首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic transformation of rice (Oryza sativa L.) mediated by Agrobacterium ttumefaciens has been confirmed for japonica varieties and extended to include the more recalcitrant indica varieties. Immature embryos were inoculated with either A. tumefaciens At656 (pCNL56) or LBA4404 (pTOK233). Experimental conditions were developed initially for immature embryos treated with strain At656, based upon both transient and stable -glucuromdase (GUS) activities. However, plant regeneration following selection on G418 (pCNL56 contained the nptII gene) did not occur. Using the same basic protocol, but inoculating immature embryos of rice with LBA4404 (pTOK233), resulted in efficient (about 27%) production of transgenic plants of the japonica variety, Radon, and an acceptable efficiency (from 1–5%) for the indica varieties IR72 and TCS10. Transformation was based upon resistance to hygromycin (pTOK233 contains the hpt gene), the presence of GUS activity (from the gusA gene), Southern blots for detection of the integrated gusA gene, and transmission of GUS activity to progeny in a Mendelian 3:1 segregation ratio. Southern blots indicated two to three copies of the gene integrated in most transformants. Transgenic plants of both the japonica and indica varieties were self-fertile and comparable in this respect to seed-grown plants. Key factors facilitating the transformation of rice by Agrobacterium tumefaciens appeared to be the use of embryos as the expiant, the use of hygromycin as the selection agent (which does not interfere with rice regeneration), the presence of extra copies of certain vir genes on the binary vector of pTOK233, and maintaining high concentrations of acetosyringone for inducing the vir genes during co-cultivation of embryos with Agrobacterium.Abbreviations AS acetosyringone - DMRT Duncan's Multiple Range Test - GUS -glucuronidase - T-DNA transferred DNA We wish to thank Dr. Toshihiko Komari, Japan Tobacco Inc. for providing Ayrobacterium tumefaciens strain LBA4404 (pTOK322). Support by the Rockefeller Foundation in the form of a fellowship to R.R.A. and a grant to T.K.H. is acknowledged. This is journal paper number 14,914 from the Purdue University Agricultural Experiment Station.  相似文献   

2.
Perennial ryegrass is one of the most widely cultivated grasses in temperate regions. However, it is recalcitrant for in vitro manipulation. In this study, various parameters affecting Agrobacterium tumefaciens-mediated infection were tested to optimize transformation efficiency in perennial ryegrass. The effects of heat shock and maltose concentration during Agrobacterium infection were evaluated along with variations in callus induction medium, bacterial infection media and callus age. Our results suggest that Agrobacterium infection at 42 °C for 3 min and co-cultivation of Agrobacterium-infected callus on a high maltose medium (6 %) significantly enhances the transformation efficiency in perennial ryegrass. The most optimal conditions proved to be use of four-month-old embryogenic callus induced on a modified N6 medium, infected with Agrobacterium grown on a modified Murashige and Skoog (MSM) medium, and a 42 °C heat shock treatment followed by the co-cultivation of the Agrobacterium and the callus on medium containing 6 % maltose (instead of 3 %). Using this optimized protocol, we were able to increase the transformation efficiencies for regenerated plants from approximately 1 % to over 20 %. Significant improvement in rice stable transformation efficiency was also observed when the optimized conditions were applied to this important cereal, indicating the method described here may apply to other monocots as well.  相似文献   

3.
A highly efficient and fast Agrobacterium-mediated leaf disc transformation system for the Arabidopsis thaliana L. genotype C24 was developed. This protocol is also amenable to other ecotypes - as could be shown for Landsberg erecta and Wassllewskija. Besides the hygromycin selection also the G418 and kanamycin selection were established. Furthermore the described procedure is appliable not only to leaf explants but also to expanded cotyledons which proved to be an excellent alternative as explant source for transformation experiments.Abbreviations BAP 6-Benzylaminopurine - CIM Callus induction medium - 2.4D 2,4-Dichlorophenoxyacetic acid - GA3 Gibberellic acid - IAA Indole-3-acetic acid - IBA Indole-3-butyric acid - 2-IP N6-,-Dimethylallyladenosine - HPT Hygromycin phosphotransferase - NAA -Naphthaleneacetic acid - NPT II Neomycin phosphotransferase type II - SEM Shoot elongation medium - SIM Shoot induction medium - RIM Root induction medium  相似文献   

4.
A highly efficient gene transfer method mediated by Agrobacterium tumefaciens was developed for Group I indica rice, which had been quite recalcitrant in tissue culture and transformation. Freshly isolated immature embryos from plants grown in a greenhouse were inoculated with A. tumefaciens LBA4404 that harbored super-binary vector pTOK233 or pSB134, which had a hygromycin-resistance gene and a GUS gene in the T-DNA. The efficiency of gene transfer varied with the kinds of gelling agents and the basic compositions of co-cultivation media. The highest activity of GUS after co-cultivation was observed when NB medium solidified with agarose was used. For the subsequent cultures, two types of media (modified NB and CC) were chosen to recover hygromycin-resistant cells efficiently. The transformation protocol thus developed worked very well in all of the varieties tested in this study, and the transformation frequency (number of independent hygromycin-resistant and GUS-positive plants per embryo) reached more than 30% in IR8, IR24, IR26, IR36, IR54, IR64, IR72, Xin Qing Ai 1, Nan Jin 11, and Suewon 258. Most of the transformants (T0) were normal in morphology and fertile. Stable integration, expression and inheritance of transgenes were demonstrated by molecular and genetic analysis of transformants in the T0 and T1 generations. For the recovery of multiple independent transgenic events from a single immature embryo, procedures were developed to section the embryo into as many as 30 pieces after non-selective cultures following co-cultivation. Transformants were then obtained from the pieces cultured on the selective media, and, in the highest case, more than seven independent transgenic plants per original embryo (transformation frequency of 738%) were produced. Thus, the efficiency of transformation was remarkably improved.  相似文献   

5.
World food security is increasingly dependent on continuous crop improvement and, in particular, the development of crops with increased drought and salinity tolerance. The completed genomic sequence of the model plant Arabidopsis thaliana and the development of whole-genome microarrays, together with increasing repositories of publicly available data and data analysis tools, have opened new avenues to genome-wide systemic analysis of plant stress responses. Here we outline examples of how this full-genome expression profiling can contribute to our understanding of complex stress responses and the identification and evaluation of novel transgenes that could hold the key to the development of commercially viable and sustainable crop plants.  相似文献   

6.
An efficient system for gene transfer into plants of Brassica juncea var. India Mustard, mediated by Agrobacterium tumefaciens. was developed through the manipulation of the culture medium and the use of the appropriate Agrobacterium strain. High frequency shoot regeneration (90–100%) was obtained from hypocotyl explants grown on medium containing 0.9% agarose, 3.3 mg/L AgNO3 and 0.5–2 mg/L BA in combination with 0.01–0.05 mg/L 2,4-D or 0.1–1 mg/L NAA. Of all the Agrobacterium strains tested, A. tumefaciens A208-SE, carrying the disarmed Ti plasmid and a binary vector pROA93, was the most effective for B. juncea transformation. pROA93 carries the coding sequences of the NPTII and the GUS genes, both driven by a common CaMV 35S promoter in two divergent directions. Inoculated explants grown on the selection medium in the presence of 0.5 mg/L BA and 0.1 mg/L NAA gave rise to transgenic shoots at the highest frequency (9%). All Ro transgenic plants were phenotypically normal, but variation in expression patterns of the GUS gene occurred among the transgenic plants in an organ- and tissue-specific manner. Both the NPTII and the GUS genes were transmitted to the R1 seed progeny and showed co-segregation.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - NPTII neomycin phosphotransferase type II - GUS -glucuronidase - CaMV cauliflower mosaic virus - MS Murashige and Skoog - X-Gluc 5-bromo-4-chloro-3-indolyl-D--glucuronic acid - IBA indolebutyric acid - SDS sodium dodecyl sulfate  相似文献   

7.
To develop an efficient protocol for the transformation of the legume Astragalus sinicus (Chinese milk vetch), cotyledon segments were infected with Agrobacterium tumefaciens strain EHA105 harboring the binary vector pBINm-gfp5-ER which carries the gfp5 gene encoding green fluorescent protein and the kanamycin (Km) resistance gene nptII. The infected explants were cultured on shoot regeneration (SR) medium containing 1.0 mg l–1 -naphthaleneacetic acid (NAA) and 1.0 mg l–1 thidiazuron (TDZ). Putative transformed shoots were selected on SR medium containing 75 g ml–1 Km, 200 g ml–1 Timentin, and transformation was monitored by observation of GFP expression under a dissecting fluorescence microscope with appropriate filters. The identification of GFP-expressing shoots or callus in combination with Km selection allowed the visual selection of growing transgenic cells and shoots with no escapes. Plants were regenerated from seven independent transgenic events and five plants have set seed. GFP expression segregated in the T1 seedlings of the two lines tested in a 3 – 1 ratio. In addition to the GFP expression of the transgenic plants, the transgenic nature of individual plants was confirmed by Southern and Western blot analyses.  相似文献   

8.
Epicotyl segments and nodus expiants from etiolated seedlings of Pisum sativum were transformed using Agrobacterium tumefaciens strains GV 2260 (p35S GUS INT) and GV 3850 HPT carrying either a neomycin- or hygromycinphosphotransferase-gene as selectable markers. The transgenic character of hygromycin- or kananamycin-resistant tissue was confirmed by detection of nopaline or neomycinphosphotransferase-II- and ß-glucuronidase activity in crude extracts of resistant tissues. Up to 5 % of developing shoots from shoot proliferating nodi were regenerated via organogenesis to kanamycin-resistant plantlets. Transformation frequency in vitro was found to be influenced by expiant source, A. tumefaciens strain, pea genotype and duration of cocultivation. Acetosyringone did not increase the transformation rate.Abbrevations GUS ß-glucuronidase - NAA 1-naphthyl-acetic-acid - BA 6-benzylaminopurine - NPT-II neomycinphosphotransferase-II - HPT hygromycinphosphotransferase  相似文献   

9.
Agrobacterium tumefaciens-mediated transformation (ATMT) is becoming an effective system as an insertional mutagenesis tool in filamentous fungi. We developed and optimized ATMT for two Colletotrichum species, C. falcatum and C. acutatum, which are the causal agents of sugarcane red rot and pepper anthracnose, respectively. A. tumefaciens strain SK1044, carrying a hygromycin phosphotransferase gene (hph) and a green fluorescent protein (GFP) gene, was used to transform the conidia of these two Colletotrichum species. Transformation efficiency was correlated with cocultivation time and bacterial cell concentration and was higher in C. falcatum than in C. acutatum. Southern blot analysis indicated that about 65% of the transformants had a single copy of the T-DNA in both C. falcatum and C. acutatum and that T-DNA integrated randomly in both fungal genomes. T-DNA insertions were identified in transformants through thermal asymmetrical interlaced PCR (TAIL-PCR) followed by sequencing. Our results suggested that ATMT can be used as a molecular tool to identify and characterize pathogenicity-related genes in these two economically important Colletotrichum species.  相似文献   

10.
Lin YJ  Zhang Q 《Plant cell reports》2005,23(8):540-547
Establishment of high efficiency Agrobacterium-mediated transformation techniques has greatly accelerated the widespread application of transformation in japonica rice. However, transformation in indica rice remains difficult. In this study, we identify two new media for subculture and differentiation, the two major steps in the tissue culture process for transformation. These media were tested using four cultivars representing very different germplasms of indica rice. The results show that the new media significantly improved the growth rate and quality of the calli, and also increased the differentiation rate for all four cultivars tested. Use of these modified media in transformation experiments also greatly improved the transformation efficiency of all four indica cultivars.  相似文献   

11.
12.
Agrobacterium tumefaciens was capable of directing the transformation of Gladiolus sp., a monocot genus belonging to the family Iridaceae. Only strains capable of transferring T-DNA formed tumors, sections of which could be cultured in phytohormone-free media. Opine synthase activities were also observed in homogenates made from these tumors.  相似文献   

13.
Plant Cell, Tissue and Organ Culture (PCTOC) - In the original article, part a in Fig. 2 was incorrect. The correct Fig. 2 is printed below, and the first author’s current...  相似文献   

14.
Broccoli (Brassica oleracea var. italica) deteriorates rapidly following harvest. Postharvest treatment of broccoli with 6-benzylaminopurine delays senescence, whilst exogenous ethylene has been shown to accelerate this process following harvest. To alter ethylene biosynthesis, broccoli was transformed, using Agrobacterium tumefaciens-mediated transformation, with an antisense ACC oxidase gene from broccoli driven by the asparagine synthetase promoter from asparagus. In addition, broccoli was transformed with the chimeric gene construct SAG12-IPT to alter cytokinin biosynthesis during harvest-induced senescence. Transformation was achieved using both hypocotyl and cotyledonary petiole explants. The presence of an antisense ACC oxidase gene enhanced transformation efficiency, but Ag+ incorporated into the medium did not. The transgenic nature of these plants was confirmed by PCR and Southern analyses.  相似文献   

15.
Summary The transformation efficiency of cultivated tomato (Lycopersicon esculentum cv. UC82) using Agrobacterium tumefaciens was improved from 14% in a previous report to 25% in the present study. Several variables potentially involved in the improvement of transformation efficiency were evaluated, including enhancements in the regeneration system, antibiotics used for Agrobacterium-overgrowth control, and method of applying kanamycin for selection. The most important variable identified was the influence of overgrowth-control antibiotics on both the regeneration response and transformation efficiency. The best transformant recovery and Agrobacterium-overgrowth control was obtained using 250 mg l−1 claforan and 250 mg l−1 ticareillin as the overgrowth-control antibiotics in the media. Selfed T1 progeny plants showed Mendelian inheritance ratios in 77% of the independently transformed lines according to phenotype expression [β-glucuronidase (GUS) assay results], and confirmed by polymerase chain reaction amplification of the transgene in progeny.  相似文献   

16.
An efficient transformation system for Campanula carpatica was developed using Agrobacterium tumefaciens strains LBA4404 (harbouring the plasmid pBI121), and AGL0 (harbouring the plasmid pBEO210). This is the first report on the transformation of C. carpatica. Various factors affecting the transformation efficiency and subsequent regeneration were identified. The age of seedlings from which the explants for transformation studies were taken, and the growth conditions under which the seedlings were grown had a significant influence on the production of transformed shoots. Hypocotyls taken from 12-day-old seedlings grown in the dark were the most productive, with up to 25% of hypocotyls producing transformed shoots. Explants taken from 5-week-old seedlings produced only transformed callus. The medium used for co-cultivation and incubation also had a significant influence on transformation frequency and shoot regeneration. The cultivar Blue Uniform was more responsive than White Uniform. Both bacterial strains and plasmids were equally effective in producing transformed tissue. Transformed shoots were selected on kanamycin medium, and the presence of the uidA and nptII genes in those selected shoots was confirmed by -glucuronidase and ELISA analyses, respectively.Abbreviations BAP 6-Benzylaminopurine - NAA -Naphthalene acetic acid - TDZ Thidiazuron - BU Blue Uniform - WU White Uniform  相似文献   

17.
里氏木霉是生产纤维素酶的重要菌株,在其浸没式发酵过程中,氧传递是重要影响因素。为了减轻溶氧的限制,本研究借助根癌农杆菌将透明颤菌血红蛋白基因vgb引入里氏木霉。qPCR结果表明,pki及gpd启动子均可以有效启动vgb在里氏木霉中的表达。进一步实验结果表明,在摇瓶培养中,供氧充足情况下野生菌和转化株的生长无明显差异,但是在静止培养条件下,氧气供应受限,转化菌株的干重是野生菌的17.8~25.5倍。  相似文献   

18.
Carotenoids, important lipid-soluble antioxidants in photosynthetic tissues, are known to be completely absent in rice endosperm. Many studies, involving transgenic manipulations of carotenoid biosynthesis genes, have been performed to get carotenoid-enriched rice grain. Study of genes involved in their biosynthesis can provide further information regarding the abundance/absence of carotenoids in different tissues. We have identified 16 and 34 carotenoid biosynthesis genes in rice and Populus genomes, respectively. A detailed analysis of the domain structure of carotenoid biosynthesis enzymes in rice, Populus and Arabidopsis has shown that highly conserved catalytic domains, along with other domains, are present in these proteins. Phylogenetic analysis of rice genes with Arabidopsis and other characterized carotenoid biosynthesis genes has revealed that homologous genes exist in these plants, and the duplicated gene copies probably adopt new functions. Expression of rice and Populus genes has been analyzed by full-length cDNA- and EST-based expression profiling. In rice, this analysis was complemented by real-time PCR, microarray and signature-based expression profiling, which reveal that carotenoid biosynthesis genes are highly expressed in light-grown tissues, have differential expression pattern during vegetative/reproductive development and are responsive to stress.  相似文献   

19.
Ankyrin repeat (ANK) containing proteins comprise a large protein family. Although many members of this family have been implicated in plant growth, development and signal transduction, only a few ANK genes have been reported in rice. In this study, we analyzed the structures, phylogenetic relationship, genome localizations and expression profiles of 175 ankyrin repeat genes identified in rice (OsANK). Domain composition analysis suggested OsANK proteins can be classified into ten subfamilies. Chromosomal localizations of OsANK genes indicated nine segmental duplication events involving 17 genes and 65 OsANK genes were involved in tandem duplications. The expression profiles of 158 OsANK genes were analyzed in 24 tissues covering the whole life cycle of two rice genotypes, Minghui 63 and Zhenshan 97. Sixteen genes showed preferential expression in given tissues compared to all the other tissues in Minghui 63 and Zhenshan 97. Nine genes were preferentially expressed in stamen of 1 day before flowering, suggesting that these genes may play important roles in pollination and fertilization. Expression data of OsANK genes were also obtained with tissues of seedlings subjected to three phytohormone (NAA, GA3 and KT) and light/dark treatments. Eighteen genes showed differential expression with at least one phytohormone treatment while under light/dark treatments, 13 OsANK genes showed differential expression. Our data provided a very useful reference for cloning and functional analysis of members of this gene family in rice. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Filamentous fungi are the organisms of choice for most industrial biotechnology. Some species can produce a variety of secondary metabolites and enzymes of commercial interest, and the production of valuable molecules has been enhanced through different molecular tools. Methods for genetic manipulation and transformation have been essential for the optimization of these organisms. The genus Simplicillium has attracted increased attention given several potential biotechnological applications. The Simplicillium genus harbors several entomopathogenic species and some isolates have been explored for bioremediation of heavy metal contaminants. Furthermore, the myriad of secondary metabolites isolated from Simplicillium spp. render these organisms as ideal targets for deep exploration and further biotechnological mining possibilities. However, the lack of molecular tools hampered the exploration of this genus. Thus, an Agrobacterium tumefaciens-mediated transformation method was established for Simplicillium subtropicum, employing the far-red fluorescent protein TURBOFP635/Katushka, as a visual marker, and the selection marker SUR gene, that confers resistance to chlorimuron ethyl. Notably, one round of transformation using the established method yielded almost 400 chlorimuron resistant isolates. Furthermore, these transformants displayed mitotic stability for, at least, five generations. We anticipate that this method can be useful for deep molecular exploration and improvement of strains in the Simplicillium genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号