首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Babnigg G  Giometti CS 《Proteomics》2006,6(16):4514-4522
In proteome studies, identification of proteins requires searching protein sequence databases. The public protein sequence databases (e.g., NCBInr, UniProt) each contain millions of entries, and private databases add thousands more. Although much of the sequence information in these databases is redundant, each database uses distinct identifiers for the identical protein sequence and often contains unique annotation information. Users of one database obtain a database-specific sequence identifier that is often difficult to reconcile with the identifiers from a different database. When multiple databases are used for searches or the databases being searched are updated frequently, interpreting the protein identifications and associated annotations can be problematic. We have developed a database of unique protein sequence identifiers called Sequence Globally Unique Identifiers (SEGUID) derived from primary protein sequences. These identifiers serve as a common link between multiple sequence databases and are resilient to annotation changes in either public or private databases throughout the lifetime of a given protein sequence. The SEGUID Database can be downloaded (http://bioinformatics.anl.gov/SEGUID/) or easily generated at any site with access to primary protein sequence databases. Since SEGUIDs are stable, predictions based on the primary sequence information (e.g., pI, Mr) can be calculated just once; we have generated approximately 500 different calculations for more than 2.5 million sequences. SEGUIDs are used to integrate MS and 2-DE data with bioinformatics information and provide the opportunity to search multiple protein sequence databases, thereby providing a higher probability of finding the most valid protein identifications.  相似文献   

2.
Remote access to ACNUC nucleotide and protein sequence databases at PBIL   总被引:1,自引:0,他引:1  
Gouy M  Delmotte S 《Biochimie》2008,90(4):555-562
The ACNUC biological sequence database system provides powerful and fast query and extraction capabilities to a variety of nucleotide and protein sequence databases. The collection of ACNUC databases served by the Pôle Bio-Informatique Lyonnais includes the EMBL, GenBank, RefSeq and UniProt nucleotide and protein sequence databases and a series of other sequence databases that support comparative genomics analyses: HOVERGEN and HOGENOM containing families of homologous protein-coding genes from vertebrate and prokaryotic genomes, respectively; Ensembl and Genome Reviews for analyses of prokaryotic and of selected eukaryotic genomes. This report describes the main features of the ACNUC system and the access to ACNUC databases from any internet-connected computer. Such access was made possible by the definition of a remote ACNUC access protocol and the implementation of Application Programming Interfaces between the C, Python and R languages and this communication protocol. Two retrieval programs for ACNUC databases, Query_win, with a graphical user interface and raa_query, with a command line interface, are also described. Altogether, these bioinformatics tools provide users with either ready-to-use means of querying remote sequence databases through a variety of selection criteria, or a simple way to endow application programs with an extensive access to these databases. Remote access to ACNUC databases is open to all and fully documented (http://pbil.univ-lyon1.fr/databases/acnuc/acnuc.html).  相似文献   

3.
4.
During the last decade there has been a great increase in the number of noncoding RNA genes identified, including new classes such as microRNAs and piRNAs. There is also a large growth in the amount of experimental characterization of these RNA components. Despite this growth in information, it is still difficult for researchers to access RNA data, because key data resources for noncoding RNAs have not yet been created. The most pressing omission is the lack of a comprehensive RNA sequence database, much like UniProt, which provides a comprehensive set of protein knowledge. In this article we propose the creation of a new open public resource that we term RNAcentral, which will contain a comprehensive collection of RNA sequences and fill an important gap in the provision of biomedical databases. We envision RNA researchers from all over the world joining a federated RNAcentral network, contributing specialized knowledge and databases. RNAcentral would centralize key data that are currently held across a variety of databases, allowing researchers instant access to a single, unified resource. This resource would facilitate the next generation of RNA research and help drive further discoveries, including those that improve food production and human and animal health. We encourage additional RNA database resources and research groups to join this effort. We aim to obtain international network funding to further this endeavor.  相似文献   

5.
Species detection using eDNA is revolutionizing global capacity to monitor biodiversity. However, the lack of regional, vouchered, genomic sequence information—especially sequence information that includes intraspecific variation—creates a bottleneck for management agencies wanting to harness the complete power of eDNA to monitor taxa and implement eDNA analyses. eDNA studies depend upon regional databases of mitogenomic sequence information to evaluate the effectiveness of such data to detect and identify taxa. We created the Oregon Biodiversity Genome Project to create a database of complete, nearly error-free mitogenomic sequences for all of Oregon's fishes. We have successfully assembled the complete mitogenomes of 313 specimens of freshwater, anadromous and estuarine fishes representing 24 families, 55 genera and 129 species and lineages. Comparative analyses of these sequences illustrate that many regions of the mitogenome are taxonomically informative, that the short (~150 bp) mitochondrial ‘barcode’ regions typically used for eDNA assays do not consistently diagnose for species and that complete single or multiple genes of the mitogenome are preferable for identifying Oregon's fishes. This project provides a blueprint for other researchers to follow as they build regional databases, illustrates the taxonomic value and limits of complete mitogenomic sequences and offers clues as to how current eDNA assays and environmental genomics methods of the future can best leverage this information.  相似文献   

6.
Proteins can be identified using a set of peptide fragment weights produced by a specific digestion to search a protein database in which sequences have been replaced by fragment weights calculated for various cleavage methods. We present a method using multidimensional searches that greatly increases the confidence level for identification, allowing DNA sequence databases to be examined. This method provides a link between 2-dimensional gel electrophoresis protein databases and genome sequencing projects. Moreover, the increased confidence level allows unknown proteins to be matched to expressed sequence tags, potentially eliminating the need to obtain sequence information for cloning. Database searching from a mass profile is offered as a free service by an automatic server at the ETH, Zürich. For information, send an electronic message to the address cbrg/inf.ethz.ch with the line: help mass search, or help all.  相似文献   

7.
The availability of large expressed sequence tag (EST) databases has led to a revolution in the way new genes are identified. Mining of these databases using known protein sequences as queries is a powerful technique for discovering orthologous and paralogous genes. The scientist is often confronted, however, by an enormous amount of search output owing to the inherent redundancy of EST data. In addition, high search sensitivity often cannot be achieved using only a single member of a protein superfamily as a query. In this paper a technique for addressing both of these issues is described. Assembled EST databases are queried with every member of a protein superfamily, the results are integrated and false positives are pruned from the set. The result is a set of assemblies enriched in members of the protein superfamily under consideration. The technique is applied to the G protein-coupled receptor (GPCR) superfamily in the construction of a GPCR Resource. A novel full-length human GPCR identified from the GPCR Resource is presented, illustrating the utility of the method.  相似文献   

8.
With the rapid growth of sequence databases, there is an increasing need for reliable functional characterisation and annotation of newly predicted proteins. To cope with such large data volumes, faster and more effective means of protein sequence characterisation and annotation are required. One promising approach is automatic large-scale functional characterisation and annotation, which is generated with limited human interaction. However, such an approach is heavily dependent on reliable data sources. The SWISS-PROT protein sequence database plays an essential role here owing to its high level of functional information.  相似文献   

9.
The wealth of protein sequence and structure data is greater than ever, thanks to the ongoing Genomics and Structural Genomics projects. The information available through such efforts needs to be analysed by new methods that combine both databases. One important result of genomic sequence analysis is the inference of functional homology among proteins. Until recently sequence similarity comparison was the only method for homologue inference. The new fold recognition approach reviewed in this paper enhances sequence comparison methods by including structural information in the process of protein comparison. This additional information often allows for the detection of similarities that cannot be found by methods that only use sequence information.  相似文献   

10.
To improve the accuracy of tree reconstruction, phylogeneticists are extracting increasingly large multigene data sets from sequence databases. Determining whether a database contains at least k genes sampled from at least m species is an NP-complete problem. However, the skewed distribution of sequences in these databases permits all such data sets to be obtained in reasonable computing times even for large numbers of sequences. We developed an exact algorithm for obtaining the largest multigene data sets from a collection of sequences. The algorithm was then tested on a set of 100,000 protein sequences of green plants and used to identify the largest multigene ortholog data sets having at least 3 genes and 6 species. The distribution of sizes of these data sets forms a hollow curve, and the largest are surprisingly small, ranging from 62 genes by 6 species, to 3 genes by 65 species, with more symmetrical data sets of around 15 taxa by 15 genes. These upper bounds to sequence concatenation have important implications for building the tree of life from large sequence databases.  相似文献   

11.
Lin YH  Chang BC  Chiang PW  Tang SL 《Gene》2008,416(1-2):44-47
According to recent reports, many ribosomal RNA gene annotations are still questionable, and the use of inappropriate tools for annotation has been blamed. However, we believe that the abundant 16S rRNA partial sequence in the databases, mainly created by culture-independent PCR methods, is another main cause of the ambiguous annotations of 16S rRNA. To examine the current status of 16S rRNA gene annotations in complete microbial genomes, we used as a criterion the conserved anti-SD sequence, located at the 3′ end of the 16S rRNA gene, which is commonly overlooked by culture-independent PCR methods. In our large survey, 859 16S rRNA gene sequences from 252 different species of the microbial complete genomes were inspected. 67 species (234 genes) were detected with ambiguous annotations. The common anti-SD sequence and other conserved 16S rRNA sequence features could be detected in the downstream-intergenic regions for almost every questionable sequence, indicating that many of the 16S rRNA genes were annotated incorrectly. Furthermore, we found that more than 91.5% of the 93,716 sequences of the available 16S rRNA in the main databases are partial sequences. We also performed BLAST analysis for every questionable rRNA sequence, and most of the best hits in the analysis were rRNA partial sequences. This result indicates that partial sequences are prevalent in the databases, and that these sequences have significantly affected the accuracy of microbial genomic annotation. We suggest that the annotation of 16S rRNA genes in newly complete microbial genomes must be done in more detail, and that revision of questionable rRNA annotations should commence as soon as possible.  相似文献   

12.
蛋白质相互作用数据库及其应用   总被引:3,自引:0,他引:3  
对蛋白质相互作用及其网络的了解不仅有助于深入理解生命活动的本质和疾病发生的机制,而且可以为药物研发提供靶点.目前,通过高通量筛选、计算方法预测和文献挖掘等方法,获得了大批量的蛋白质相互作用数据,并由此构建了很多内容丰富并日益更新的蛋白质相互作用数据库.本文首先简要阐述了大规模蛋白质相互作用数据产生的3种方法,然后重点介绍了几个人类相关的蛋白质相互作用公共数据库,包括HPRD、BIND、 IntAct、MINT、 DIP 和MIPS,并概述了蛋白质相互作用数据库的整合情况以及这些数据库在蛋白质相互作用网络构建上的应用.  相似文献   

13.
Sequence database searches have become an important tool for the life sciences in general and for gene discovery-driven biotechnology in particular. Both the functional assignment of newly found proteins and the mining of genome databases for functional candidates are equally important tasks typically addressed by database searches. Sensitivity and reliability of the search methods are of crucial importance.The overall performance of sequence alignments and database searches can be enhanced considerably, when profiles or hidden Markov models (HMMs) derived from protein families are used as query objects instead of single sequences.This review discusses the concept of profiles, generalised profiles and profile-HMMs, the methods how they are constructed and the scope of possible applications in gene discovery and gene functional assignment.  相似文献   

14.
Enormous amounts of data result from genome sequencing projects and new experimental methods. Within this tremendous amount of genomic data 30-40 per cent of the genes being identified in an organism remain unknown in terms of their biological function. As a consequence of this lack of information the overall schema of all the biological functions occurring in a specific organism cannot be properly represented. To understand the functional properties of the genomic data more experimental data must be collected. A pathway database is an effort to handle the current knowledge of biochemical pathways and in addition can be used for interpretation of sequence data. Some of the existing pathway databases can be interpreted as detailed functional annotations of genomes because they are tightly integrated with genomic information. However, experimental data are often lacking in these databases. This paper summarises a list of pathway databases and some of their corresponding biological databases, and also focuses on information about the content and the structure of these databases, the organisation of the data and the reliability of stored information from a biological point of view. Moreover, information about the representation of the pathway data and tools to work with the data are given. Advantages and disadvantages of the analysed databases are pointed out, and an overview to biological scientists on how to use these pathway databases is given.  相似文献   

15.
Identification of ectomycorrhizal (ECM) fungi is often achieved through comparisons of ribosomal DNA internal transcribed spacer (ITS) sequences with accessioned sequences deposited in public databases. A major problem encountered is that annotation of the sequences in these databases is not always complete or trustworthy. In order to overcome this deficiency, we report on UNITE, an open-access database. UNITE comprises well annotated fungal ITS sequences from well defined herbarium specimens that include full herbarium reference identification data, collector/source and ecological data. At present UNITE contains 758 ITS sequences from 455 species and 67 genera of ECM fungi. UNITE can be searched by taxon name, via sequence similarity using blastn, and via phylogenetic sequence identification using galaxie. Following implementation, galaxie performs a phylogenetic analysis of the query sequence after alignment either to pre-existing generic alignments, or to matches retrieved from a blast search on the UNITE data. It should be noted that the current version of UNITE is dedicated to the reliable identification of ECM fungi. The UNITE database is accessible through the URL http://unite.zbi.ee  相似文献   

16.
17.
Myristoylation by the myristoyl-CoA:protein N-myristoyltransferase (NMT) is an important lipid anchor modification of eukaryotic and viral proteins. Automated prediction of N-terminal N-myristoylation from the substrate protein sequence alone is necessary for large-scale sequence annotation projects but it requires a low rate of false positive hits in addition to a sufficient sensitivity.Our previous analysis of substrate protein sequence variability, NMT sequences and 3D structures has revealed motif properties in addition to the known PROSITE motif that are utilized in a new predictor described here. The composite prediction function (with separate ad hoc parameterization (a) for queries from non-fungal eukaryotes and their viruses and (b) for sequences from fungal species) consists of terms evaluating amino acid type preferences at sequences positions close to the N terminus as well as terms penalizing deviations from the physical property pattern of amino acid side-chains encoded in multi-residue correlation within the motif sequence. The algorithm has been validated with a self-consistency and two jack-knife tests for the learning set as well as with kinetic data for model substrates. The sensitivity in recognizing documented NMT substrates is above 95 % for both taxon-specific versions. The corresponding rate of false positive prediction (for sequences with an N-terminal glycine residue) is close to 0.5 %; thus, the technique is applicable for large-scale automated sequence database annotation. The predictor is available as public WWW-server with the URL http://mendel.imp.univie.ac.at/myristate/. Additionally, we propose a version of the predictor that identifies a number of proteolytic protein processing sites at internal glycine residues and that evaluates possible N-terminal myristoylation of the protein fragments.A scan of public protein databases revealed new potential NMT targets for which the myristoyl modification may be of critical importance for biological function. Among others, the list includes kinases, phosphatases, proteasomal regulatory subunit 4, kinase interacting proteins KIP1/KIP2, protozoan flagellar proteins, homologues of mitochondrial translocase TOM40, of the neuronal calcium sensor NCS-1 and of the cytochrome c-type heme lyase CCHL. Analyses of complete eukaryote genomes indicate that about 0.5 % of all encoded proteins are apparent NMT substrates except for a higher fraction in Arabidopsis thaliana ( approximately 0.8 %).  相似文献   

18.
Finding genes by the positional candidate approach requires abundant cDNAs mapped to chromosomes. To provide such important information, we computationally mapped 19032 of our mouse cDNAs to mouse chromosomes by using data from public databases. We used 2 approaches. In the first, we integrated the mapping data of cDNAs on the human genome, known gene-related data, and comparative mapping data. From this, we calculated map positions on the mouse chromosomes. For this first approach, we developed a simple and powerful criterion to choose the correct map position from candidate positions in sequence homology searches. In the second approach, we related cDNAs to expressed sequence tags (EST) previously mapped in radiation hybrid experiments. We discuss improving the mapping by combining the 2 methods.  相似文献   

19.
The measurement of biodiversity is an integral aspect of life science research. With the establishment of second- and third-generation sequencing technologies, an increasing amount of metabarcoding data is being generated as we seek to describe the extent and patterns of biodiversity in multiple contexts. The reliability and accuracy of taxonomically assigning metabarcoding sequencing data have been shown to be critically influenced by the quality and completeness of reference databases. Custom, curated, eukaryotic reference databases, however, are scarce, as are the software programs for generating them. Here, we present crabs (Creating Reference databases for Amplicon-Based Sequencing), a software package to create custom reference databases for metabarcoding studies. crabs includes tools to download sequences from multiple online repositories (i.e., NCBI, BOLD, EMBL, MitoFish), retrieve amplicon regions through in silico PCR analysis and pairwise global alignments, curate the database through multiple filtering parameters (e.g., dereplication, sequence length, sequence quality, unresolved taxonomy, inclusion/exclusion filter), export the reference database in multiple formats for immediate use in taxonomy assignment software, and investigate the reference database through implemented visualizations for diversity, primer efficiency, reference sequence length, database completeness and taxonomic resolution. crabs is a versatile tool for generating curated reference databases of user-specified genetic markers to aid taxonomy assignment from metabarcoding sequencing data. crabs can be installed via docker and is available for download as a conda package and via GitHub ( https://github.com/gjeunen/reference_database_creator ).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号