首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most protein complexes are inaccessible to high resolution structural analysis. We report the results of a combined approach of cross-linking, mass spectrometry, and bioinformatics to two human complexes containing large coiled-coil segments, the NDEL1 homodimer and the NDC80 heterotetramer. An important limitation of the cross-linking approach, so far, was the identification of cross-linked peptides from fragmentation spectra. Our novel approach overcomes the data analysis bottleneck of cross-linking and mass spectrometry. We constructed a purpose-built database to match spectra with cross-linked peptides, define a score that expresses the quality of our identification, and estimate false positive rates. We show that our analysis sheds light on critical structural parameters such as the directionality of the homodimeric coiled coil of NDEL1, the register of the heterodimeric coiled coils of the NDC80 complex, and the organization of a tetramerization region in the NDC80 complex. Our approach is especially useful to address complexes that are difficult in addressing by standard structural methods.  相似文献   

2.
An emerging approach for studying protein-protein interaction in complexes is the combination of chemical cross-linking and mass spectrometric analysis of the cross-linked peptides (cross-links) obtained after proteolysis of the complex. This approach, however, has several challenges and limitations, including the difficulty of detecting the cross-links, the potential interference from non-informative "cross-linked peptides" (dead end and intrapeptide cross-links), and unambiguous identification of the cross-links by mass spectrometry. Thus, we have synthesized an isotopically coded ethylene glycol bis(succinimidylsuccinate) derivate (D12-EGS), which contains 12 deuterium atoms for easy detection of cross-links when applied in a 1:1 mixture with its H12 counterpart and is also cleavable for releasing the cross-linked peptides allowing unambiguous identification by MS sequencing. Moreover, hydrolytic cleavage permits rapid distinguishing between different types of cross-links. Cleavage of a dead end cross-link produces a doublet with peaks 4.03 Da apart, with the lower peak appearing at a molecular mass 162 Da lower than the mass of the H12 form of the original cross-linked peptide. Cleavage of an intrapeptide cross-link leads to a doublet 8.05 Da apart and 62 Da lower than the molecular mass of the H12 form of the original cross-linked peptide. Cleavage of an interpeptide cross-link forms a pair of 4.03-Da doublets, with the lower mass member of each pair each shifted up from its unmodified molecular weight by 82 Da because of the attached portion of the cross-linker. All of this information has been incorporated into a software algorithm allowing automatic screening and detection of cross-links and cross-link types in matrix-assisted laser desorption/ionization mass spectra. In summary, the ease of detection of these species through the use of an isotopically coded cleavable cross-linker and our software algorithm, followed by mass spectrometric sequencing of the cross-linked peptides after cleavage, has been shown to be a powerful tool for studies of multi-component protein complexes.  相似文献   

3.
LC-MS/MS analysis on a linear ion trap LTQ mass spectrometer, combined with data processing, stringent, and sequence-similarity database searching tools, was employed in a layered manner to identify proteins in organisms with unsequenced genomes. Highly specific stringent searches (MASCOT) were applied as a first layer screen to identify either known (i.e. present in a database) proteins, or unknown proteins sharing identical peptides with related database sequences. Once the confidently matched spectra were removed, the remainder was filtered against a nonannotated library of background spectra that cleaned up the dataset from spectra of common protein and chemical contaminants. The rectified spectral dataset was further subjected to rapid batch de novo interpretation by PepNovo software, followed by the MS BLAST sequence-similarity search that used multiple redundant and partially accurate candidate peptide sequences. Importantly, a single dataset was acquired at the uncompromised sensitivity with no need of manual selection of MS/MS spectra for subsequent de novo interpretation. This approach enabled a completely automated identification of novel proteins that were, otherwise, missed by conventional database searches.  相似文献   

4.
We have developed a new approach for the analysis of interacting interfaces in protein complexes and protein quaternary structure based on cross-linking in the solid state. Protein complexes are freeze-dried under vacuum, and cross-links are introduced in the solid phase by dehydrating the protein in a nonaqueous solvent creating peptide bonds between amino and carboxyl groups of the interacting peptides. Cross-linked proteins are digested into peptides with trypsin in both H2(16)O and H(2)18O and then readily distinguished in mass spectra by characteristic 8 atomic mass unit (amu) shifts reflecting incorporation of two 18O atoms into each C terminus of proteolytic peptides. Computer analysis of mass spectrometry (MS) and MS/MS data is used to identify the cross-linked peptides. We demonstrated specificity and reproducibility of our method by cross-linking homo-oligomeric protein complexes of glutathione-S-transferase (GST) from Schistosoma japonicum alone or in a mixture of many other proteins. Identified cross-links were predominantly of amide origin, but six esters and thioesters were also found. The cross-linked peptides were validated against the GST monomer and dimer X-ray structures and by experimental (MS/MS) analyses. Some of the identified cross-links matched interacting peptides in the native 3D structure of GST, indicating that the structure of GST and its oligomeric complex remained primarily intact after freeze-drying. The pattern of oligomeric GST obtained in solid state was the same as that obtained in solution by Ru (II) Bpy(3)2+ catalyzed, oxidative "zero-length" cross-linking, confirming that it is feasible to use our strategy for analyzing the molecular interfaces of interacting proteins or peptides.  相似文献   

5.
Vasilescu J  Guo X  Kast J 《Proteomics》2004,4(12):3845-3854
The purification of protein complexes can be accomplished by different types of affinity chromatography. In a typical immunoaffinity experiment, protein complexes are captured from a cell lysate by an immobilized antibody that recognizes an epitope on one of the known components of the complex. After extensive washing to remove unspecifically bound proteins, the complexes are eluted and analyzed by mass spectrometry (MS). Transient complexes, which are characterized by high dissociation constants, are typically lost by this approach. In the present study, we describe a novel method for identifying transient protein-protein interactions using in vivo cross-linking and MS-based protein identification. Live cells are treated with formaldehyde, which rapidly permeates the cell membrane and generates protein-protein cross-links. Proteins cross-linked to a Myc-tagged protein of interest are copurified by immunoaffinity chromatography and subjected to a procedure which dissociates the cross-linked complexes. After separation by SDS-PAGE, proteins are identified by tandem mass spectrometry. Application of this method enabled the identification of numerous proteins that copurified with a constitutively active form of M-Ras (M-Ras(Q71L)). Among these, we identified the RasGAP-related protein IQGAP1 to be a novel interaction partner of M-Ras(Q71L). This method is applicable to many proteins and will aid in the study of protein-protein interactions.  相似文献   

6.
In vivo protein structures and protein-protein interactions are critical to the function of proteins in biological systems. As a complementary approach to traditional protein interaction identification methods, cross-linking strategies are beginning to provide additional data on protein and protein complex topological features. Previously, photocleavable protein interaction reporter (pcPIR) technology was demonstrated by cross-linking pure proteins and protein complexes and the use of ultraviolet light to cleave or release cross-linked peptides to enable identification. In the present report, the pcPIR strategy is applied to Escherichia coli cells, and in vivo protein interactions and topologies are measured. More than 1600 labeled peptides from E. coli were identified, indicating that many protein sites react with pcPIR in vivo. From those labeled sites, 53 in vivo intercross-linked peptide pairs were identified and manually validated. Approximately half of the interactions have been reported using other techniques, although detailed structures exist for very few. Three proteins or protein complexes with detailed crystallography structures are compared to the cross-linking results obtained from in vivo application of pcPIR technology.  相似文献   

7.
Chemical cross-linking in combination with mass spectrometry has largely been used to study protein structures and protein-protein interactions. Typically, it is used in a qualitative manner to identify cross-linked sites and provide a low-resolution topological map of the interacting regions of proteins. Here, we investigate the capability of chemical cross-linking to quantify protein-protein interactions using a model system of calmodulin and substrates melittin and mastoparan. Calmodulin is a well-characterized protein which has many substrates. Melittin and mastoparan are two such substrates which bind to calmodulin in 1:1 ratios in the presence of calcium. Both the calmodulin-melittin and calmodulin-mastoparan complexes have had chemical cross-linking strategies successfully applied in the past to investigate topological properties. We utilized an excess of immobilized calmodulin on agarose beads and formed complexes with varying quantities of mastoparan and melittin. Then, we applied disuccinimidyl suberate (DSS) chemical cross-linker, digested and detected cross-links through an LC-MS analytical method. We identified five interpeptide cross-links for calmodulin-melittin and three interpeptide cross-links for calmodulin-mastoparan. Using cross-linking sites of calmodulin-mastoparan, we demonstrated that mastoparan also binds in two orientations to calmodulin. We quantitatively demonstrated that both melittin and mastoparan preferentially bind to calmodulin in a parallel fashion, which is opposite to the preferred binding mode of the majority of known calmodulin binding peptides. We also demonstrated that the relative abundances of cross-linked peptide products quantitatively reflected the abundances of the calmodulin peptide complexes formed.  相似文献   

8.
Cross-linking combined with mass spectrometry is an emerging approach for studying protein structure and protein-protein interactions. However, unambiguous mass spectrometric identification of cross-linked peptides derived from proteolytically digested cross-linked proteins is still challenging. Here we describe the use of a novel cross-linker, bimane bisthiopropionic acid N-succinimidyl ester (BiPS), that overcomes many of the challenges associated with other cross-linking reagents. BiPS is distinguished from other cross-linkers by a unique combination of properties: it is photocleavable, fluorescent, homobifunctional, amine-reactive, and isotopically coded. As demonstrated with a model protein complex, RNase S, the fluorescent moiety of BiPS allows for sensitive and specific monitoring of the different cross-linking steps, including detection and isolation of cross-linked proteins by gel electrophoresis, determination of in-gel digestion completion, and fluorescence-based separation of cross-linked peptides by HPLC. The isotopic coding of BiPS results in characteristic ion signal "doublets" in mass spectra, thereby permitting ready detection of cross-linker-containing peptides. Under MALDI-MS conditions, partial photocleavage of the cross-linker occurs, releasing the cross-linked peptides. This allows differentiation between dead-end, intra-, and interpeptide cross-links based on losses of specific mass fragments. It also allows the use of the isotope doublets as mass spectrometric "signatures." A software program was developed that permits automatic cross-link identification and assignment of the cross-link type. Furthermore photocleavage of BiPS assists in cross-link identification by allowing separate tandem mass spectrometry sequencing of each peptide comprising the original cross-link. By combining the use of BiPS with MS, we have provided the first direct evidence for the docking site of a phosphorylated G-protein-coupled receptor C terminus on the multifunctional adaptor protein beta-arrestin, clearly demonstrating the broad potential and application of this novel cross-linker in structural and cellular biology.  相似文献   

9.
10.
Protein interaction reporter (PIR) technology can enable identification of in vivo protein interactions with the use of specialized chemical cross-linkers, liquid chromatography, and high-resolution mass spectrometry. PIR-cross-linkers contain labile bonds that are specifically fragmented under low energy collision or photodissociation conditions in the mass spectrometer source, thus releasing cross-linked peptides. Successful analysis of PIR-cross-linked proteins requires the use of expected mathematical relationships between cross-linked complexes and released peptides after fragmentation of the labile PIR bonds. Presented here is a next-generation software tool, BLinks, for use in the analysis and identification of PIR-cross-linked proteins. BLinks is an advancement beyond our previous efforts by incorporation of chromatographic profiles that must match between cross-linked complexes and released peptides to enable estimation of p-values to help filter true relationships from complex data sets. Additionally, BLinks was used to incorporate Mascot database searching results from subsequent MS/MS analysis of the released peptides to facilitate identification of cross-linked proteins. BLinks was used in the analysis of human serum albumin, and 46 interpeptide relationships were found spanning 30 proximal residues with a 2.2% false discovery rate. BLinks was also used to track peptides involved in multiple, coeluting relationships that make accurate identification of protein interactions difficult. An additional 10 interpeptide relationships were identified despite poor correlation using the profiling tools provided with BLinks. Additionally, BLinks can be used to globally map all interpeptide relationships from the data analysis and customize subsequent analysis to target specific peptides of interest, thus making it a useful tool for both discovery of protein interactions and mapping protein topology.  相似文献   

11.
Chemical cross-linking combined with mass spectrometry provides a powerful method for identifying protein-protein interactions and probing the structure of protein complexes. A number of strategies have been reported that take advantage of the high sensitivity and high resolution of modern mass spectrometers. Approaches typically include synthesis of novel cross-linking compounds, and/or isotopic labeling of the cross-linking reagent and/or protein, and label-free methods. We report Xlink-Identifier, a comprehensive data analysis platform that has been developed to support label-free analyses. It can identify interpeptide, intrapeptide, and deadend cross-links as well as underivatized peptides. The software streamlines data preprocessing, peptide scoring, and visualization and provides an overall data analysis strategy for studying protein-protein interactions and protein structure using mass spectrometry. The software has been evaluated using a custom synthesized cross-linking reagent that features an enrichment tag. Xlink-Identifier offers the potential to perform large-scale identifications of protein-protein interactions using tandem mass spectrometry.  相似文献   

12.
We present results from a novel strategy that enables concurrent identification of protein-protein interactions and topologies in living cells without specific antibodies or genetic manipulations for immuno-/affinity purifications. The strategy consists of (i) a chemical cross-linking reaction: intact cell labeling with a novel class of chemical cross-linkers, protein interaction reporters (PIRs); (ii) two-stage mass spectrometric analysis: stage 1 identification of PIR-labeled proteins and construction of a restricted database by two-dimensional LC/MSMS and stage 2 analysis of PIR-labeled peptides by multiplexed LC/FTICR-MS; and (iii) data analysis: identification of cross-linked peptides and proteins of origin using accurate mass and other constraints. The primary advantage of the PIR approach and distinction from current technology is that protein interactions together with topologies are detected in native biological systems by stabilizing protein complexes with new covalent bonds while the proteins are present in the original cellular environment. Thus, weak or transient interactions or interactions that require properly folded, localized, or membrane-bound proteins can be labeled and identified through the PIR approach. This strategy was applied to Shewanella oneidensis bacterial cells, and initial studies resulted in identification of a set of protein-protein interactions and their contact/binding regions. Furthermore most identified interactions involved membrane proteins, suggesting that the PIR approach is particularly suited for studies of membrane protein-protein interactions, an area under-represented with current widely used approaches.  相似文献   

13.
Yan F  Che FY  Nieves E  Weiss LM  Angeletti RH  Fiser A 《Proteomics》2011,11(20):4109-4115
MS analysis of cross-linked peptides can be used to probe protein contact sites in macromolecular complexes. We have developed a photo-cleavable cross-linker that enhances peptide enrichment, improving the signal-to-noise ratio of the cross-linked peptides in mass spectrometry analysis. This cross-linker utilizes nitro-benzyl alcohol group that can be cleaved by UV irradiation and is stable during the multiple washing steps used for peptide enrichment. The enrichment method utilizes a cross-linker that aids in eliminating contamination resulting from protein-based retrieval systems, and thus, facilitates the identification of cross-linked peptides. Homodimeric pilM protein from Pseudomonas aeruginosa 2192 (pilM) was investigated to test the specificity and experimental conditions. As predicted, the known pair of lysine side chains within 14?? was cross-linked. An unexpected cross-link involving the protein's amino terminus was also detected. This is consistent with the predicted mobility of the amino terminus that may bring the amino groups within 19?? of one another in solution. These technical improvements allow this method to be used for investigating protein-protein interactions in complex biological samples.  相似文献   

14.
Clustering millions of tandem mass spectra   总被引:1,自引:0,他引:1  
Tandem mass spectrometry (MS/MS) experiments often generate redundant data sets containing multiple spectra of the same peptides. Clustering of MS/MS spectra takes advantage of this redundancy by identifying multiple spectra of the same peptide and replacing them with a single representative spectrum. Analyzing only representative spectra results in significant speed-up of MS/MS database searches. We present an efficient clustering approach for analyzing large MS/MS data sets (over 10 million spectra) with a capability to reduce the number of spectra submitted to further analysis by an order of magnitude. The MS/MS database search of clustered spectra results in fewer spurious hits to the database and increases number of peptide identifications as compared to regular nonclustered searches. Our open source software MS-Clustering is available for download at http://peptide.ucsd.edu or can be run online at http://proteomics.bioprojects.org/MassSpec.  相似文献   

15.
We developed a new approach that employs a novel computer algorithm for the sensitive and high-throughput analysis of tertiary and quaternary interaction sites from chemically cross-linked proteins or multi-protein complexes. First, we directly analyze the digests of the chemically cross-linked proteins using only high-accuracy LC-MS/MS data. We analyze these data using a computer algorithm, we term X!Link, to find cross-links between two peptides. Our algorithm is rapid, taking only a few seconds to analyze approximately 5000 MS/MS spectra. We applied this algorithm to analyze cross-linked sites generated chemically using the amino specific reagent, BS3, in both cytochrome c and the mitochondrial division dynamin mutant, Dnm1G385D, which exists as a stable homodimer. From cytochrome c, a well-established test protein, we identified a total of 31 cross-links, 21 interpeptide and 10 intrapeptide cross-links, in 257 MS/MS spectra from a single LC-MS/MS data set. The high sensitivity of this technique is indicated by the fact that all 19 lysines in cytochrome c were detected as a cross-link product and 33% of all the Lys pairs within 20 A were also observed as a cross-link. Analysis of the cross-linked dimeric form of Dnm1G385D identified a total of 46 cross-links, 38 interpeptide and 8 intrapeptide cross-links, in 98 MS/MS spectra in a single LC-MS/MS data set. These results represent the most abundant cross-links identified in a single protein or protein dimer to date. Statistical analysis suggests a 1% false discovery rate after optimization of filtering parameters. Further analysis of the cross-links identified using our approach indicates that careful manual inspection is important for the correct assignment of cross-linking sites when multiple cross-linkable sites or several similar sequences exist. In summary, we have developed a sensitive MS-based approach to identify peptide-peptide cross-links that does not require isotopic labeling or comparison with non-cross-linked controls, making it faster and simpler than current methodologies.  相似文献   

16.
Proteome identification using peptide-centric proteomics techniques is a routinely used analysis technique. One of the most powerful and popular methods for the identification of peptides from MS/MS spectra is protein database matching using search engines. Significance thresholding through false discovery rate (FDR) estimation by target/decoy searches is used to ensure the retention of predominantly confident assignments of MS/MS spectra to peptides. However, shortcomings have become apparent when such decoy searches are used to estimate the FDR. To study these shortcomings, we here introduce a novel kind of decoy database that contains isobaric mutated versions of the peptides that were identified in the original search. Because of the supervised way in which the entrapment sequences are generated, we call this a directed decoy database. Since the peptides found in our directed decoy database are thus specifically designed to look quite similar to the forward identifications, the limitations of the existing search algorithms in making correct calls in such strongly confusing situations can be analyzed. Interestingly, for the vast majority of confidently identified peptide identifications, a directed decoy peptide-to-spectrum match can be found that has a better or equal match score than the forward match score, highlighting an important issue in the interpretation of peptide identifications in present-day high-throughput proteomics.  相似文献   

17.
化学交联质谱技术是解析蛋白质结构和研究蛋白质相互作用的重要工具。近5年以来,该技术在方法和应用上都取得了很大的进步。方法上,一方面可断裂交联剂与新型分离富集方法展现了较好的应用前景,另一方面更加高效的交联肽段搜索引擎和质量控制方法为交联质谱数据分析提供了有力的工具。应用上,一方面与冷冻电镜技术结合解析了大量蛋白质的结构,另一方面从研究蛋白质复合物的相互作用发展到研究全蛋白质组水平的相互作用网络。化学交联质谱技术在方法和应用上的蓬勃发展,体现了这一技术的重要作用。本文对化学交联质谱技术的各个环节进行了详细的综述,包括交联剂选择、交联反应、酶切、交联肽段富集、液质联用、交联肽段鉴定、质量控制和生物学应用,重点介绍了最近5年的研究进展。最后,讨论了化学交联质谱技术面临的挑战及未来的发展方向。  相似文献   

18.
The homodimeric form of a recombinant cytokine interleukin-6 (IL-6(D)) is known to antagonize IL-6 signaling. In this study, spatially proximal residues between IL-6 chains in IL-6(D) were identified using a method for specific recognition of intermolecular cross-linked peptides. Our strategy involved mixing 1:1 (15)N-labeled and unlabeled ((14)N) protein to form a mixture of isotopically labeled and unlabeled homodimers, which was chemically cross-linked. This cross-linked IL-6(D) was subjected to proteolysis by trypsin and the generated peptides were analyzed by electrospray ionization time-of-flight mass spectrometry (MS). Molecular ions from cross-linked peptides of intermolecular origin are labeled with [(15)N/(15)N] + [(15)N/(14)N] + [(14)N/(15)N] + [(14)N/(14)N] yielding readily identified triplet/quadruplet MS peaks. All other peptide species are labeled with [(15)N] + [(14)N] yielding doublet peaks. Intermolecular cross-linked peptides were identified by MS, and cross-linked residues were identified. This intermolecular cross-link detection method, which we have designated "mixed isotope cross-linking" MIX may have more general application to protein-protein interaction studies. The pattern of proximal residues found was consistent with IL-6(D) having a domain-swapped fold similar to IL-10 and interferon-gamma. This fold implies that IL-6(D)-mediated antagonism of IL-6 signaling is caused by obstruction of cooperative gp130 binding on IL-6(D), rather than direct blocking of gp-130-binding sites on IL-6(D).  相似文献   

19.
We demonstrate an approach for global quantitative analysis of protein mixtures using differential stable isotopic labeling of the enzyme-digested peptides combined with microbore liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). Microbore LC provides higher sample loading, compared to capillary LC, which facilitates the quantification of low abundance proteins in protein mixtures. In this work, microbore LC is combined with MALDI MS via a heated droplet interface. The compatibilities of two global peptide labeling methods (i.e., esterification to carboxylic groups and dimethylation to amine groups of peptides) with this LC-MALDI technique are evaluated. Using a quadrupole-time-of-flight mass spectrometer, MALDI spectra of the peptides in individual sample spots are obtained to determine the abundance ratio among pairs of differential isotopically labeled peptides. MS/MS spectra are subsequently obtained from the peptide pairs showing significant abundance differences to determine the sequences of selected peptides for protein identification. The peptide sequences determined from MS/MS database search are confirmed by using the overlaid fragment ion spectra generated from a pair of differentially labeled peptides. The effectiveness of this microbore LC-MALDI approach is demonstrated in the quantification and identification of peptides from a mixture of standard proteins as well as E. coli whole cell extract of known relative concentrations. It is shown that this approach provides a facile and economical means of comparing relative protein abundances from two proteome samples.  相似文献   

20.
Chemical cross-linking is an attractive technique for the study of the structure of protein complexes due to its low sample consumption and short analysis time. Furthermore, distance constraints obtained from the identification of cross-linked peptides by MS can be used to construct and validate protein models. If a sufficient number of distance constraints are obtained, then determining the secondary structure of a protein can allow inference of the protein's fold. In this work, we show how the distance constraints obtained from cross-linking experiments can identify secondary structures within the protein sequence. Molecular modeling of alpha helices and beta sheets reveals that each secondary structure presents different cross-linking possibilities due to the topological distances between reactive residues. Cross-linking experiments performed with amine reactive cross-linkers with model alpha helix containing proteins corroborated the molecular modeling predictions. The cross-linking patterns established here can be extended to other cross-linkers with known lengths for the determination of secondary structures in proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号