首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs (miRNAs) are key players in gene regulation that target specific mRNAs for degradation or translational repression. Each miRNA is synthesized as a miRNA duplex comprising two strands (5p and 3p). However, only one of the two strands becomes active and is selectively incorporated into the RNA-induced silencing complex in a process known as miRNA strand selection. Recently, significant progress has been made in understanding the factors and processes involved in strand selection. Here, we explore the selection and functionality of the miRNA star strand (either 5p or 3p), which is generally present in the cell at low levels compared to its partner strand and, historically, has been thought to possess no biological activity. We also highlight the concepts of miRNA arm switching and miRNA isomerism. Finally, we offer insights into the impact of aberrant strand selection on immunity and cancer. Leading us through this journey is miR-155, a well-established regulator of immunity and cancer, and the increasing evidence that its 3p strand plays a role in these arenas. Interestingly, the miR-155-5p/-3p ratio appears to vary dependent on the timing of the immune response, and the 3p strand seems to play a regulatory role upon its partner 5p strand.  相似文献   

2.
3.
MicroRNAs (miRNA) precursor (pre-miRNA) molecules can be processed to release a miRNA/miRNA* duplex. In the canonical model of miRNA biogenesis, one strand of the duplex is thought to be the biologically active miRNA, whereas the other strand is thought to be inactive and degraded as a carrier or passenger strand called miRNA* (miRNA star). However, recent studies have revealed that miRNA* strands frequently play roles in the regulatory networks of miRNA target molecules. Our recent study indicated that miR-17 transgenic mice could abundantly express both the mature miR-17-5p and the passenger strand miR-17-3p. Here, we showed that miR-17 enhanced prostate tumor growth and invasion by increasing tumor cell proliferation, colony formation, cell survival and invasion. miRNA target analysis showed that both miR-17-5p and miR-17-3p repressed TIMP metallopeptidase inhibitor 3 (TIMP3) expression. Silencing with small interfering RNA against TIMP3 promoted cell survival and invasion. Ectopic expression of TIMP3 decreased cell invasion and cell survival. Our results demonstrated that mature miRNA can function coordinately with its passenger strand, enhancing the repressive ability of a miRNA by binding the same target. Within an intricate regulatory network, this may be among the mechanisms by which miRNA can augment their regulatory capacity.  相似文献   

4.
MicroRNAs (miRNAs) are single-stranded non-coding RNAs composed of 20-23 nucleotides. They are initially transcribed in the nucleus as pri-miRNAs. After processing, one strand from the miRNA duplex (miR-5p/miR-3p duplex) is loaded onto the RNA-induced silencing complex (RISC) to produce a functional, mature miRNA that inhibits the expression of multiple target genes. In the case of some miRNAs, both strands can be equally incorporated into the RISC as single strands, and both strands can function as mature miRNAs. Thus, a technique for selective expression of miR-5p and miR-3p strands is required to identify distinct targets of miRNAs. In this Letter, we report the synthesis and properties of miRNA duplexes carrying biaryl units at the 5'-terminus of one strand. We found that incorporation of biaryl units at the 5'-terminus of one strand of miRNA duplexes induced strand specificity in these duplexes. Further, we succeeded in identifying endogenous mRNA targets for each strand of the duplex by using the biaryl-modified miRNA duplexes.  相似文献   

5.
6.
Widespread regulatory activity of vertebrate microRNA* species   总被引:1,自引:0,他引:1  
  相似文献   

7.
microRNAs are ~ 22 nucleotide regulatory RNAs that are processed into duplexes from hairpin structures and incorporated into Argonaute proteins. Here, we show that a nick in the middle of the guide strand of an miRNA sequence allows for seed-based targeting characteristic of miRNA activity. Insertion of an inverted abasic, a dye, or a small gap between the two segments still permits target knockdown. While activity from the seed region of the segmented miRNA is apparent, activity from the 3' half of the guide strand is impaired, suggesting that an intact guide backbone is required for contribution from the 3' half. miRNA activity was also observed following nicking of a miRNA precursor. These results illustrate a structural flexibility in miRNA duplexes and may have applications in the design of miRNA mimetics.  相似文献   

8.
Tissue-dependent paired expression of miRNAs   总被引:5,自引:1,他引:4  
Ro S  Park C  Young D  Sanders KM  Yan W 《Nucleic acids research》2007,35(17):5944-5953
It is believed that depending on the thermodynamic stability of the 5′-strand and the 3′-strand in the stem-loop structure of a precursor microRNA (pre-miRNA), cells preferentially select the less stable one (called the miRNA or guide strand) and destroy the other one (called the miRNA* or passenger strand). However, our expression profiling analyses revealed that both strands could be co-accumulated as miRNA pairs in some tissues while being subjected to strand selection in other tissues. Our target prediction and validation assays demonstrated that both strands of a miRNA pair could target equal numbers of genes and that both were able to suppress the expression of their target genes. Our finding not only suggests that the numbers of miRNAs and their targets are much greater than what we previously thought, but also implies that novel mechanisms are involved in the tissue-dependent miRNA biogenesis and target selection process.  相似文献   

9.
Conventional wisdom holds that only one of the two strands in a micro ribonucleic acid (miRNA) precursor duplex is selected as the active miRNA guide strand. The complementary miRNA passenger strand, however, is thought to be inactive. High levels of the oncogenic miRNA (oncomiR) guide strand called miR-17-5p is overexpressed in triple negative breast cancer (TNBC) and can inhibit ribosomal translation of tumor suppressor gene mRNAs, such as programmed cell death 4 (PDCD4) or phosphatase and tensin homolog (PTEN). We hypothesized that knocking down the oncogenic microRNA (oncomiR) miR-17-5p might restore the expression levels of PDCD4 and PTEN tumor suppressor proteins, illustrating a route to oligonucleotide therapy of TNBC. Contrary to conventional wisdom, antisense knockdown of oncomiR miR-17-5p guide strand reduced PDCD4 and PTEN proteins by 1.8±0.3 fold in human TNBC cells instead of raising them. Bioinformatics analysis and folding energy calculations revealed that mRNA targets of miR-17-5p guide strand, such as PDCD4 and PTEN, could also be regulated by miR-17-3p passenger strand. Due to high sequence homology between the antisense molecules and miR-17-3p passenger strand, as well as the excess binding sites for the passenger strand on the 3’UTR of PDCD4 and PTEN mRNAs, introducing a miR-17-3p DNA-LNA mimic to knock down miR-17-5p reduced PDCD4 and PTEN protein expression instead of raising them. Our results imply that therapeutic antisense sequences against miRNAs should be designed to target the miRNA strand with the greatest number of putative binding sites in the target mRNAs, while minimizing affinity for the minor strand.  相似文献   

10.
Kawamata T  Yoda M  Tomari Y 《EMBO reports》2011,12(9):944-949
MicroRNAs (miRNAs) function through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) protein at the core. RISC assembly follows a two-step pathway: miRNA/miRNA* duplex loading into Ago, and separation of the two strands within Ago. Here we show that the 5' phosphate of the miRNA strand is essential for duplex loading into Ago, whereas the preferred 5' nucleotide of the miRNA strand and the base-pairing status in the seed region and the middle of the 3' region function as additive anchors to Ago. Consequently, the miRNA authenticity is inspected at multiple steps during RISC assembly.  相似文献   

11.
12.
Improved targeting of miRNA with antisense oligonucleotides   总被引:10,自引:1,他引:9       下载免费PDF全文
  相似文献   

13.
14.

Background

During typical microRNA (miRNA) biogenesis, one strand of a ∼22 nt RNA duplex is preferentially selected for entry into a silencing complex, whereas the other strand, known as the passenger strand or miRNA* strand, is degraded. Recently, some miRNA* sequences were reported as guide miRNAs with abundant expression. Here, we intended to discover evolutionary implication of the fate of miRNA* strand by analyzing miRNA/miRNA* sequences across vertebrates.

Principal Findings

Mature miRNAs based on gene families were well conserved especially for their seed sequences across vertebrates, while their passenger strands always showed various divergence patterns. The divergence mainly resulted from divergence of different animal species, homologous miRNA genes and multicopy miRNA hairpin precursors. Some miRNA* sequences were phylogenetically conserved in seed and anchor sequences similar to mature miRNAs, while others revealed high levels of nucleotide divergence despite some of their partners were highly conserved. Most of those miRNA precursors that could generate abundant miRNAs from both strands always were well conserved in sequences of miR-#-5p and miR-#-3p, especially for their seed sequences.

Conclusions

The final fate of miRNA* strand, either degraded as merely carrier strand or expressed abundantly as potential functional guide miRNA, may be destined across evolution. Well-conserved miRNA* strands, particularly conservation in seed sequences, maybe afford potential opportunities for contributing to regulation network. The study will broaden our understanding of potential functional miRNA* species.  相似文献   

15.
Micro RNA模拟靶序列(target mimic,TM)通过竞争性结合miRNA,从而干扰miRNA对靶标m RNA的调控.我们前期工作发现:以黄瓜花叶病毒(Cucumber mosaic virus,CMV)作为载体在植物体内表达TM序列有效地抑制了miRNA的活性或稳定性,从而消减了miRNA对靶基因的调控.但是,miRNA与CMV携带的TM序列的结合在一定程度上抑制了病毒的积累.研究分析了miRNA靶向病毒携带的TM序列对病毒抑制作用的内在原因.a.通过RNA印迹分析CMV携带不同miRNA TM序列对病毒积累的影响,进一步明确miRNA靶向病毒携带的TM序列对病毒的抑制作用;b.利用GFP作为报告基因,通过荧光显微镜、蛋白质印迹以及RNA印迹分析TM序列对重组病毒积累的影响;c.以GFP作为报告基因,利用荧光显微镜观察和免疫印迹方法分析模拟靶序列对GFP翻译的影响;d.利用CMV病毒的反式复制系统分析miRNA模拟靶序列对病毒负链RNA合成的影响.结果表明,多种植物内源的miRNA靶向CMV基因组携带的miRNA TM序列,在不同程度上抑制了病毒的积累,miRNA与其TM序列的结合抑制GFP蛋白的翻译和负链的合成.植物内源的miRNA通过与病毒基因组携带的miRNA模拟靶序列结合,通过抑制病毒蛋白的翻译以及病毒负链RNA的合成,从而降低了病毒的积累水平.基于该论文的研究结果有可能建立一种抗病毒的新方法.  相似文献   

16.
17.
RNA silencing plays a key role in antiviral defense as well as in developmental processes in plants and insects. Negative strand RNA viruses such as the plant virus Rice hoja blanca tenuivirus (RHBV) replicate in plants and in their insect transmission vector. Like most plant-infecting viruses, RHBV encodes an RNA silencing suppressor, the NS3 protein, and here it is demonstrated that this protein is capable of suppressing RNA silencing in both plants and insect cells. Biochemical analyses showed that NS3 efficiently binds siRNA as well as miRNA molecules. Binding of NS3 is greatly influenced by the size of small RNA molecules, as 21 nucleotide (nt) siRNA molecules are bound > 100 times more efficiently than 26 nt species. Competition assays suggest that the activity of NS3 is based on binding to siRNAs prior to strand separation during the assembly of the RNA-induced silencing complex. In addition, NS3 has a high affinity for miRNA/miRNA* duplexes, indicating that its activity might also interfere with miRNA-regulated gene expression in both insects and plants.  相似文献   

18.
19.
Wu H  Ma H  Ye C  Ramirez D  Chen S  Montoya J  Shankar P  Wang XA  Manjunath N 《PloS one》2011,6(12):e28580
siRNA (small interfering RNA) and shRNA (small hairpin RNA) are powerful and commonly used tools in biomedical research. Currently, siRNAs are generally designed as two 21 nt strands of RNA that include a 19 nt completely complementary part and a 2 nt overhang. However, since the si/shRNAs use the endogenous miRNA machinery for gene silencing and the miRNAs are generally 22 nt in length and contain multiple internal mismatches, we tested if the functionality can be increased by designing the si/shRNAs to mimic a miRNA structure. We systematically investigated the effect of single or multiple mismatches introduced in the passenger strand at different positions on siRNA functionality. Mismatches at certain positions could significantly increase the functionality of siRNAs and also, in some cases decreased the unwanted passenger strand functionality. The same strategy could also be used to design shRNAs. Finally, we showed that both si and miRNA structured oligos (siRNA with or without mismatches in the passenger strand) can repress targets in all individual Ago containing cells, suggesting that the Ago proteins do not differentiate between si/miRNA-based structure for silencing activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号