. We also monitored changes in the total hemocyte count, malondialdehyde levels, total protein concentration and osmolality in shrimp plasma. The results show that hemocyte respiratory burst activity, malondialdehydes levels and hemocyte DNA damage in the plasma all increased significantly after exposure to 12±2 °C for 3 h. In contrast, total hemocyte count, total protein concentration and osmolality in the plasma decreased compared to the controls. We conclude that acute low temperature can induce oxidative stress, DNA damage, lipid peroxidation and changes in osmolality in L. vannamei.  相似文献   

20.
Journal of Plant Biochemistry and Biotechnology - Wheat is the second important cereal crop worldwide due to nutritional composition and role in meeting daily energy needs. Salinity is an abiotic...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号