首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations induced by classical whole-cell mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine (NTG) were determined for all genes of pathways from glucose to L-lysine in an industrial L-lysine producer of Corynebacterium glutamicum. A total of 50 mutations with a genome-wide distribution were identified and characterized for mutational types and mutagenic specificities. Those mutations were all point mutations with single-base substitutions and no deletions, frame shifts, and insertions were found. Among six possible types of base substitutions, the mutations consisted of only two types: 47 G.C-->A.T transitions and three A.T-->G.C transitions with no transversion. The findings indicate a limited repertoire of amino acid substitutions by classical NTG mutagenesis and thus raise a new possibility of further improving industrial strains by optimizing key mutations through PCR-mediated site-directed mutagenesis.  相似文献   

2.
Induction of T5-R mutations by alkylating agents N-methyl-N'-nitro-N-nitrosoguanidine (NTG) and ethyl methanesulfonate (EMS) was examined in glucose limited chemostat cultures of non-mutator and mutator (mutH) bacteria. In agreement with the proposal that NTG mutagenizes DNA at the replication fork, this mutagen (6.8 X 10-minus 6 M) showed replication-dependent mutagenesis in continuous culture. EMS (5-10-minus M)) induced mutagenesis could not be correlated with growth rate, which probably means that induction of mutagenic lesions (promutations) by this mutagen does not involve replicating genes. A large synergic response was found for the mutH gene in combination with NTG, supporting the hypothesis that the mutH gene product acts during DNA replication.  相似文献   

3.
N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced forward mutations within the first 540 base-pairs of the lacI gene of Escherichia coli were cloned and sequenced. In total, 167 MNNG-induced independent mutations were characterized, with G.C to A.T transitions accounting for all but three of the mutations. This mutagenic specificity is consistent with the mispairing predicted by the methylation of the O6 position of guanine. The characterization of such large numbers of mutations permitted an analysis of the influence of local DNA sequence on mutagenesis. This analysis revealed a strong influence by the 5' flanking base. On average, guanine residues preceded (5') by a guanine or an adenine residue were, respectively, nine times and five times more likely to mutate after treatment with MNNG than those preceded by a pyrimidine residue.  相似文献   

4.
Dose-response curves were compared for deletions [ColBR (resistant to colicin B) mutations being more than 80% deletions] and base changes (reversion of argFam to prototrophy argplus) induced in the same set of E. coli strains (wild-type for DNA repair, uvrA-, polA- and recA-) by N-methyl-N'-nitro-N-nitrosoguanidine (NTG), ethyl methanesulfonate (EMS), hydroxylamine (HA), 4-nitroquinoline I-oxide (4NQO), mitomycin C (MTC, UV and X-rays. All these agents induced deletions as well as base changes in the wild-type strain. Thus chemical mutagenesis differed in E. coli and bacteriophages in vitro, for HA, NTG, EMS and perhaps UV produced only point mutations in phage Tr. The patterns of deletion and base-change mutability in E. coli were surprisingly similar. (I) The recombination less recA- strain was mutable by only three (NTG, EMS, HA) of the seven mutagens for either deletions or base changes. (2) The uvrA- strain, unable to excise pyrimidine dimers, was very highly mutable by 4NQO and UV but immutable by MTC for both deletions and base changes. (3) The polA- strain, defective in DNA polymerase I due to a non-suppressible mutation, was very highly mutable by HA and highly mutable by MTC and 4NQO for both deletions and base changes but was highly mutable only for deletions by UV and X-rays, remaining normally mutable by the other agents for both deletions and base changes despite its high sensitivity to their inactivating action. We conclude that errors in the recA-dependent repair of induced DNA damage (after 4NQO, MTC, UV and X-rays) or errors in replication enhanced by damage to the replication system or to the template strands (after NTG, EMS, and HA) give rise to deletions as well as to base changes. From a comparative analysis of 14 dose-response curves for deletions and base changes, we conclude that the order of mutagenic efficiency relative to killing is (EMS, NTG) greater than (UV, 4NQO) greater than HA greater than (X-rays, MTC), and that X-rays, 4NQO, HA and MTC induce more ColBR deletions than Argplus base changes, whereas UV and EMS induce ColBR deletions and Argplus base changes at nearly equal rates and the specificity of NTG is intermediate between these two types.  相似文献   

5.
Cheung LW  Lee YF  Ng TW  Ching WK  Khoo US  Ng MK  Wong AS 《FEBS letters》2007,581(24):4668-4674
The range of BRCA1/BRCA2 gene mutations is diverse and the mechanism accounting for this heterogeneity is obscure. To gain insight into the endogenous mutational mechanisms involved, we evaluated the association of specific sequences (i.e. CpG/CpNpG motifs, homonucleotides, short repeats) and mutations within the genes. We classified 1337 published mutations in BRCA1 (1765 BRCA2 mutations) for each specific sequence, and employed computer simulation combined with mathematical calculations to estimate the true underlying tendency of mutation occurrence. Interestingly, we found no mutational bias to homonucleotides and repeats in deletions/insertions and substitutions but striking bias to CpG/CpNpG in substitutions in both genes. This suggests that methylation-dependent DNA alterations would be a major mechanism for mutagenesis.  相似文献   

6.
We have applied a genetic system for analyzing mutations in Escherichia coli to Deinococcus radiodurans, an extremeophile with an astonishingly high resistance to UV- and ionizing-radiation-induced mutagenesis. Taking advantage of the conservation of the beta-subunit of RNA polymerase among most prokaryotes, we derived again in D. radiodurans the rpoB/Rif(r) system that we developed in E. coli to monitor base substitutions, defining 33 base change substitutions at 22 different base pairs. We sequenced >250 mutations leading to Rif(r) in D. radiodurans derived spontaneously in wild-type and uvrD (mismatch-repair-deficient) backgrounds and after treatment with N-methyl-N'-nitro-N-nitrosoguanidine (NTG) and 5-azacytidine (5AZ). The specificities of NTG and 5AZ in D. radiodurans are the same as those found for E. coli and other organisms. There are prominent base substitution hotspots in rpoB in both D. radiodurans and E. coli. In several cases these are at different points in each organism, even though the DNA sequences surrounding the hotspots and their corresponding sites are very similar in both D. radiodurans and E. coli. In one case the hotspots occur at the same site in both organisms.  相似文献   

7.
The strain of Aspergillus niger G most effective for producing glucose oxidase (see β- -glucose:oxygen 1-oxidoreductase, EC 1.1.3.4) was selected out of 110 moulds belonging to 15 different species by the method of test-tube microculture. Conidia of the selected strain were further subjected to mutagenesis with both u.v. and N-methyl-N′-nitro-N-nitrosoguanidine (NTG) and the products were analysed for glucose oxidase activity with our own diffusion plate method. Among 960 strains isolated after mutagenesis only 12 showed higher activity (from 1.5 to 18%) than the starting strain A. niger G.  相似文献   

8.
The purpose of this investigation is to enhance the production of the immunosuppressant drug rapamycin by subjecting the strain CBS 773.23 to ultraviolet (UV) and N-methyl-N′-nitro-N-nitroso guanidine (NTG) mutations. Among all the mutants tested, MTCC 5681 (NRC-CM03/SH) obtained by NTG mutagenesis of strain CBS 773.72 showed the highest activity, 210 mg/L. The effect of different factors including medium composition, pH, temperature, and intensity of mixing on rapamycin production was studied. Based on the study, the optimal concentrations of soluble starch and dry yeast granules were found to be 50 g/L and 1.5 g/L, respectively. Furthermore, optimal values for pH, temperature, and shaking speed were found to be 6.0, 28°C, and 220 rpm, respectively. The production of rapamycin increased 1.6-fold, to 360 mg/L, in shake-flask culture using the optimal combination of factors observed compared with basal cultivation medium using MTCC 5681 mutant strain.  相似文献   

9.
In the course of discovering the first mutagen (X-rays) just over 60 years ago, Herman J. Muller asked whether X-rays induced single-gene mutations and/or chromosomal (multiple-gene) mutations. To a large extent, his question has set the agenda for mutagenesis research ever since. We explore historically the answers to this question, with special emphasis on recent developments in the field of mammalian cell mutagenesis. Studies indicate that ionizing radiation and many chemical mutagens/carcinogens induce both gene and chromosomal mutations; however, only certain genetic systems permit the recovery and analysis of both classes of mutations. Few chemical mutagens induce only gene mutations in mammalian cells; instead, most mutagens appear to induce both classes of mutations, with chromosomal mutations (especially multilocus deletions) predominating at high doses. These results have implications regarding the mechanisms of mutagenesis, the role of chromosomal mutations in carcinogenesis and hereditary disease, and the type of data required for risk assessment of physical and chemical mutagens/carcinogens.  相似文献   

10.
Twenty-one Mut mutants were obtained from Escherichia coli B (B/UV) and K-12 (JC355) after treatment with mutagens. These Mut strains are characterized by rates of mutation to streptomycin resistance and T-phase resistance which are significantly higher than the parental (Mut(+)) rates. Mutator genes in 12 strains have been mapped at three locations on the E. coli chromosome: one close to the leu locus; five close to the purA locus; and six close to cysC. In addition, eight mutator strains derived from E. coli B/UV are still unmapped. Some effort was made to deduce the mode of action of the mutator genes. These isolates have been examined for possible defects in deoxyribonucleic acid repair mechanisms (dark repair of ultraviolet damage, host-cell reactivation, recombination ability, repair of mitomycin C damage). By using transductional analysis, it was found that the ultraviolet sensitivity of NTG119 and its mutator property results from two separate but closely linked mutations. PurA(+) transductants that receive mut from NTG119 or NTG35 are all more sensitive to mitomycin C than is the PurA recipient. Unless transduction selects for sensitivity, a probable interpretation is that defective repair of mitomycin C-induced damage is related to the mode of action of mut in these transductants and the donor. Abnormal purine synthesis may be involved in the mutability of some strains with cotransduction of the mutator properly and purA (100% cotransduction for NTG119). Three mutators are recombination-deficient and may have a defective step in recombination repair. One maps near three rec genes close to cysC.  相似文献   

11.
Normal tension glaucoma (NTG) is a major form of glaucoma, associated with intraocular pressures that are within the statistically normal range of the population. OPA1, the gene responsible for autosomal dominant optic atrophy represents an excellent candidate gene for NTG, as the clinical phenotypes are similar and OPA1 is expressed in the retina and optic nerve. Eighty-three well-characterized NTG patients were screened for mutations in OPA1 by heteroduplex analysis and bi-directional sequencing. Sequences found to be altered in NTG subjects were examined for variations in 100 population controls. A second cohort of 80 NTG patients and 86 population controls was subsequently screened to determine whether the initial findings could be replicated. A single nucleotide polymorphism (SNP) on intervening sequence (IVS) 8 (IVS8 + 4 C/T) was found to be strongly associated with the occurrence of NTG in both cohorts (chi(2)=7.97, P=0.005 in the first cohort, chi(2)=9.93, P=0.002 in the second cohort; odds ratio 3.1 (95% CI: 1.8-5.6). A second SNP (IVS8 + 32 T/C) appeared to be associated with disease in the first cohort (chi(2)=4.71, P=0.030), but this finding could not be replicated in the second cohort. In the combined cohort, the compound at-risk genotype IVS8 + 4 C/T, + 32 T/C was strongly associated with the occurrence of NTG (chi(2)=22.04, P=0.00001 after correcting for testing four genotypes). These results indicate that polymorphisms in the OPA1 gene are associated with NTG and may be a marker for the disease.  相似文献   

12.
13.
Chemical mutagenesis has been the workhorse of traditional genetics, but it has not been possible to determine underlying rates or distributions of mutations from phenotypic screens. However, reverse-genetic screens can be used to provide an unbiased ascertainment of mutation statistics. Here we report a comprehensive analysis of approximately 1900 ethyl methanesulfonate (EMS)-induced mutations in 192 Arabidopsis thaliana target genes from a large-scale TILLING reverse-genetic project, about two orders of magnitude larger than previous such efforts. From this large data set, we are able to draw strong inferences about the occurrence and randomness of chemically induced mutations. We provide evidence that we have detected the large majority of mutations in the regions screened and confirm the robustness of the high-throughput TILLING method; therefore, any deviations from randomness can be attributed to selectional or mutational biases. Overall, we detect twice as many heterozygotes as homozygotes, as expected; however, for mutations that are predicted to truncate an encoded protein, we detect a ratio of 3.6:1, indicating selection against homozygous deleterious mutations. As expected for alkylation of guanine by EMS, >99% of mutations are G/C-to-A/T transitions. A nearest-neighbor bias around the mutated base pair suggests that mismatch repair counteracts alkylation damage.  相似文献   

14.
P Quillardet  R Devoret 《Biochimie》1982,64(8-9):789-796
The existence of damaged-site independent mutagenesis is confirmed here by scoring the appearance of clear-plaque (c-) or virulent (vir) forward mutations on intact (non-irradiated) phage lambda grown on UV-irradiated E. coli K12 hosts. The mutation frequency was measured as a function of the incubation time between the occurrence of host DNA lesions and phage infection. The time course of mutagenesis of intact phage followed the induction pattern observed upon UV-reactivation of UV-damaged phage by Defais et al. (1976). Intact phage did not mutate in UV-irradiated hosts carrying the uvm-25 mutation known to prevent the occurrence of UV-reactivation. These findings suggest that damaged-site independent mutagenesis results from inducible error-prone repair. Clear-plaque mutations arising on intact phage were mostly found in phage bursts consisting of clear and turbid plaque formers whereas UV-damaged phage gave rise to mostly clear-plaque formers. Contrarily to damaged-site dependent mutagenesis, damaged-site independent mutagenesis can arise even at late times during the phage replication cycle. Our data indicate that about half of the phage mutations that arise upon UV-reactivation are damaged-site independent mutations. Replication of intact phage DNA in a host during induction of SOS functions provides a sensitive assay for the detection of damaged-site independent mutagenesis.  相似文献   

15.
cis-Platinum(II)diamminodichloride (PDD), an anti-tumor agent, induced auxotrophic mutations in Escherichia coli, some of which were reverted to prototrophy by exposure to PDD, 2-aminopurine (2-AP), and N-methyl-N′-nitro-N-nitroguanidine (NTG), but not ICR derivatives. Similarly, various 2-AP-, NTG-, and ultraviolet light-induced auxotrophs were reverted to prototrophy by PDD. Some PDD-induced auxotrophs carried nonsense mutations and others could be phenotypically suppressed by growth with streptomycin. Although these findings suggest that PDD promotes base substitutions, this mutagen may also cause base subtractions because (like NTG)it induced, at reduced frequency, reversion to prototrophy of certain ICR-induced auxotrophs. Isomeric trans-platinum(II)diamminodichloride, which lacks anti-tumor activity, was an ineffective mutagen. Near-optimal conditions for PDD-induced mutagenesis entailed prolonged cultivation with low levels of mutagen where the frequency of forward mutation to auxotrophy was 10−3 and that of a selected trp isolate to prototrophy was 10−2.  相似文献   

16.
Acetylcholinesterase (AChE), encoded by the Ace gene, is the primary target of organophosphorous (OP) and carbamate insecticides. Ace mutations have been identified in OP resistants strains of Drosophila melanogaster. However, in the Australian sheep blowfly, Lucilia cuprina, resistance in field and laboratory generated strains is determined by point mutations in the Rop-1 gene, which encodes a carboxylesterase, E3. To investigate the apparent bias for the Rop-1/E3 mechanism in the evolution of OP resistance in L. cuprina, we have cloned the Ace gene from this species and characterized its product. Southern hybridization indicates the existence of a single Ace gene in L. cuprina. The amino acid sequence of L. cuprina AChE shares 85.3% identity with D. melanogaster and 92.4% with Musca domestica AChE. Five point mutations in Ace associated with reduced sensitivity to OP insecticides have been previously detected in resistant strains of D. melanogaster. These residues are identical in susceptible strains of D. melanogaster and L. cuprina, although different codons are used. Each of the amino acid substitutions that confer OP resistance in D. melanogaster could also occur in L. cuprina by a single non-synonymous substitution. These data suggest that the resistance mechanism used in L. cuprina is determined by factors other than codon bias. The same point mutations, singly and in combination, were introduced into the Ace gene of L. cuprina by site-directed mutagenesis and the resulting AChE enzymes expressed using a baculovirus system to characterise their kinetic properties and interactions with OP insecticides. The K(m) of wild type AChE for acetylthiocholine (ASCh) is 23.13 microM and the point mutations change the affinity to the substrate. The turnover number of Lucilia AChE for ASCh was estimated to be 1.27x10(3) min(-1), similar to Drosophila or housefly AChE. The single amino acid replacements reduce the affinities of the AChE for OPs and give up to 8.7-fold OP insensitivity, while combined mutations give up to 35-fold insensitivity. However, other published studies indicate these same mutations yield higher levels of OP insensitivity in D. melanogaster and A. aegypti. The inhibition data indicate that the wild type form of AChE of L. cuprina is 12.4-fold less sensitive to OP inhibition than the susceptible form of E3, suggesting that the carboxylesterases may have a role in the protection of AChE via a sequestration mechanism. This provides a possible explanation for the bias towards the evolution of resistance via the Rop-1/E3 mechanism in L. cuprina.  相似文献   

17.
Plasmid libraries of prlA mutants containing single-base-pair changes throughout the gene were generated by in vitro random mutagenesis. The prlA mutations capable of suppressing the secretion defect of LamB caused by mutations in the LamB signal peptide were selected and analyzed. Together with additional mutations generated by site-directed mutagenesis, a number of novel prlA mutations and/or suppressors were identified. These mutations provide the starting points for studying the relationship of structure and function of PrlA in its interaction with LamB and/or other component(s) in the Escherichia coli protein secretion-translocation complex.  相似文献   

18.
Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr+ host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one to two mutant phage per mutant burst. From this and the pathways of lambda DNA synthesis, it can be argued that non-targeted mutagenesis involves a loss of fidelity in semiconservative DNA replication. A series of experiments with various mutant host cells showed a major pathway of non-targeted mutagenesis by ultraviolet light, which acts in addition to "SOS induction" (where cleavage of the LexA repressor by RecA protease leads to din gene induction): (1) the induction of mutants has the same dependence on irradiation for wild-type and for umuC host cells; (2) a strain in which the SOS pathway is constitutively induced requires irradiation to the same level as wild-type cells in order to fully activate non-targeted mutagenesis; (3) non-targeted mutagenesis occurs to some extent in irradiated recA recB cells. In cells with very low levels of PolI, the induction of non-targeted mutagenesis by ultraviolet light is enhanced. We propose that the major pathway for non-targeted mutagenesis in irradiated host cells involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and that the low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage.  相似文献   

19.
Mutagenesis screens are a valuable method to identify genes that are required for normal development. Previous mouse mutagenesis screens for lethal mutations were targeted at specific time points or for developmental processes. Here we present the results of lethal mutant isolation from two mutagenesis screens that use balancer chromosomes. One screen was localized to mouse chromosome 4, between the STS markers D4Mit281 and D4Mit51. The second screen covered the region between Trp53 and Wnt3 on mouse chromosome 11. These screens identified all lethal mutations in the balancer regions, without bias towards any phenotype or stage of death. We have isolated 19 lethal lines on mouse chromosome 4, and 59 lethal lines on chromosome 11, many of which are distinct from previous mutants that map to these regions of the genome. We have characterized the mutant lines to determine the time of death, and performed a pair-wise complementation cross to determine if the mutations are allelic. Our data suggest that the majority of mouse lethal mutations die during mid-gestation, after uterine implantation, with a variety of defects in gastrulation, heart, neural tube, vascular, or placental development. This initial group of mutants provides a functional annotation of mouse chromosomes 4 and 11, and indicates that many novel developmental phenotypes can be quickly isolated in defined genomic intervals through balancer chromosome mutagenesis screens.  相似文献   

20.
In order to examine possible cell-type specificity in mutagenic events, a shuttle-vector plasmid, pZ189, carrying a bacterial suppressor tRNA marker gene, was treated with ultraviolet radiation and propagated in Epstein-Barr virus transformed lymphoblastoid cell lines from a patient, XP12BE, with xeroderma pigmentosum (XP), group A, and a normal control. XP is a skin-cancer-prone disorder with UV hypersensitivity and defective DNA repair. Plasmid survival and mutations inactivating the marker gene were scored by transforming an indicator strain of E. coli. An earlier report on this data [Seetharam et al., (1990) J. Mol. Biol., 212, 433] indicated lower survival and higher mutation frequency with the UV-treated plasmid passed through the XP12Be(EBV) line. In the present report, sequence analysis of 198 mutant plasmids revealed a predominance of G:C----A:T transitions with both lymphoblastoid cell lines. This finding is consistent with the bias of polymerases toward insertion of an adenine opposite non-coding photoproducts (dinucleotides or other lesions). Transversion mutagenesis, non-adjacent double mutations, and triple-base mutations may involve other mechanisms. These results were compared to similar data from a fibroblast line from the same patient [Bredberg et al., (1986) Proc. Natl. Acad. Sci. (U.S.A.), 83, 8273]. The frequency of G:C----A:T transitions was higher, and there were fewer plasmids with multiple-base substitutions and with transversion mutations with both XP lymphoblasts and fibroblasts than with the normal lymphoblasts and fibroblasts. There were no significant differences in classes or types of mutations in the UV-treated plasmid replicated in the XP lymphoblasts and the XP fibroblasts. This suggests that the major features of UV mutagenesis in different cell types from the same individual are similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号