首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to investigate the possible effect of sitagliptin on renal damage induced by renal ischemia reperfusion (I/R) in diabetic rats. T2DM in rats was induced by the administration of nicotinamide (230 mg/kg, i.p.), 15 min prior to a single dose of streptozotocin (65 mg/kg, i.v.). In vivo renal I/R was performed in both T2DM and normal rats. Each protocol comprised ischemia for 30 min followed by reperfusion for 24 h and a treatment period of 14 days before induction of ischemia. Sitagliptin treated diabetic rats that underwent renal I/R demonstrated significant decrease in the serum concentrations of aspartate aminotransferase (p < 0.01), urea nitrogen (p < 0.01) and creatinine (p < 0.001) compared to renal I/R in diabetic rats. Lipid peroxidation, xanthine oxidase activity, myeloperoxidase activity and nitric oxide level in renal tissue were significantly (p < 0.05, p < 0.001, p < 0.01, p < 0.05 respectively) decreased after renal I/R in sitagliptin treated rats compared to diabetic rats. Antioxidant enzymes like glutathione (p < 0.05), glutathione peroxidase (p < 0.001), superoxide dismutase (p < 0.05) and catalase (p < 0.001) were significantly increased after renal I/R in sitagliptin treated diabetic rats compared to non treated diabetic rats. The typical DNA laddering was observed when renal I/R performed in diabetic rats, which indicates cell apoptosis. Sitagliptin treated rats demonstrated a decrease in DNA fragmentation and apoptosis. Furthermore, renal histopathology preserved in sitagliptin treated rats verified protection against renal I/R in diabetes. The results of present investigation established sitagliptin treatment attenuated renal damage induced by renal I/R in diabetic rats.  相似文献   

2.
Parecoxib, a novel COX-2 inhibitor, functions as a neuroprotective agent and rescues neurons from cerebral ischemic reperfusion injury-induced apoptosis. However, the molecular mechanisms underlying parecoxib neuroprotection remain to be elucidated. There is growing evidence that endoplasmic reticulum (ER) stress plays an important role in neuronal death caused by brain ischemia. However, very little is known about the role of parecoxib in mediating pathophysiological reactions to ER stress induced by ischemic reperfusion injury. Therefore, in the present study, we investigated whether delayed administration of parecoxib attenuates brain damage via suppressing ER stress-induced cell death. Adult male Sprague–Dawley rats were administered parecoxib (10 or 30 mg kg?1, IP) or isotonic saline twice a day starting 24 h after middle cerebral artery occlusion (MCAO) for three consecutive days. The expressions of glucose-regulated protein 78 (GRP78) and oxygen-regulated protein 150 (ORP150) and C/EBP-homologous protein (CHOP) and forkhead box protein O 1 (Foxo1) in cytoplasmic and nuclear fraction were determined by Western blotting. The levels of caspase-12 expression were checked by immunohistochemistry analysis, served as a marker for ER stress-induced apoptosis. Parecoxib significantly suppressed cerebral ischemic injury-induced nuclear translocation of CHOP and Foxo1 and attenuated the immunoreactivity of caspase-12 in ischemic penumbra. Furthermore, the protective effect of delayed administration of parecoxib was accompanied by an increased GRP78 and ORP150 expression. Therefore, our study suggested that elevation of GRP78 and ORP150, and suppression of CHOP and Foxo1 nuclear translocation may contribute to parecoxib-mediated neuroprotection during ER stress responses.  相似文献   

3.
AimsObesity is associated with hypertriglyceridemia and elevated circulating free fatty acids (FFA), resulting in endothelial dysfunction. Endoplasmic reticulum (ER) stress has been implicated in many of these processes. To determine if ER stress participates in palmitate-induced apoptosis, we investigated the effects of diet-induced obesity and palmitate on mouse aortic endothelial cells (MAEC) in vivo and in vitro.Main methodsMale C57BL/6 mice were fed standard chow diets (SCD) or high-calorie and high-cholesterol diets (HCD) for 3 months. Insulin resistance was detected, and the serum, including proinflammatory indices and markers of endothelial function, was also analyzed. The ultrastructure and apoptosis of the endothelial cells in the thoracic aorta were observed. The primary MAEC were separated and treated with palmitate at different concentrations or different times respectively to observe any changes in cellular proliferation, intracellular reactive oxygen species (ROS) levels and apoptosis. Finally, the ER stress markers C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) were analyzed.Key findingsHCD-fed obese mice became inflammation-activated and insulin-resistant. Swollen mitochondria, expanded ER and apoptosis in the endothelial cells of the thoracic aorta were observed in HCD-fed mice. Palmitate inhibited cell proliferation, increased production of ROS and induced apoptosis in MAEC. CHOP was overexpressed and shifted into the nucleus (mainly), while the expression of GRP78 was upregulated in the palmitate-treated MAEC.SignificanceOur results indicate that diet-induced obesity results in endothelial dysfunction in vivo, and that oxidative and ER stress may be involved in apoptosis induced by the palmitate in vitro.  相似文献   

4.
5.
Oxidative-nitrosative stress and inflammatory responses are associated with endoplasmic reticulum (ER) stress in diabetic retinopathy, raising the possibility that disturbances in ER protein processing may contribute to CNS dysfunction in diabetics. Upregulation of the unfolded protein response (UPR) is a homeostatic response to accumulation of abnormal proteins in the ER, and the present study tested the hypothesis that the UPR is upregulated in two models for diabetes, cultured astrocytes grown in 25 mmol/L glucose for up to 4 weeks and brain of streptozotocin (STZ)-treated rats with diabetes for 1–7 months. Markers associated with translational blockade (phospho-eIF2α and apoptosis (CHOP), inflammatory response (inducible nitric oxide synthase, iNOS), and nitrosative stress (nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase, GAPDH) were not detected in either model. Nrf2 was present in nuclei of low- and high-glucose cultures, consistent with oxidative stress. Astrocytic ATF4 expression was not altered by culture glucose concentration, whereas phospho-IRE and ATF6 levels were higher in low- compared with high-glucose cultures. The glucose-regulated chaperones, GRP78 and GRP94, were also expressed at higher levels in low- than high-glucose cultures, probably due to recurrent glucose depletion between feeding cycles. In STZ-rat cerebral cortex, ATF4 level was transiently reduced at 4 months, and p-IRE levels were transiently elevated at 3 months. However, GRP78 and GRP94 expression was not upregulated, and iNOS, amyloid-β, and nuclear accumulation of GAPDH were not evident in STZ-diabetic brain. High-glucose cultured astrocytes and STZ-diabetic brain are relatively resistant to diabetes-induced ER stress, in sharp contrast with cultured retinal Müller cells and diabetic rodent retina.  相似文献   

6.
Endoplasmic reticulum (ER) stress has been implicated in the pathology of cerebral ischemia. Apoptotic cell death occurs during prolonged period of stress or when the adaptive response fails. Hypothermia blocked the TNF or Fas-mediated extrinsic apoptosis pathway and the mitochondria pathway of apoptosis, however, whether hypothermia can block endoplasmic reticulum mediated apoptosis is never known. This study aimed to elucidate whether hypothermia attenuates brain cerebral ischemia/reperfusion (I/R) damage by suppressing ER stress-induced apoptosis. A 15 min global cerebral ischemia rat model was used in this study. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in hippocampus CA1 were assessed after reperfusion of the brain. The expressions of C/EBP-homolo gous protein (CHOP) and glucose-regulated protein 78 (GRP78) in ischemic hippocampus CA1 were measured at 6, 12, 24 and 48 h after reperfusion. The results showed that hypothermia significantly attenuated brain I/R injury, as shown by reduction in cell apoptosis, CHOP expression, and increase in GRP78 expression. These results suggest that hypothermia could protect brain from I/R injury by suppressing ER stress-induced apoptosis.  相似文献   

7.
8.
Diabetes can disrupt endoplasmic reticulum (ER) homeostasis which leads to ER stress. ER stress-induced renal apoptosis seems to be involved in the development of diabetic nephropathy. The present study was designed to investigate the contribution of reduced ER stress to the beneficial effects of an angiotensin receptor blocker. Insulin-dependent diabetes mellitus was induced by streptozotocin injections to hypertensive mRen2-transgenic rats. After 2 weeks animals were treated with 0.7 mg/kg/day irbesartan. Blood glucose, blood pressure and protein excretion were assessed. Expression of ER stress markers was measured by real-time PCR. Immunohistochemistry was performed to detect markers of ER stress, renal damage and infiltrating cells. Glomerulosclerosis and apoptosis were evaluated. Diabetic mRen2-transgenic rats developed renal injury with proteinuria, tubulointerstitial cell proliferation as well as glomerulosclerosis and podocyte injury. Moreover, an increase in inflammation, podocyte ER stress and apoptosis was detected. Irbesartan somewhat lowered blood pressure and reduced proteinuria, tubulointerstitial cell proliferation and glomerulosclerosis. Podocyte damage was ameliorated but markers of ER stress (calnexin, grp78) and apoptosis were not reduced by irbesartan. On the other hand, inflammatory cell infiltration in the tubulointerstitium and the glomerulus was significantly attenuated. We conclude that irbesartan reduced renal damage even in a very low dose. The beneficial effects of low dose irbesartan were paralleled by a reduction of blood pressure and inflammation but not by a reduction of ER stress and apoptosis. Thus, sustained endoplasmic reticulum stress in the kidney does not necessarily lead to increased inflammation and tubulointerstitial or glomerular injury.  相似文献   

9.
Ginsenoside Rg1 has been demonstrated to have cardiovascular protective effects. However, whether the cardioprotective effects of ginsenoside Rg1 are mediated by endoplasmic reticulum (ER) stress‐induced apoptosis remain unclear. In this study, among 80 male Wistar rats, 15 rats were randomly selected as controls; the remaining 65 rats received a diet rich in fat and sugar content for 4 weeks, followed by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) to establish a diabetes model. Seven days after STZ injection, 10 rats were randomly selected as diabetic model (DM) controls, 45 eligible diabetic rats were randomized to three treatment groups and administered ginsenoside Rg1 in a dosage of 10, 15 or 20 mg/kg/day, respectively. After 12 weeks of treatment, rats were killed and serum samples obtained to determine cardiac troponin (cTn)‐I. Myocardial tissues were harvested for morphological analysis to detect myocardial cell apoptosis, and to analyse protein expression of glucose‐regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Caspase‐12. Treatment with ginsenoside Rg1 (10–20 mg/kg) significantly reduced serum cTnI levels compared with DM control group (all P < 0.01). Ginsenoside Rg1 (15 and 20 mg/kg) significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Haematoxylin and eosin and Masson staining indicated that ginsenoside Rg1 could attenuate myocardial lesions and myocardial collagen volume fraction. Additionally, ginsenoside Rg1 significantly reduced GRP78, CHOP, and cleaved Caspase‐12 protein expression in a dose‐dependent manner. These findings suggest that ginsenoside Rg1 appeared to ameliorate diabetic cardiomyopathy by inhibiting ER stress‐induced apoptosis in diabetic rats.  相似文献   

10.
目的检测内质网应激(endoplasmic reticulum stress,ERS)标志蛋白:葡萄糖调节蛋白(GRP78/Bip)、转录因子GADDl53/CHOP在糖尿病大鼠肾脏细胞中表达及其与肾脏固有细胞凋亡之间的关系,初步探讨ERS在糖尿病肾损害中的作用及机制。方法单侧肾切除大鼠腹腔注射链脲佐菌素诱发糖尿病,于8周应用免疫组织化学检测GRP78、GADDl53/CHOP的表达与定位,TUNEL染色检测细胞凋亡部位,流式细胞术检测细胞凋亡程度,并对GRP78、GAD-Dl53/CHOP表达水平进行半定量分析,同时观察尿蛋白、BUN、尿肌酐等反应肾功能的相关指标。结果建模8周,糖尿病大鼠较正常组的肾细胞凋亡率明显升高,GRP78、GADDl53/CHOP表达明显增加。结论糖尿病肾损害过程中,ERS被诱导并可能通过激活转录因子GADDl53/CHOP引起肾脏细胞过多丢失,在糖尿病肾病的发病机制中起重要作用。  相似文献   

11.
Paclitaxel (Px) is an effective chemotherapeutic agent for the treatment of various cancers. However, it is often associated with neurological side effects, including chemotherapy-associated cognitive impairment (CACI), such as “chemobrain”. Previously, we reported that endoplasmic reticulum (ER) stress is involved in Px-induced neurotoxicity, and immunoglobulin heavy chain binding protein (BiP) inducer X (BIX) alleviates Px-induced neurotoxicity. However, BIX has not been used in clinical practice yet. We recently reported that fluvoxamine (Flv) alleviates ER stress via induction of sigma-1 receptor (Sig-1R). The purpose of this study was to investigate whether Flv could alleviate Px-induced neurotoxicity in vitro. SK-N-SH cells were pre-treated for 12 h with or without 10 μg/ml Flv followed by treatment with 1 μM Px with or without co-existence of 10 μg/ml Flv for 24 h. To investigate the involvement of Sig-1R in alleviation effect on Px-induced neurotoxicity,1 μM NE100, an antagonist of Sig-1R, was added for 24 h. Neurotoxicity was assessed using the MTS viability assay and ER stress-mediated neurotoxicity was assessed by evaluating the expression of C/EBP homologous protein (CHOP), cleaved caspase 4, and cleaved caspase 3.Pre-treatment with Flv significantly alleviated the induction of CHOP, cleaved caspase 4, and cleaved caspase 3 in SK-N-SH cells. At the same time, pre-treatment with Flv significantly induced Sig-1R in SK-N-SH cells. In addition, viability was significantly higher in Flv-treated cells than in untreated cells, which was reversed by treatment with NE100.Our results suggest that Flv alleviates Px-induced neurotoxicity in part through the induction of Sig-1R. Our findings should contribute to one of the novel approaches for the alleviation of Px-induced neurotoxicity, including chemobrain.  相似文献   

12.
Shi LL  Chen BN  Gao M  Zhang HA  Li YJ  Wang L  Du GH 《Life sciences》2011,88(11-12):521-528
AimsThe therapeutic effect of pinocembrin, together with the therapeutic time window, in the transient global cerebral ischemia/reperfusion (I/R) rats was investigated.Main methodsAdult male Sprague–Dawley rats were subjected to global cerebral ischemia for 20 min by four-vessel occlusion. Pinocembrin (1 and 5 mg/kg) was administrated intravenously 30 min before ischemia and 30 min, 2 h, 6 h after reperfusion, respectively. Neurological scores, brain edema and histological examination by Nissl staining were employed to assess the neuronal injury after ischemia and the neuroprotection by pinocembrin. The activities of superoxide dismutase (SOD), myeloperoxidase (MPO) and the content of malondialdehyde (MDA) in brain tissue were tested by colorimetric assays. Alterations of neurotransmitters were determined by a high performance liquid chromatography–electrochemical method.Key findingsPinocembrin significantly ameliorated neurological deficits and brain edema, and alleviated the degree of hippocampal neuronal loss at 24 h after global cerebral I/R with a broad therapeutic time window. It was found that treatment with pinocembrin reduced the compensatory increase of SOD activity and decreased the MDA level and MPO activity in a dose-dependent manner. The metabolic balance between excitatory and inhibitory amino acids was modulated by pinocembrin treatment.SignificanceThese findings suggest that pinocembrin provides neuroprotection against global cerebral ischemic injury with a wide therapeutic time window, which may be attributed to its antioxidative, antiinflammatory and antiexcitotoxic effects.  相似文献   

13.
The relationship between selenium (Se) deficiency-induced cardiac malfunction and endoplasmic reticulum (ER) stress is poorly understood. In the present study, 18 weaning Sprague Dawley rats were randomly fed with three different Se diets, and myocardial glutathione peroxidase (GPx) activity was measured by an enzyme activity assay. Cardiac function was evaluated by hemodynamic parameters. ER stress markers immunoglobulin-binding protein (BiP)/glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) were detected by western blotting. Our data showed that myocardial GPx activity and cardiac function were conspicuously impaired in Se-deficient rats. Expression of GRP78 and CHOP was significantly upregulated by treatment of Se deficiency. Improvements in myocardial GPx activity and cardiac function, as well as decreases in expression of GRP78 and CHOP, were observed after Se supplementation. Consequently, our data show that ER stress was involved in Se deficiency-induced cardiac dysfunction.  相似文献   

14.
Waisundara VY  Siu SY  Hsu A  Huang D  Tan BK 《Life sciences》2011,88(23-24):1016-1025
AimThe primary purpose of this study was to characterize and investigate the antioxidant and anti-diabetic activities of the flavonoid baicalin in type 2 diabetic Goto-Kakizaki rats.Main methodsFour groups of Goto-Kakizaki rats (n = 6) were subjected to the following oral treatments for 30 days: (1) metformin — 500 mg/kg (2) baicalin — 120 mg/kg (3) metformin 500 mg/kg and baicalin — 120 mg/kg (4) vehicle treated diabetic controls receiving distilled water. The plasma glucose, triglyceride, total cholesterol, lipid peroxide and protein carbonyl contents were measured on a weekly basis. Following the completion of the treatment, the rats were sacrificed and their blood, heart, pancreatic and hepatic tissues were collected for analysis. The antioxidant enzyme activities as well as their expression were quantified using Western Blot, microarray and RT-PCR.Key findingsThe respective analyses showed that the baicalin- and the metformin and baicalin-treated groups had statistically significant increases (p < 0.05) in the activity and expression of the antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) compared with vehicle- and metformin-treated groups. Further complementing the antioxidant enzyme activity increases, the oxidative stress markers of plasma lipid peroxide and protein carbonyl contents were reduced in these groups as well. These treatment groups also had reduced plasma total cholesterol and triglyceride levels compared with vehicle-treated and metformin-treated groups (p < 0.05).SignificanceBaicalin was an efficient antioxidant in reducing hyperglycemia-induced oxidative stress through the increased expression of antioxidant enzyme activities. It was also an efficient anti-hypertriglyceridemic as well as anti-hypercholesterolemic agent compared with metformin.  相似文献   

15.
To explore the protective effect of exercise training on the injury of myocardium tissues induced by streptozotocin (STZ) in diabetic rats and the relationship with endoplasmic reticulum stress (ERS), the male sprague-dawley (SD) rats were fed with high-fat and high-sugar diet for 4 weeks, followed by intraperitoneal injection of STZ, 40 mg/kg, to establish a diabetes model, and then 10 rats were randomly selected as diabetes mellitus (DM) controls and 20 eligible diabetic rats were randomized into two groups: low-intensity exercise training (n = 10) and high-intensity exercise training (n = 10). After 12 weeks of exercise training, rats were killed and serum samples were used to determine cardiac troponin-I (cTn-I). Myocardial tissues were sampled for morphological analysis to detect myocardial cell apoptosis, and to analyze protein expression of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and caspase-12. Different intensities (low and high) significantly reduced serum cTn-I levels compared with the DCM group (p < 0.01), and significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Hematoxylin and eosin and Masson staining indicated that exercise training could attenuate myocardial apoptosis. Additionally, exercise training significantly reduced GRP78, CHOP, and cleaved caspase-12 protein expression in an intensity-dependent manner. These findings suggest that exercise appeared to ameliorate diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in diabetic rats.  相似文献   

16.
Rehni AK  Singh TG  Kakkar T  Arora S 《Life sciences》2011,88(19-20):825-829
AimsTo investigate the role of src-kinase in ischemic preconditioning induced reversal of ischemia and reperfusion induced cerebral injury in mice.Main methodsBilateral carotid artery occlusion of 17 min followed by reperfusion for 24 h was employed to produce ischemia and reperfusion induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining using both by volume and by weight methods differently. Memory was evaluated using elevated plus maze test. Rota rod test was employed to assess motor incoordination.Key findingsBilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired memory and motor co-ordination. Three preceding episodes of bilateral carotid artery occlusion for 1 min and reperfusion of 1 min (ischemic preconditioning) prevented markedly ischemia–reperfusion-induced cerebral injury measured in terms of infarct size (38.5 ± 1.3% and 38.5 ± 2.9% mean infarct of control animals was reduced to 24.3 ± 1.2% and 23.5 ± 1.8% of the preconditioning groups respectively), loss of memory (72.2 ± 3.6 mean transfer latency time of control animals was reduced to 25.6 ± 5.2 of the preconditioning group respectively) and motor coordination (78.3 ± 17.6 s mean falling down latency time of control animals was increased to a mean value of 180.9 ± 6.5 s of the preconditioning groups respectively). SU6656 (2 mg/kg, ip) and PP1 (0.1 mg/kg, ip), highly selective src-kinase inhibitors, attenuated this neuroprotective effect of ischemic preconditioning.SignificanceTherefore, neuroprotective effect of ischemic preconditioning may be due to src-kinase linked mechanism.  相似文献   

17.
Endoplasmic reticulum (ER) stress has been implicated in Parkinson disease. We previously reported that thioredoxin 1 (Trx-1) suppressed the ER stress caused by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine; however, its molecular mechanism remains largely unknown. In the present study, we showed that 1-methyl-4-phenylpyridinium ion (MPP+) induced ER stress by activating glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1α (IRE1α), tumor necrosis factor receptor-associated factor 2 (TRAF2), c-Jun N-terminal kinase (JNK), caspase-12, and C/EBP homologous protein (CHOP) in PC12 cells. The downregulation of Trx-1 aggravated the ER stress and further increased the expression of the above molecules induced by MPP+. In contrast, overexpression of Trx-1 attenuated the ER stress and repressed the expression of the above molecules induced by MPP+. More importantly, the overexpression of Trx-1 in transgenic mice suppressed ER stress by inhibiting the activation of these molecules. We present, for the first time, the molecular mechanism of Trx-1 suppression of endoplasmic reticulum stress in Parkinson disease in vitro and in vivo. Based on our findings, we conclude that Trx-1 plays a neuroprotective role in Parkinson disease by suppressing ER stress by regulating the activation of GRP78, IRE1α, TRAF2, JNK, caspase-12, and CHOP.  相似文献   

18.
ER stress triggers myocardial contractile dysfunction while effective therapeutic regimen is still lacking. Mitochondrial aldehyde dehydrogenase (ALDH2), an essential mitochondrial enzyme governing mitochondrial and cardiac function, displays distinct beneficial effect on the heart. This study was designed to evaluate the effect of ALDH2 on ER stress-induced cardiac anomalies and the underlying mechanism involved with a special focus on autophagy. WT and ALDH2 transgenic mice were subjected to the ER stress inducer thapsigargin (1 mg/kg, i.p., 48 h). Echocardiographic, cardiomyocyte contractile and intracellular Ca2 + properties as well as myocardial histology, autophagy and autophagy regulatory proteins were evaluated. ER stress led to compromised echocardiographic indices (elevated LVESD, reduced fractional shortening and cardiac output), cardiomyocyte contractile and intracellular Ca2 + properties and cell survival, associated with upregulated autophagy, dampened phosphorylation of Akt and its downstream signal molecules TSC2 and mTOR, the effects of which were alleviated or mitigated by ALDH2. Thapsigargin promoted ER stress proteins Gadd153 and GRP78 without altering cardiomyocyte size and interstitial fibrosis, the effects of which were unaffected by ALDH2. Treatment with thapsigargin in vitro mimicked in vivo ER stress-induced cardiomyocyte contractile anomalies including depressed peak shortening and maximal velocity of shortening/relengthening as well as prolonged relengthening duration, the effect of which was abrogated by the autophagy inhibitor 3-methyladenine and the ALDH2 activator Alda-1. Interestingly, Alda-1-induced beneficial effect against ER stress was obliterated by autophagy inducer rapamycin, Akt inhibitor AktI and mTOR inhibitor RAD001. These data suggest a beneficial role of ALDH2 against ER stress-induced cardiac anomalies possibly through autophagy reduction.  相似文献   

19.
Cerebral ischemic damage and infarction are well documented in stroke, which is presenting a foremost health concern globally with very high mortality and morbidity rates. Mechanisms that are associated with excitotoxicity, inflammation and oxidative stress are found to be critically involved in ischemic damage. Adverse effects of current therapies are imposing the need in development of neuroprotective agents that are very effective. To explore this we experimentally induced ischemic brain injury and investigated the effects of plumbagin. Induction of cerebral infarction and ischemia-reperfusion (I/R) was done by middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats. Plumbagin (50, 100 or 200 mg/kg b.wt) was intragastrically administered for 9 days before ischemia induction and an hour prior on the day of ischemic insult. Plumbagin treatment attenuated pulmonary edema, neuronal apoptosis and reduced cerebral infarct volume. Cleaved caspase-3 and apoptotic cascade protein expressions were regulated. Overproduction of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and nitric oxide (NO) following I/R were reduced. Prior plumbagin administration had down-regulated NF-κB signalling and MMP-2 and MMP-9 expression. Overall, the results reveal the potent neuroprotective efficacy of plumbagin against I/R-induced brain injury via effectively modulating apoptotic pathways, MMPs and neuro-inflammatory cascades.  相似文献   

20.
Heeba GH  El-Hanafy AA 《Life sciences》2012,90(11-12):388-395
AimsOxidative stress-induced cell damage is reported to contribute to the pathogenesis of cerebral ischemia/reperfusion injury. This study investigated the neuroprotective effect of nebivolol against cerebral ischemia/reperfusion insult in rats.Main methodsThe model adopted was that of surgically-induced forebrain ischemia, performed by means of bilateral common carotid artery occlusion for 1 h, followed by reperfusion for 24 h. The effects of 5 and 10 mg/kg nebivolol, treated for 7 days prior to ischemia/reperfusion insult, were investigated by estimating endothelial and inducible nitric oxide synthases (eNOS and iNOS) protein expressions and assessing oxidative stress-related biochemical parameters in the rat forebrain. Also, infarct volume measurement and histopathological study of the forebrain were examined.Key findingsAdministration of nebivolol increased eNOS expression with simultaneous decrease in iNOS expression in a dose dependent manner. Moreover, nebivolol inhibited ischemia/reperfusion-induced depletion of reduced glutathione level and decreased the elevated total nitric oxide end production and malondialdehyde levels, superoxide dismutase and lactate dehydrogenase activities. A notable finding is that catalase activity was not changed in response to either ischemia/reperfusion insult or nebivolol treatment. However, the results confirmed that nebivolol significantly reduced infarct volume and alleviated ischemia/reperfusion-induced histopathological changes.SignificanceThe present study demonstrates the neuroprotective effect of nebivolol against cerebral ischemia/reperfusion insult. Neuroprotection observed with nebivolol may possibly be explained by regulating eNOS and iNOS expressions and by inhibition of oxidative stress-induced injury. Thus, nebivolol may be considered as a potential candidate for treatment in patients who are prone to stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号