首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioprocesses using filamentous fungi immobilized in inert supports present many advantages when compared to conventional free cell processes. However, assessment of the real advantages of the unconventional process demands a rigorous study of the limitations to diffusional mass transfer of the reagents, especially concerning oxygen. In this work, a comparative study was carried out on the cephalosporin C production process in defined medium containing glucose and sucrose as main carbon and energy sources, by free and immobilized cells of Cephalosporium acremonium ATCC 48272 in calcium alginate gel beads containing alumina. The effective diffusivity of oxygen through the gel beads and the effectiveness factors related to the respiration rate of the microorganism were determined experimentally. By applying Monod kinetics, the respiration kinetics parameters were experimentally determined in independent experiments in a complete production medium. The effectiveness factor experimental values presented good agreement with the theoretical values of the approximated zero‐order effectiveness factor, considering the dead core model. Furthermore, experimental results obtained with immobilized cells in a 1.7‐L tower bioreactor were compared with those obtained in 5‐L conventional fermentor with free cells. It could be concluded that it is possible to attain rather high production rates working with relatively large diameter gel beads (ca. 2.5 mm) and sucrose consumption‐based productivity was remarkably higher with immobilized cells, i.e., 0.33 gCPC/kg sucrose/h against 0.24 gCPC/kg sucrose/h in the aerated stirred tank bioreactor process. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 63: 593–600, 1999.  相似文献   

2.
The aim of this research was to produce concentrated biomasses of thermophilic lactic starters using immobilized cell technology (ICT). Fermentations were carried out in milk using pH control with cells microentrapped in alginate beads. In the ICT fermentations, beads represented 17% of the weight. Some assays were carried out with free cells without pH control, in order to compare the ICT populations with those of classical starters. With Streptococcus thermophilus, overall populations in the fermentor were similar, but maximum bead population for (8.2 x 10(9) cfu/g beads) was 13 times higher than that obtained in a traditional starter (4.9 x 10(8) cfu/ml). For both Lactobacillus helveticus strains studied, immobilized-cell populations were about 3 x 10(9) cfu/g beads. Production of immobilized Lb. bulgaricus 210R strain was not possible, since no increases in viable counts occurred in beads. Therefore, production of concentrated cell suspension in alginate beads was more effective for S. thermophilus. Photomicrographs of cells in alginate beads demonstrated that, while the morphology of S. thermophilus remained unchanged during the ICT fermentation, immobilized cells of Lb. helveticus appeared wider. In addition, cells of Lb. bulgaricus were curved and elongated. These morphological changes would also impair the growth of immobilized lactobacilli.  相似文献   

3.
《Process Biochemistry》2014,49(10):1682-1690
Double enzymes (alcalase and trypsin) were effectively immobilized in a composite carrier (calcium alginate–chitosan) to produce immobilized enzyme beads referred to as ATCC. The immobilization conditions for ATCC were optimized, and the immobilized enzyme beads were characterized. The optimal immobilization conditions were 2.5% of sodium alginate, 10:4 sodium alginate to the double enzymes, 3:7 chitosan solution to CaCl2 and 2.5 h immobilization time. The ATCC beads had greatly enhanced stability and good usability compared with the free form. The ATCC residual activity was retained at 88.9% of DH (degree of hydrolysis) after 35 days of storage, and 36.0% of residual activity was retained after three cycles of use. The beads showed a higher zein DH (65.8%) compared with a single enzyme immobilized in the calcium alginate beads (45.5%) or free enzyme (49.3%). The ATCC kinetic parameters Vmax and apparent Km were 32.3 mL/min and 456.62 g−1, respectively. Active corn peptides (CPs) with good antioxidant activity were obtained from zein in the ethanol phase. The ATCC might be valuable for preparing CPs and industrial applications.  相似文献   

4.
The potential for biotransformation of the substrate 17β-hydroxyandrost-4-en-3-one (testosterone) by six filamentous fungi, namely, Rhizopus oryzae ATCC 11145, Mucor plumbeus ATCC 4740, Cunninghamella echinulata var. elegans ATCC 8688a, Aspergillus niger ATCC 9142, Phanerochaete chrysosporium ATCC 24725 and Whetzelinia sclerotiorum ATCC 18687, was investigated. In this study both free cells and macerated mycelia immobilised in calcium alginate were utilised and the results (products, % yields, % transformation) were compared. In general the encapsulated cells of the microorganisms effectively generated products similar to those found using free cells. However, with immobilised macerated mycelia, isolation of the transformation products was expedited by the simple work up procedure, and their purification was facilitated by the absence of fungal secondary metabolites. Twenty seven analogues of testosterone were generated, wherein the androstane skeleton was functionalised at C-1β, -2β, -6β, -7α, -11α, -14, -15α, -15β and -16β by the moulds. Redox chemistry was also observed. Seven of the analogues, 6β,11α,17β-trihydroxyandrost-4-en-3-one, 6β,14α,17β-trihydroxyandrost-4-en-3-one, 2,6β-dihydroxyandrosta-1,4-diene-3,17-dione, 2β,16β-dihydroxyandrost-4-ene-3,17-dione, 2β,6β-dihydroxyandrost-4-ene-3,17-dione, 2β,15β,17β-trihydroxyandrost-4-en-3-one and 2β,3α,17β-trihydroxyandrost-4-ene, were novel compounds. Five others, namely, 7α,17β-dihydroxyandrost-4-en-3-one, 6β,14α-dihydroxyandrost-4-ene-3,17-dione, 15α,17β-dihydroxyandrost-4-en-3-one, 16β,17α-dihydroxyandrost-4-en-3-one and 2β,16β,17β-trihydroxyandrost-4-en-3-one, were fully characterised for the first time.  相似文献   

5.
Five, highly flocculeng strains of Saccharomyces cerevisiae, isolated from wine, were immobilized in calcium alginate beads to optimize primary must fermentation. Three cell-recycle batch fermentations (CRBF) of grape musts were performed with the biocatalyst and the results compared with those obtained with free cells. During the CRBF process, the entrapped strains showed some variability in the formation of secondary products of fermentation, particularly acetic acid and acetaldehyde. Recycling beads of immobilized flocculent cells is a good approach in the development and application of the CRBF system in the wine industry.  相似文献   

6.
Endo-β-glucanase (endo-β-1,4-glucano-glucanase EC 3.2.1.4), isolated from Trichoderma reesei, was immobilized in calcium alginate beads, retaining 75% of its original activity. The polyanionic moiety surrounding the immobilized enzyme displaced the pH-activity profile to alkaline regions with respect to that of the free enzyme. The enzyme was inhibited by carboxymethylcellulose, but this inhibition appeared to be decreased by immobilizatíon. The enzyme immobilized in alginate beads showed a Km value (1.02% w/v) lower than that of the enzyme (1.31%). The apparent Vmax of immobilized cellulase preparations (238.3 μmol glucose/ml × h) decreased by a factor of 0.59 with respect to that of the soluble enzyme. The optimum temperature (60°C) of the free and entrapped enzymes remained unaltered. In contrast, the half-life of the endoglucanase immobilized in calciumalginate beads was 4.6 h at 55°C and 5.4 h at 60°C, while that of the free enzyme was 3.0 h at 55°C and 1.2 h at 60°C. A technological application of the immobilized enzymes was tested using wheat straw as a source of fermentable sugars. The hydrolytic degradation of straw, by means of a crude extract of free and immobilized cellulases and β-glucosidase, released a large amount of reducing sugars from wheat straw after 48 h (between 250–720 mg glucose/g straw), carrying out more than a 90% saccharification. A mixture of immobilized β-glucosidase and free cellulases maintained 80% of the activity of the soluble counterparts, and the co-immobilization of both types of enzymes reduced by hydrolytic efficiency to half.  相似文献   

7.
Summary A procedure which does not involve the use of an immiscible organic solvent phase is described for the entrapment of yeast cells in porous beads of polyacrylamide gel. The cells are rapidly dispersed at 4° C in an aqueous solution containing sodium alginate and acrylamide-N,Nmethylene-bis-acrylamide monomer, and the suspension is immediately dropped into a solution of calcium formate to give calcium alginate coated beads. Polyacrylamide gel forms within the bead. The calcium alginate is subsequently leached out of the composite bead with either sodium citrate or potassium phosphate buffer solution. Cells of Saccharomyces uvarum ATCC 26 602 entrapped in such polyacrylamide beads ferment cane molasses in batch mode at higher specific ethanol productivity than a free cell suspension. Their volumetric productivity in continuous fermentation is higher than that of Ca2+-alginate immobilized cells.NCL Communication No. 4383  相似文献   

8.
Cells of Candida krusei capable of producing phytase were immobilized in Ca-alginate gel beads and used for the preparation of myo-inositol phosphates. The immobilization yield was increased about 5-fold after the beads were treated for 96 h at pH 4.0, 4 degrees C. The increased yield was retained, even after 1 month, when the cells were kept at this temperature and pH. No shift in the pH optima of phytase of the immobilized cells was observed, compared with that of free cells. However, the optimum temperature for the enzyme of the immobilized cells was 55 degrees C, which was 15 degrees C higher than that of free cells. The degradation characteristics of the phytate in immobilized cells packed in a glass column (i.d. 1.2 cm, length 20 cm) were investigated. The variation in the composition of the products results from a change in the flow rate of phytate solution (5 mM). At a flow rate of 1.30 ml/min, a mixture of myo-inositol-2-monophosphate, myo-inositol-1,2,5-triphosphate and myo-inositol-1,2,5,6-tetrakisphosphate was produced, in which the latter two were physiologically active. Also, it was found by NMR analysis that the enzyme of this strain produced only one isomer of each of the inositol phosphates, with the exception of myo-inositol pentakisphosphate. Therefore, the pure isomers were easily isolated using ion-exchange chromatography.  相似文献   

9.
In this study, we investigated the performance of an immobilized β-galactosidase inclusion bodies-containing Escherichia coli cell reactor, where the cells were immobilized in alginate beads, which were then used in repeated-batch operations for the hydrolysis of o-nitrophenyl-β-D-galactoside or lactose over the long-term. In particular, in the Tris buffer system, disintegration of the alginate beads was not observed during the operation, which was observed for the phosphate buffer system. The o-nitrophenyl-β-D-galactoside hydrolysis was operated successfully up to about 80 h, and the runs were successfully repeated at least eight times. In addition, hydrolysis of lactose was successfully carried out up to 240 h. Using Western blotting analyses, it was verified that the beta-galactosidase inclusion bodies were sustained in the alginate beads during the repeated-batch operations. Consequently, we experimentally verified that β-galactosidase inclusion bodies-containing Escherichia coli cells could be used in a repeated-batch reactor as a biocatalyst for the hydrolysis of o-nitrophenyl-β-D-galactoside or lactose. It is probable that this approach can be applied to enzymatic synthesis reactions for other biotechnology applications, particularly reactions that require long-term and stable operation.  相似文献   

10.
In this study, the degradation of tetradecyltrimethylammonium bromide (TTAB) by freely suspended and alginate-entrapped cells from the bacteria Pseudomonas putida (P. putida) A ATCC 12633 was investigated in batch cultures. The optimal conditions to prepare beads for achieving a higher TTAB degradation rate were investigated by changing the concentration of sodium alginate, pH, temperature, agitation rate and initial concentration of TTAB. The results show that the optimal embedding conditions of calcium alginate beads are 4 % w/v of sodium alginate content and 2 × 108 cfu ml?1 of P. putida A ATCC 12633 cells that had been previously grown in rich medium. The optimal degradation process was carried out in pH 7.4 buffered medium at 30 °C on a rotary shaker at 100 rpm. After 48 h of incubation, the free cells degraded 26 mg l?1 of TTAB from an initial concentration of 50 mg l?1 TTAB. When the initial TTAB concentration was increased to 100 mg l?1, the free cells lost their degrading activity and were no longer viable. In contrast, when the cells were immobilized on alginate, they degraded 75 % of the TTAB after 24 h of incubation from an initial concentration of 330 mg l?1 of TTAB. The immobilized cells can be stored at 4 °C for 25 days without loss of viability and can be reused without losing degrading capacity for three cycles.  相似文献   

11.
AIMS: To immobilize Pseudomonas delafieldii R-8 cells in magnetic polyvinyl alcohol (PVA) beads for biodesulfurization. METHODS AND RESULTS: Magnetic PVA beads were prepared by a freezing-thawing technique under liquid nitrogen. The beads have distinct super-paramagnetic properties and their saturation magnetization is 8.02 emu g(-1). The desulfurization rate of the immobilized cells could reach 40.2 mmol kg(-1) h(-1). Desulfurization patterns of dibenzothiophene in model oil with the immobilized and free cells were represented by the Michaelis-Menten equation. The Michaelis constant for both immobilized and free cells was 1.3 mmol l(-1). CONCLUSIONS: The cells immobilized in magnetic PVA beads could be stably stored and be repeatedly used over 12 times for biodesulfurization. The immobilized cells could be easily separated by magnetic field. SIGNIFICANCE AND IMPACT OF THE STUDY: Magnetic PVA beads are easy to prepare. The immobilization process in the paper is to increase the efficiency of cells and to decrease the cost of operations.  相似文献   

12.
Immobilization of Saccharomyces cerevisiae ATCC 834 within alginate beads enhances microbiological conversion of benzaldehyde to L-phenylacetyl carbinol (L-PAC), a precursor employed for synthesis of L-ephedrine. Yields of 90% L-PAC on benzaldehyde (initially 0.6% in medium) were obtained with immobilized cells, in contrast to about 10% with free cells which tend to form pellets in the presence of benzaldehyde. The predominant favorable action of immobilization appears to be a reduction in the toxic or inhibitory effects of benzaldehyde. With an initial benzaldehyde concentration of about 0.6% in the medium the optimum cell mass concentration was observed to be about 28 g cell mass (immobilized) per liter of medium.  相似文献   

13.
Pseudomonas putida MTCC 6809, a plant growth promoting rhizobacteria producing amidase was isolated from the rhizosphere of Pisum sativum. The cells were immobilized in sodium alginate for the production of amidase and the effect of dehydration on immobilized beads were studied. Optimization of process parameters for amidase production was carried out to enhance enzyme production using immobilized cells. From the results it is clear that 2% and 3% (w/v) of alginate were suitable for amidase production with 12.8 and 13 U/ml activity, respectively after 36 h of incubation. Among the various substrates studied acetamide (2% w/v) was a good inducer of amidase. It was observed that immobilized catalysts could be recycled up to five batches. Amidase production was observed in both free and immobilized cells, nevertheless immobilization is much favored in comparison to free cells, as it leads to reusability of beads, lesser contamination, consistent amidase production and adaptability to wide range of culture conditions. The relative enzyme activity with the dehydrated beads was only 27% in comparison to hydrated beads, it is possible to pack considerably more into a fixed volume as the relative volume of dehydrated beads is 20%. Even though consistent amidase production was difficult to achieve using dehydrated beads, which may have certain advantages like less chances for microbial contamination and easy to transport.  相似文献   

14.
A new method was developed to detect and quantify two strains, Lactococcus lactis subsp. lactis biovar. diacetylactis MD and Bifidobacterium longum ATCC 15707, immobilized separately and co-immobilized in gel beads, using specific polyclonal antibodies and confocal laser-scanning microscopy. The establishment of biomass concentration profiles for each strain was measured during colonization of beads using successive pH-controlled batch fermentations. Growth occurred preferentially in 200- and 300-microm peripheral layers of the beads for L. diacetylactis and B. longum, respectively. Repeated-batch cultures with immobilized cells permitted the production of a mixed culture containing a non-competitive strain of bifidobacteria, as a result of immobilized-cell growth and high cell-release activity from the beads. During co-immobilized fermentations, there were no apparent interactions between the strains.  相似文献   

15.
The aim of the present study was to assess the survival of free and immobilized Lactobacillus casei ATCC 393 on apple pieces, contained in probiotic-fermented milk, after gastrointestinal (GI) transit and to investigate the potential regulation of intestinal microbial flora in a rat model. In in vitro GI stress tolerance tests, immobilized L. casei ATCC 393 exhibited significantly higher survival rates compared to free cells. At a second stage, probiotic-fermented milk produced by either free or immobilized cells was administered orally at a single dose or daily for 9 days in Wistar rats. By 12 h after single-dose administration, both free and immobilized cells were detected by microbiological and molecular analysis at levels ≥6 logCFU/g of feces. Moreover, daily administration led to significant reduction of staphylococci, enterobacteria, coliforms and streptococci counts. In conclusion, L. casei ATCC 393 contained in fermented milk survived GI transit and modulated intestinal microbiota.  相似文献   

16.
Fungal cells of Aureobasidium pullulans ATCC 201253 were immobilized by entrapment in chitosan beads, and the immobilized cells were investigated for their ability to produce the polysaccharide pullulan using batch fermentation. The 1% chitosan-entrapped fungal cells were capable of producing pullulan for two cycles of 168 h using corn syrup as a carbon source. Pullulan production by the immobilized cells increased by 1.6-fold during the second production cycle (5.0 g/l) relative to the first production cycle (3.1 g/l) with the difference in production being statistically significant after 168 h. The productivity of the immobilized cells increased during the second production cycle while its pullulan content decreased. The level of cell leakage from the support remained unchanged for both production cycles.  相似文献   

17.
AIMS: The effect of immobilization and long-term continuous culture was studied on probiotic and technological characteristics of lactic acid and probiotic bacteria. METHODS AND RESULTS: A continuous culture in a two-stage system was carried out for 17 days at different temperatures ranging from 32 to 37 degrees C, with a first reactor containing Bifidobacterium longum ATCC 15707 and Lactococcus lactis subsp. lactis biovar. diacetylactis MD immobilized separately in gel beads, and a second reactor operated with free cells released from the first reactor. The tolerance of free cells from both strains produced in the effluent medium of both reactors to hydrogen peroxide, simulated gastric and intestinal juices, antibiotics and nisin, and freeze-drying markedly increased with culture time and was generally higher after 6 days than that of stationary-phase cells produced during free-cell batch fermentations. The reversibility of the acquired tolerance of B. longum, but not L. diacetylactis, to antibiotics was shown during successive free-cell batch cultures. CONCLUSIONS: Free cells produced from continuous immobilized-cell culture exhibited altered physiology and increased tolerance to various chemical and physico-chemical stresses. SIGNIFICANCE AND IMPACT OF THE STUDY: Continuous culture with immobilized cells could be used to produce probiotic and lactic acid bacteria with enhanced technological and probiotic characteristics.  相似文献   

18.
Escherichia coli B 10, which has high activity of tryptophan synthetase, was grown in a 50-L batch culture in order to determine in which growth phase the cells have the highest specific tryptophan productivity. Accordingly, whole cells of the stationary phase were used for immobilization in polyacrylamide beads. After immobilization, these immobilized cells had 56% activity of tryptophan synthetase compared with that of free cells. First, the properties of immobilized cells were investigated. Next, discontinuous productions of L-tryptophan were carried out by using immobilized cells. In discontinuous production of L-tryptophan by the batch, the activity remaining of immobilized cells was 76-79% after 30 times batchwise use. In continuous production of L-tryptophan with a continuous stirred tank reactor (CSTR), the activity remaining of the immobilized cells was 80% after continuous use for 50 days. The maximum productivity of L-tryptophan in this CSTR system was 0.12 g tryptophan L(-1) h(-1).  相似文献   

19.
Summary Resting cells of Rhodococcus sp. ATCC 39484 were immobilized in polyvinyl alcohol (PVA). The PVA-beads showed nitrile-hydrolysing activity with propionitrile as a model substrate. Drying of the beads resulted in a loss of weight of 85 %. Re-swollen beads showed no loss in activity. In a continuously-operated fixed-bed bioreactor, beads were able to convert substrate concentrations up to 100 mM.  相似文献   

20.
Saccharomyces cerevisiae CY phytase-producing cells were immobilized in calcium alginate beads and used for the degradation of phylate. The maximum activity and immobilization yield of the immobilized phytase reached 280 mU/g-bead and 43%, respectively. The optimal pH of the immobilized cell phytase was not different from that of the free cells. However, the optimum temperature for the immobilized phytase was 50°C, which was 10°C higher than that of the free cells; pH and thermal stability were enhanced as a consequence of immobilization. Using the immobilized phytase, phytate was degraded in a stirred tank bioreactor. Phytate degradation, both in a buffer solution and in soybean-curd whey mixture, showed very similar trends. At an enzyme dosage of 93.9 mU/g-phytate, half of the phytate was degraded after 1 h of hydrolysis. The operational stability of the immobilized beads was examined with repeated batchwise operations. Based on 50% conversion of the phytate and five times of reuse of the immobilized beads, the specific degradation (g phytate/g dry cell weight) for the immobilized phytase increased 170% compared to that of the free phytase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号