首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA methylation is one of the epigenetic mechanisms and plays important roles during oogenesis and early embryo development in mammals. DNA methylation is basically known as adding a methyl group to the fifth carbon atom of cytosine residues within cytosine–phosphate–guanine (CpG) and non-CpG dinucleotide sites. This mechanism is composed of two main processes: de novo methylation and maintenance methylation, both of which are catalyzed by specific DNA methyltransferase (DNMT) enzymes. To date, six different DNMTs have been characterized in mammals defined as DNMT1, DNMT2, DNMT3A, DNMT3B, DNMT3C, and DNMT3L. While DNMT1 primarily functions in maintenance methylation, both DNMT3A and DNMT3B are essentially responsible for de novo methylation. As is known, either maintenance or de novo methylation processes appears during oocyte and early embryo development terms. The aim of the present study is to investigate spatial and temporal expression levels and subcellular localizations of the DNMT1, DNMT3A, and DNMT3B proteins in the mouse germinal vesicle (GV) and metaphase II (MII) oocytes, and early embryos from 1-cell to blastocyst stages. We found that there are remarkable differences in the expressional levels and subcellular localizations of the DNMT1, DNMT3A and DNMT3B proteins in the GV and MII oocytes, and 1-cell, 2-cell, 4-cell, 8-cell, morula, and blastocyst stage embryos. The fluctuations in the expression of DNMT proteins in the analyzed oocytes and early embryos are largely compatible with DNA methylation changes and genomic imprintestablishment appearing during oogenesis and early embryo development. To understand precisemolecular biological meaning of differently expressing DNMTs in the early developmental periods, further studies are required.  相似文献   

3.
《Epigenetics》2013,8(1):119-128
It was previously demonstrated that miR-199a was downregulated in testicular germ cell tumor (TGCT), probably due to hypermethylation of its promoter. Further study found that re-expression of miR-199a in testicular cancer cells (NT2) led to suppression of cell growth, cancer migration, invasion and metastasis. More detailed analyses showed that these properties of miR-199a could be assigned to miR-199a-5p, one of its two derivatives. The biological role of the other derivative, miR-199a-3p in TGCT, remains largely uncharacterized. In this report, we identified DNA (cytosine-5)-methyltransferase 3A (DNMT3A), the de novo methyltransferase, as a direct target of miR-199a-3p using a 3′-UTR reporter assay. Transient expression of miR-199a-3p in NT2 cells led to decrease, while knocking down of miR-199a-3p in a normal human testicular cell line (HT) led to elevation, of DNMT3A2 (DNMT3A gene isoform 2) mRNA and protein levels. In clinical samples, DNMT3A2 was significantly overexpressed in malignant testicular tumor, and the expression of DNMT3A2 was inversely correlated with the expression of miR-199a-3p. However, DNMT3A did not affect miR-199a expression in NT2 cells. Further characterization of miR-199a-3p revealed that it negatively regulated DNA methylation, partly through targeting DNMT3A. Overexpression of miR-199a-3p restored the expression of APC and MGMT tumor-suppressor genes in NT2 cells by affecting DNA methylation of their promoter regions. Our studies demonstrated the deregulation of miR-199a-3p expression in TGCT may provide novel mechanistic insights into TGCT carcinogenesis and suggested a potentially therapeutic use of synthetic miR-199a-3p oligonucleotides as effective hypomethylating compounds in the treatment of TGCT.  相似文献   

4.
DNMT3A is one of two human de novo DNA methyltransferases essential for regulating gene expression through cellular development and differentiation. Here we describe the consequences of single amino acid mutations, including those implicated in the development of acute myeloid leukemia (AML) and myelodysplastic syndromes, at the DNMT3A·DNMT3A homotetramer and DNMT3A·DNMT3L heterotetramer interfaces. A model for the DNMT3A homotetramer was developed via computational interface scanning and tested using light scattering and electrophoretic mobility shift assays. Distinct oligomeric states were functionally characterized using fluorescence anisotropy and steady-state kinetics. Replacement of residues that result in DNMT3A dimers, including those identified in AML patients, show minor changes in methylation activity but lose the capacity for processive catalysis on multisite DNA substrates, unlike the highly processive wild-type enzyme. Our results are consistent with the bimodal distribution of DNA methylation in vivo and the loss of clustered methylation in AML patients. Tetramerization with the known interacting partner DNMT3L rescues processive catalysis, demonstrating that protein binding at the DNMT3A tetramer interface can modulate methylation patterning. Our results provide a structural mechanism for the regulation of DNMT3A activity and epigenetic imprinting.  相似文献   

5.
The significant consequences of ethanol use during pregnancy are neurobehavioral abnormalities involving hippocampal and neocortex malfunctions that cause learning and memory deficits collectively named fetal alcohol spectrum disorder. However, the molecular mechanisms underlying these abnormalities are still poorly understood and therefore warrant systematic research. Here, we document novel epigenetic abnormalities in the mouse model of fetal alcohol spectrum disorder. Ethanol treatment of P7 mice, which induces activation of caspase 3, impaired DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) levels. Inhibition of caspase 3 activity, before ethanol treatment, rescued DNMT1, DNMT3A proteins as well as DNA methylation levels. Blockade of histone methyltransferase (G9a) activity or cannabinoid receptor type‐1 (CB1R), prior to ethanol treatment, which, respectively, inhibits or prevents activation of caspase 3, rescued the DNMT1 and DNMT3A proteins and DNA methylation. No reduction of DNMT1 and DNMT3A proteins and DNA methylation was found in P7 CB1R null mice, which exhibit no ethanol‐induced activation of caspase 3. Together, these data demonstrate that ethanol‐induced activation of caspase 3 impairs DNA methylation through DNMT1 and DNMT3A in the neonatal mouse brain, and such impairments are absent in CB1R null mice. Epigenetic events mediated by DNA methylation may be one of the essential mechanisms of ethanol teratogenesis.

  相似文献   


6.
《Developmental cell》2021,56(22):3052-3065.e5
  1. Download : Download high-res image (236KB)
  2. Download : Download full-size image
  相似文献   

7.
Genomic imprinting is regulated by differential methylation of the paternal and maternal genome. However, it remains unknown how parental imprinting is established during gametogenesis. In this study, we demonstrate that Dnmt3L, a protein sharing homology with DNA methyltransferases, Dnmt3a and Dnmt3b, but lacking enzymatic activity, is essential for the establishment of maternal methylation imprints and appropriate expression of maternally imprinted genes. We also show that Dnmt3L interacts with Dnmt3a and Dnmt3b and co-localizes with these enzymes in the nuclei of transfected cells, suggesting that Dnmt3L may regulate genomic imprinting via the Dnmt3 family enzymes. Consistent with this model, we show that [Dnmt3a(-/-), Dnmt3b(+/-)] mice also fail to establish maternal methylation imprints. In addition, both Dnmt3a and Dnmt3L are required for spermatogenesis. Together, our findings suggest that Dnmt3L may cooperate with Dnmt3 family methyltransferases to carry out de novo methylation of maternally imprinted genes in oocytes.  相似文献   

8.
The view that autosomal gene expression is controlled exclusively by protein trans-acting factors has been challenged recently by the identification of RNA molecules that regulate chromatin. In the majority of cases where RNA molecules are implicated in DNA control, the molecular mechanisms are unknown, in large part because the RNA.protein complexes are uncharacterized. Here, we identify a novel set of RNA-binding proteins that are well known for their function in chromatin regulation. The RNA-interacting proteins are components of the mammalian DNA methylation system. Genomic methylation controls chromatin in the context of transposon silencing, imprinting, and X chromosome dosage compensation. DNA methyltransferases (DNMTs) catalyze methylation of cytosines in CGs. The methyl-CGs are recognized by methyl-DNA-binding domain (MBD) proteins, which recruit histone deacetylases and chromatin remodeling proteins to effect silencing. We show that a subset of the DNMTs and MBD proteins can form RNA.protein complexes. We characterize the MBD protein RNA-binding activity and show that it is distinct from the methyl-CG-binding domain and mediates a high affinity interaction with RNA. The RNA and methyl-CG binding properties of the MBD proteins are mutually exclusive. We speculate that DNMTs and MBD proteins allow RNA molecules to participate in DNA methylation-mediated chromatin control.  相似文献   

9.
The distribution of 5-methylcytosine among H1-rich and -poor bovine thymus chromatin regions was determined. 5-Methylcytosine was enriched in H1-rich chromatin regions, with linker and nucleosomal DNA containing similar amounts of this modified base. Satellite I DNA sequences, which constitute 5-7% of the genome and are highly methylated, were preferentially localized among H1-rich chromatin regions, in accordance with the distribution of 5-methylcytosine. In contrast to the satellite I DNA sequences, prothrombin (a single copy DNA sequence) was localized among both H1-rich and -poor chromatin regions. The results of this study are consistent with the hypothesis that DNA methylation has a role in modulating the structure of chromatin.  相似文献   

10.

Background  

Aberrations in DNA methylation patterns promote changes in gene expression patterns and are invariably associated with neoplasia. DNA methylation is carried out and maintained by several DNA methyltransferases (DNMTs) among which DNMT1 functions as a maintenance methylase while DNMT3a and 3b serve as de novo enzymes. Although DNMT3b has been shown to preferentially target the methylation of DNA sequences residing in pericentric heterochromatin whether it is involved in gene specific methylation remains an open question. To address this issue, we have silenced the expression of DNMT3b in the prostate-derived PC3 cells through RNA interference and subsequently studied the accompanied cellular changes as well as the expression profiles of selected genes.  相似文献   

11.
Recently, a significant epigenetic component in the pathology of suicide has been realized. Here we investigate candidate functional SNPs in epigenetic‐regulatory genes, DNMT1 and DNMT3B, for association with suicide attempt (SA) among patients with co‐existing psychiatric illness. In addition, global DNA methylation levels [5‐methyl cytosine (5‐mC%)] between SA and psychiatric controls were quantified using the Methylflash Methylated DNA Quantification Kit. DNA was obtained from blood of 79 suicide attempters and 80 non‐attempters, assessed for DSM‐IV Axis I disorders. Functional SNPs were selected for each gene (DNMT1; n = 7, DNMT3B; n = 10), and genotyped. A SNP (rs2424932) residing in the 3′ UTR of the DNMT3B gene was associated with SA compared with a non‐attempter control group (P = 0.001; Chi‐squared test, Bonferroni adjusted P value = 0.02). Moreover, haplotype analysis identified a DNMT3B haplotype which differed between cases and controls, however this association did not hold after Bonferroni correction (P = 0.01, Bonferroni adjusted P value = 0.56). Global methylation analysis showed that psychiatric patients with a history of SA had significantly higher levels of global DNA methylation compared with controls (P = 0.018, Student's t‐test). In conclusion, this is the first report investigating polymorphisms in DNMT genes and global DNA methylation quantification in SA risk. Preliminary findings suggest that allelic variability in DNMT3B may be relevant to the underlying diathesis for suicidal acts and our findings support the hypothesis that aberrant DNA methylation profiles may contribute to the biology of suicidal acts. Thus, analysis of global DNA hypermethylation in blood may represent a biomarker for increased SA risk in psychiatric patients.  相似文献   

12.

Background  

Formation of haploid spermatozoa capable of fertilization requires proper programming of epigenetic information. Exactly how DNMT3L (DNA methyltransferase 3-Like), a postulated regulator of DNA methyltransferase activity, contributes to DNA methylation pattern acquisition during gametogenesis remains unclear. Here we report on the role of DNMT3L in male germ cell development.  相似文献   

13.
In mammals, the resetting of DNA methylation patterns in early embryos and germ cells is crucial for development. Two DNA methyltransferases, Dnmt3a and Dnmt3b, are responsible for the creation of DNA methylation patterns. Dnmt3L, a member of the Dnmt3 family, has been reported to be necessary for maternal methylation imprinting, possibly by interacting with Dnmt3a and/or Dnmt3b (Hata, K., Okano, M., Lei, H., and Li, E. (2002) Development 129, 1983-1993). In the present study, the effect of DNMT3L, a human homologue of Dnmt3L, on the DNA methylation activity of mouse Dnmt3a and Dnmt3b was examined in vitro. DNMT3L enhanced the DNA methylation activity of Dnmt3a and Dnmt3b about 1.5-3-fold in a dose-dependent manner but did not enhance the DNA methylation activity of Dnmt1. Although the extents of stimulation were different, a stimulatory effect on the DNA methylation activity was observed for all of the substrate DNA sequences examined, such as those of the maternally methylated SNRPN and Lit-1 imprinting genes, the paternally methylated H19 imprinting gene, the CpG island of the myoD gene, the 5 S ribosomal RNA gene, an artificial 28-bp DNA, poly(dG-dC)-poly(dG-dC), and poly(dI-dC)-poly(dI-dC). DNMT3L could not bind to DNA but could bind to Dnmt3a and Dnmt3b, indicating that the stimulatory effect of DNMT3L on the DNA methylation activity may not be due to the guiding of Dnmt3a and Dnmt3b to the targeting DNA sequence but may comprise a direct effect on their catalytic activity. The carboxyl-terminal half of DNMT3L was found to be responsible for the enhancement of the enzyme activity.  相似文献   

14.
DNMT3 proteins are de novo DNA methyltransferases that are responsible for the establishment of DNA methylation patterns in mammalian genomes. Here, we have determined the crystal structures of the ATRX–DNMT3–DNMT3L (ADD) domain of DNMT3A in an unliganded form and in a complex with the amino‐terminal tail of histone H3. Combined with the results of biochemical analysis, the complex structure indicates that DNMT3A recognizes the unmethylated state of lysine 4 in histone H3. This finding indicates that the recruitment of DNMT3A onto chromatin, and thereby de novo DNA methylation, is mediated by recognition of the histone modification state by its ADD domain. Furthermore, our biochemical and nuclear magnetic resonance data show mutually exclusive binding of the ADD domain of DNMT3A and the chromodomain of heterochromatin protein 1α to the H3 tail. These results indicate that de novo DNA methylation by DNMT3A requires the alteration of chromatin structure.  相似文献   

15.
The existence of DNA methylation in insects has been a controversial subject over a long period of time. The recently completed genome sequence of the honeybee Apis mellifera has revealed the first insect with a full complement of DNA methyltransferases. A parallel study demonstrated that these enzymes are catalytically active and that Apis genes can be methylated in specific patterns. These findings establish bees as a model to analyze the function of DNA methylation systems in invertebrate organisms and might also be important to understand evolutionary aspects of DNA methylation in higher eukaryotes.  相似文献   

16.
DNA methylation is generally known to inactivate gene expression. The DNA methyltransferases (DNMTs), DNMT3A and DNMT3B, catalyze somatic cell lineage‐specific DNA methylation, while DNMT3A and DNMT3L catalyze germ cell lineage‐specific DNA methylation. How such lineage‐ and gene‐specific DNA methylation patterns are created remains to be elucidated. To better understand the regulatory mechanisms underlying DNA methylation, we generated transgenic mice that constitutively expressed DNMT3A and DNMT3L, and analyzed DNA methylation, gene expression, and their subsequent impact on ontogeny. All transgenic mice were born normally but died within 20 weeks accompanied with cardiac hypertrophy. Several genes were repressed in the hearts of transgenic mice compared with those in wild‐type mice. CpG islands of these downregulated genes were highly methylated in the transgenic mice. This abnormal methylation occurred in the perinatal stage. Conversely, monoallelic DNA methylation at imprinted loci was faithfully maintained in all transgenic mice, except H19. Thus, the loci preferred by DNMT3A and DNMT3L differ between somatic and germ cell lineages.  相似文献   

17.
Cytosine DNA methylation is a stable epigenetic mark for maintenance of gene silencing across cellular divisions, but it is a reversible modification. Genetic and biochemical studies have revealed that the Arabidopsis DNA glycosylase domain-containing proteins ROS1 (REPRESSOR OF SILENCING 1) and DME (DEMETER) initiate erasure of 5-methylcytosine through a base excision repair process. The Arabidopsis genome encodes two paralogs of ROS1 and DME, referred to as DEMETER-LIKE proteins DML2 and DML3. We have found that DML2 and DML3 are 5-methylcytosine DNA glycosylases that are expressed in a wide range of plant organs. We analyzed the distribution of methylation marks at two methylated loci in wild-type and dml mutant plants. Mutations in DML2 and/or DML3 lead to hypermethylation of cytosine residues that are unmethylated or weakly methylated in wild-type plants. In contrast, sites that are heavily methylated in wild-type plants are hypomethylated in mutants. These results suggest that DML2 and DML3 are required not only for removing DNA methylation marks from improperly-methylated cytosines, but also for maintenance of high methylation levels in properly targeted sites.  相似文献   

18.
Hiura H  Komiyama J  Shirai M  Obata Y  Ogawa H  Kono T 《FEBS letters》2007,581(7):1255-1260
Mouse genomes show a large cluster of imprinted genes at the Dlk1-Gtl2 domain in the distal region of chromosome 12. An intergenic-differentially methylated region (IG-DMR) located between Dlk1 and Gtl2 is specifically methylated in the male germline; IG-DMR regulates the parental allele-specific expression of imprinted genes. Here, we show the resetting of IG-DMR methylation marks during male germ-cell differentiation. For parental allele-specific methylation analysis, polymorphisms were detected in a 2.6-kb IG-DMR in three mouse strains. Bisulfite methylation analysis showed erasure of the marks by E14 and re-establishment before birth. The IG-DMR methylation status was maintained in spermatogonia and spermatocytes of mature testes. The IG-DMR methylation status established before birth is thus maintained throughout the lifetime in the male germline.  相似文献   

19.
The DNMT3B de novo DNA methyltransferase (DNMT) plays a major role in establishing DNA methylation patterns in early mammalian development, but its catalytic mechanism remains poorly characterized. Here, we provide a comprehensive biochemical analysis of human DNMT3B function through the characterization of a series of site-directed DNMT3B variants associated with immunodeficiency, centromere instability, and facial anomalies (ICF) syndrome. Our data reveal several novel and important aspects of DNMT3B function. First, DNMT3B, unlike DNMT3A, requires a DNA cofactor in order to stably bind to S-adenosyl-l-methionine (SAM), suggesting that it proceeds according to an ordered catalytic scheme. Second, ICF mutations cause a broad spectrum of biochemical defects in DNMT3B function, including defects in homo-oligomerization, SAM binding, SAM utilization, and DNA binding. Third, all tested ICF mutations, including the A766P and R840Q variants, result in altered catalytic properties without interfering with DNMT3L-mediated stimulation; this indicates that DNMT3L is not involved in the pathogenesis of ICF syndrome. Finally, our study reveals a novel level of coupling between substrate binding, oligomerization, and catalysis that is likely conserved within the DNMT3 family of enzymes.  相似文献   

20.
While CpG methylation can be readily analyzed at the DNA sequence level in wild-type and mutant cells, the actual DNA (cytosine-5) methyltransferases (DNMTs) responsible for in vivo methylation on genomic DNA are less tractable. We used an antibody-based method to identify specific endogenous DNMTs (DNMT1, DNMT1b, DNMT2, DNMT3a, and DNMT3b) that stably and selectively bind to genomic DNA containing 5-aza-2'-deoxycytidine (aza-dC) in vivo. Selective binding to aza-dC-containing DNA suggests that the engaged DNMT is catalytically active in the cell. DNMT1b is a splice variant of the predominant maintenance activity DNMT1, while DNMT2 is a well-conserved protein with homologs in plants, yeast, Drosophila, humans, and mice. Despite the presence of motifs essential for transmethylation activity, catalytic activity of DNMT2 has never been reported. The data here suggest that DNMT2 is active in vivo when the endogenous genome is the target, both in human and mouse cell lines. We quantified relative global genomic activity of DNMT1, -2, -3a, and -3b in a mouse teratocarcinoma cell line. DNMT1 and -3b displayed the greatest in vivo binding avidity for aza-dC-containing genomic DNA in these cells. This study demonstrates that individual DNMTs can be tracked and that their binding to genomic DNA can be quantified in mammalian cells in vivo. The different DNMTs display a wide spectrum of genomic DNA-directed activity. The use of an antibody-based tracking method will allow specific DNMTs and their DNA targets to be recovered and analyzed in a physiological setting in chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号