首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holocentric chromosomes assemble kinetochores along their length instead of at a focused spot. The elongated expanse of an individual holocentric kinetochore and its potential flexibility heighten the risk of stable attachment to microtubules from both poles of the mitotic spindle (merotelic attachment), and hence aberrant segregation of chromosomes. Little is known about the mechanisms that holocentric species have evolved to avoid this type of error. Our studies of the influence of KLP-19, an essential microtubule motor, on the behavior of holocentric Caenorhabditis elegans chromosomes suggest that it has a major role in combating merotelic attachments. Depletion of KLP-19, which associates with nonkinetochore chromatin, allows aberrant poleward chromosome motion during prometaphase, misalignment of holocentric kinetochores, and multiple anaphase chromosome bridges in all mitotic divisions. Time-lapse movies of GFP-labeled mono- and bipolar spindles demonstrate that KLP-19 generates a force on relatively stiff holocentric chromosomes that pushes them away from poles. We hypothesize that this polar ejection force minimizes merotelic misattachment by maintaining a constant tension on pole-kinetochore connections throughout prometaphase, tension that compels sister kinetochores to face directly toward opposite poles.  相似文献   

2.
Microtubule-based motor proteins provide essential forces for bipolar organization of spindle microtubules and chromosome movement, prerequisites of chromosome segregation during the cell cycle. Here, we describe the functional characterization of a novel spindle protein, termed "CHICA," that was originally identified in a proteomic survey of the human spindle apparatus [1]. We show that CHICA localizes to the mitotic spindle and is both upregulated and phosphorylated during mitosis. CHICA-depleted cells form shorter spindles and fail to organize a proper metaphase plate, highly reminiscent of the phenotype observed upon depletion of the chromokinesin Kid, a key mediator of polar ejection forces [2-6]. We further show that CHICA coimmunoprecipitates with Kid and is required for the spindle localization of Kid without affecting its chromosome association. Moreover, upon depletion of either CHICA or Kid (or both proteins simultaneously), chromosomes collapse onto the poles of monastrol-induced monopolar spindles. We conclude that CHICA represents a novel interaction partner of the chromokinesin Kid that is required for the generation of polar ejection forces and chromosome congression.  相似文献   

3.
Several aspects of meiosis are impacted by the absence of centrosomes in oocytes. Here, we review four aspects of meiosis I that are significantly affected by the absence of centrosomes in oocyte spindles. One, microtubules tend to assemble around the chromosomes. Two, the organization of these microtubules into a bipolar spindle is directed by the chromosomes. Three, chromosome bi-orientation and attachment to microtubules from the correct pole require modification of the mechanisms used in mitotic cells. Four, chromosome movement to the poles at anaphase cannot rely on polar anchoring of spindle microtubules by centrosomes. Overall, the chromosomes are more active participants during acentrosomal spindle assembly in oocytes, compared to mitotic and male meiotic divisions where centrosomes are present. The chromosomes are endowed with information that can direct the meiotic divisions and dictate their own behavior in oocytes. Processes beyond those known from mitosis appear to be required for their bi-orientation at meiosis I. As mitosis occurs without centrosomes in many systems other than oocytes, including all plants, the concepts discussed here may not be limited to oocytes. The study of meiosis in oocytes has revealed mechanisms that are operating in mitosis and will probably continue to do so.  相似文献   

4.
We tested diethylstilbestrol (DES) and 17 beta-estradiol as mitotic arrestants to determine their effects on chromosome distribution, spindle microtubules, and the cytoplasmic microtubule complex (CMTC) in the Chinese hamster strain Don. Cytological experiments assessed micronuclei induction, chromosome displacement, and anaphase recovery. Indirect immunofluorescence microscopy with antibody to tubulin and electron microscopy were used to illustrate effects on microtubules. Both DES and estradiol were potent inhibitors of mitosis when applied to cells in vitro. Estradiol induced micronuclei at a greater frequency than did DES. Estradiol-arrested metaphases often contained misaligned chromosomes despite the presence of a bipolar spindle and an equatorial plate. Equatorial plates were not observed in DES-arrested cells. Cells recovered quickly from estradiol exposure upon removal of the steroid. The frequency of abnormal metaphases and abnormal anaphases declined as the recovery period increased. Microtubule experiments showed that DES inhibited spindle assembly and disassembled the CMTC, whereas estradiol, at similar concentrations, arrested mitosis in a manner that allowed spindle assembly. A definite effect on the CMTC by estradiol could not be determined. However, changes in cell morphology were observed. In the presence of estradiol, centrosomes organized microtubules that joined with kinetochores of chromosomes at the equatorial plate as well as with those of misaligned chromosomes. Misaligned chromosomes appeared predominantly at polar regions of mitotic cells. Following drug removal, the pole-oriented chromosomes reoriented at the equatorial plate. The unique arresting properties of estradiol may prove useful in studies of chromosome migration and segregation during mitosis.  相似文献   

5.
Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific antibodies have one or more chromosomes that remain closely opposed to a spindle pole and fail to enter anaphase. In contrast, 82.5% of injected cells align chromosomes in metaphase, progress to anaphase, and display chromosome velocities not significantly different from control cells. However, injected cells lack chromosome oscillations, and chromosome orientation is atypical because chromosome arms extend toward spindle poles during both congression and metaphase. Furthermore, chromosomes cluster into a mass and fail to oscillate when Kid is perturbed in cells containing monopolar spindles. These data indicate that Kid generates the polar ejection force that pushes chromosome arms away from spindle poles in vertebrate-cultured cells. This force increases the efficiency with which chromosomes make bipolar spindle attachments and regulates kinetochore activities necessary for chromosome oscillation, but is not essential for chromosome congression.  相似文献   

6.
We describe a Drosophila gene, orbit, that encodes a conserved 165-kD microtubule-associated protein (MAP) with GTP binding motifs. Hypomorphic mutations in orbit lead to a maternal effect resulting in branched and bent mitotic spindles in the syncytial embryo. In the larval central nervous system, such mutants have an elevated mitotic index with some mitotic cells showing an increase in ploidy. Amorphic alleles show late lethality and greater frequencies of hyperploid mitotic cells. The presence of cells in the hypomorphic mutant in which the chromosomes can be arranged, either in a circular metaphase or an anaphase-like configuration on monopolar spindles, suggests that polyploidy arises through spindle and chromosome segregation defects rather than defects in cytokinesis. A role for the Orbit protein in regulating microtubule behavior in mitosis is suggested by its association with microtubules throughout the spindle at all mitotic stages, by its copurification with microtubules from embryonic extracts, and by the finding that the Orbit protein directly binds to MAP-free microtubules in a GTP-dependent manner.  相似文献   

7.
Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.  相似文献   

8.
The Ran pathway has been shown to have a role in spindle assembly. However, the extent of the role of the Ran pathway in mitosis in vivo is unclear. We report that perturbation of the Ran pathway disrupted multiple steps of mitosis in syncytial Drosophila embryos and uncovered new mitotic processes that are regulated by Ran. During the onset of mitosis, the Ran pathway is required for the production, organization, and targeting of centrosomally nucleated microtubules to chromosomes. However, the role of Ran is not restricted to microtubule organization, because Ran is also required for the alignment of chromosomes at the metaphase plate. In addition, the Ran pathway is required for postmetaphase events, including chromosome segregation and the assembly of the microtubule midbody. The Ran pathway mediates these mitotic events, in part, by facilitating the correct targeting of the kinase Aurora A and the kinesins KLP61F and KLP3A to spindles.  相似文献   

9.
The movement of chromosomes during mitosis occurs on a bipolar, microtubule-based protein machine, the mitotic spindle. It has long been proposed that poleward chromosome movements that occur during prometaphase and anaphase A are driven by the microtubule motor cytoplasmic dynein, which binds to kinetochores and transports them toward the minus ends of spindle microtubules. Here we evaluate this hypothesis using time-lapse confocal microscopy to visualize, in real time, kinetochore and chromatid movements in living Drosophila embryos in the presence and absence of specific inhibitors of cytoplasmic dynein. Our results show that dynein inhibitors disrupt the alignment of kinetochores on the metaphase spindle equator and also interfere with kinetochore- and chromatid-to-pole movements during anaphase A. Thus, dynein is essential for poleward chromosome motility throughout mitosis in Drosophila embryos.  相似文献   

10.
Robinson RW  Snyder JA 《Protoplasma》2005,225(1-2):113-122
Summary. The enzymes of importance in moving chromosomes are called motor proteins and include dynein, kinesin, and possibly myosin II. These three molecules are all included in the category of ATPases, in that they have the ability to convert chemical energy into mechanical energy. Both dynein and kinesin have been documented as molecules that “walk” along microtubules in the mitotic spindle, carrying cargo such as chromosomes. Myosin II, analogous to the muscle contraction system, transiently interacts along actin filaments and associates with kinetochore microtubules. In this paper we present evidence that a third ATPase, myosin II, may act as a “thruster” to propel chromosomes during the mitotic process. Double-label immunocytochemistry to actin and myosin II shows that myosin II is localized on chromosome arms at the beginning of mitosis and remains localized to the chromosomes throughout mitosis. Specific staining of myosin II is relegated to the outside of chromosomes with the highest density of staining occurring between the spindle poles and the chromosomes. This specific localization could account for the movement of chromosomes during mitosis, since they segregate towards the spindle poles, along kinetochore microtubules containing actin filaments, after aligning at the equatorial region of the cell at metaphase. We conclude from this study that there is an actomyosin system present in the mitotic spindle and that myosin is attached to chromosome arms and may act as a thruster in moving chromosomes during the mitotic process. Correspondence and reprints: Department of Biological Sciences, University of Denver, 2190 E Iliff Avenue, Denver, CO 80208, U.S.A.  相似文献   

11.
How kinetochores correct improper microtubule attachments and regulate the spindle checkpoint signal is unclear. In budding yeast, kinetochores harboring mutations in the mitotic kinase Ipl1 fail to bind chromosomes in a bipolar fashion. In C. elegans and Drosophila, inhibition of the Ipl1 homolog, Aurora B kinase, induces aberrant anaphase and cytokinesis. To study Aurora B kinase in vertebrates, we microinjected mitotic XTC cells with inhibitory antibody and found several related effects. After injection of the antibody, some chromosomes failed to congress to the metaphase plate, consistent with a conserved role for Aurora B in bipolar attachment of chromosomes. Injected cells exited mitosis with no evidence of anaphase or cytokinesis. Injection of anti-Xaurora B antibody also altered the microtubule network in mitotic cells with an extension of the astral microtubules and a reduction of kinetochore microtubules. Finally, inhibition of Aurora B in cultured cells and in cycling Xenopus egg extracts caused escape from the spindle checkpoint arrest induced by microtubule drugs. Our findings implicate Aurora B as a critical coordinator relating changes in microtubule dynamics in mitosis, chromosome movement in prometaphase and anaphase, signaling of the spindle checkpoint, and cytokinesis.  相似文献   

12.
During mitosis, chromosomes are connected to a microtubule-based spindle. Current models propose that displacement of the spindle poles and/or the activity of kinetochore microtubules generate mechanical forces that segregate sister chromatids. Using laser destruction of the centrosomes during Caenorhabditis elegans mitosis, we show that neither of these mechanisms is necessary to achieve proper chromatid segregation. Our results strongly suggest that an outward force generated by the spindle midzone, independently of centrosomes, is sufficient to segregate chromosomes in mitotic cells. Using mutant and RNAi analysis, we show that the microtubule-bundling protein SPD-1/MAP-65 and BMK-1/kinesin-5 act as a brake opposing the force generated by the spindle midzone. Conversely, we identify a novel role for two microtubule-growth and nucleation agents, Ran and CLASP, in the establishment of the centrosome-independent force during anaphase. Their involvement raises the interesting possibility that microtubule polymerization of midzone microtubules is continuously required to sustain chromosome segregation during mitosis.  相似文献   

13.
The nature of the forces that move chromosomes in mitosis is beginning to be revealed. The kinetochore, a specialized structure situated at the primary constriction of the chromosome, appears to translocate in both directions along the microtubules of the mitotic spindle. One or more members of the newly described families of microtubule motor molecules may power these movements. Microtubules of the mitotic spindle undergo rapid cycles of assembly and disassembly. These microtubule dynamics may contribute toward generating force and regulating direction in chromosome movement.  相似文献   

14.
Chromosome biorientation promotes congression and generates tension that stabilizes kinetochore–microtubule (kt-MT) interactions. Forces produced by molecular motors also contribute to chromosome alignment, but their impact on kt-MT attachment stability is unclear. A critical force that acts on chromosomes is the kinesin-10–dependent polar ejection force (PEF). PEFs are proposed to facilitate congression by pushing chromosomes away from spindle poles, although knowledge of the molecular mechanisms underpinning PEF generation is incomplete. Here, we describe a live-cell PEF assay in which tension was applied to chromosomes by manipulating levels of the chromokinesin NOD (no distributive disjunction; Drosophila melanogaster kinesin-10). NOD stabilized syntelic kt-MT attachments in a dose- and motor-dependent manner by overwhelming the ability of Aurora B to mediate error correction. NOD-coated chromatin stretched away from the pole via lateral and end-on interactions with microtubules, and NOD chimeras with either plus end–directed motility or tip-tracking activity produced PEFs. Thus, kt-MT attachment stability is modulated by PEFs, which can be generated by distinct force-producing interactions between chromosomes and dynamic spindle microtubules.  相似文献   

15.
Calpains form a superfamily of Ca(2+)-dependent intracellular cysteine proteases with various isoforms. Two isoforms, micro- and m-calpains, are ubiquitously expressed and known as conventional calpains. It has been previously shown that the mammalian calpains are activated during mitosis by transient increases in cytosolic Ca(2+) concentration. However, it is still unknown whether the activation of calpains contributes to particular events in mitosis. With the use of RNA interference (RNAi), we investigated the roles of calpains in mitosis. Cells reduced the levels of m-calpain, but not mu-calpain, arrested at prometaphase and failed to align their chromosomes at the spindle equator. Specific peptidyl calpain inhibitors also induced aberrant mitosis with chromosome misalignment. Although both m-calpain RNAi and calpain inhibitors affected neither the separation of centrosomes nor the assembly of bipolar spindles, Mad2 was detected on the kinetochores of the misaligned chromosomes, indicating that the prometaphase arrest induced by calpain inhibition is due to activation of the spindle assembly checkpoint. Furthermore, when calpain activity was inhibited in cells having monopolar spindles, chromosomes were clustered adjacent to the centrosome, suggesting that calpain activity is involved in a polar ejection force for metaphase alignment of chromosomes. Based on these findings, we propose that activation of m-calpain during mitosis is required for cells to establish the chromosome alignment by regulating some molecules that generate polar ejection force.  相似文献   

16.
BACKGROUND: Sister kinetochores must bind microtubules in a bipolar fashion to equally segregate chromosomes during mitosis. The molecular mechanisms underlying this process remain unclear. Aurora B likely promotes chromosome biorientation by regulating kinetochore-microtubule attachments. MCAK (mitotic centromere-associated kinesin) is a Kin I kinesin that can depolymerize microtubules. These two proteins both localize to mitotic centromeres and have overlapping mitotic functions, including regulation of microtubule dynamics, proper chromosome congression, and correction of improper kinetochore-microtubule attachments. RESULTS: We show that Aurora B phosphorylates and regulates MCAK both in vitro and in vivo. Specifically, we mapped six Aurora B phosphorylation sites on MCAK in both the centromere-targeting domain and the neck region. Aurora B activity was required to localize MCAK to centromeres, but not to spindle poles. Aurora B phosphorylation of serine 196 in the neck region of MCAK inhibited its microtubule depolymerization activity. We found that this key site was phosphorylated at centromeres and anaphase spindle midzones in vivo. However, within the inner centromere there were pockets of both phosphorylated and unphosphorylated MCAK protein, suggesting that phosphate turnover is crucial in the regulation of MCAK activity. Addition of alpha-p-S196 antibodies to Xenopus egg extracts or injection of alpha-p-S196 antibodies into cells caused defects in chromosome positioning and/or segregation. CONCLUSIONS: We have established a direct link between the microtubule depolymerase MCAK and Aurora B kinase. Our data suggest that Aurora B both positively and negatively regulates MCAK during mitosis. We propose that Aurora B biorients chromosomes by directing MCAK to depolymerize incorrectly oriented kinetochore microtubules.  相似文献   

17.
The accurate distribution and segregation of replicated chromosomes through mitosis is crucial for cellular viability and development of organisms. Kinetochores are responsible for the proper congression and segregation of chromosomes. Here, we show that neural Wiskott-Aldrich syndrome protein (N-WASP) localizes to and forms a complex with kinetochores in mitotic cells. Depletion of NWASP by RNA interference causes chromosome misalignment, prolonged mitosis, and abnormal chromosomal segregation, which is associated with decreased proliferation of N-WASP-deficient cells. N-WASP-deficient cells display defects in the kinetochores recruitment of inner and outer kinetochore components, CENP-A, CENP-E, and Mad2. Live-cell imaging analysis of GFP-α-tubulin revealed that depletion of N-WASP impairs microtubule attachment to chromosomes in mitotic cells. All these results indicate that N-WASP plays a role in efficient assembly of kinetochores and attachment of microtubules to chromosomes, which is essential for accurate chromosome congression and segregation.  相似文献   

18.
The structure of mitotic chromosomes in cultured newt lung cells was investigated by a quantitative study of their deformability, using micropipettes. Metaphase chromosomes are highly extensible objects that return to their native shape after being stretched up to 10 times their normal length. Larger deformations of 10 to 100 times irreversibly and progressively transform the chromosomes into a “thin filament,” parts of which display a helical organization. Chromosomes break for elongations of the order of 100 times, at which time the applied force is around 100 nanonewtons. We have also observed that as mitosis proceeds from nuclear envelope breakdown to metaphase, the native chromosomes progressively become more flexible. (The elastic Young modulus drops from 5,000 ± 1,000 to 1,000 ± 200 Pa.) These observations and measurements are in agreement with a helix-hierarchy model of chromosome structure. Knowing the Young modulus allows us to estimate that the force exerted by the spindle on a newt chromosome at anaphase is roughly one nanonewton.  相似文献   

19.
Mitotic spindle assembly and chromosome segregation are controlled by the cell cycle machinery and by the guanosine triphosphatase Ran (RanGTPase). We developed a spatial model that allows us to simulate RanGTP production with different degrees of chromosome alignment in mitosis. Aided by this model, we defined three factors that modulate mitotic RanGTP gradients and mitotic progression in somatic cells. First, the concentration of RanGTPtransport-receptor (represented by RanGTP-importin β) and its spatial distribution are very sensitive to the level of RanBP1. Reduction of RanBP1 leads to an elevated RanGTP-transport receptor concentration throughout the cell, which disrupts spindle assembly and weakens spindle checkpoint control. Second, the completion of chromosome alignment at the metaphase plategenerates highest local RanGTP concentrations on chromosomes that could lead to spindle checkpoint silencing and metaphase-anaphase transition. Finally, chromosomal RanGTP production could be dampened by a reduction of RCC1 phosphorylation in mitosis. Our spatialsimulation of RanGTP production using individual chromosomes should provide means to further understand how the Ran system and the cell cycle machinery coordinately regulate mitosis.  相似文献   

20.
In mitosis, the spindle assembly checkpoint (SAC) prevents anaphase onset until all chromosomes have been attached to the spindle microtubules and aligned correctly at the equatorial metaphase plate. The major checkpoint proteins in mitosis consist of mitotic arrest-deficient (Mad)1–3, budding uninhibited by benzimidazole (Bub)1, Bub3, and monopolar spindle 1(Mps1). During meiosis, for the formation of a haploid gamete, two consecutive rounds of chromosome segregation occur with only one round of DNA replication. To pull homologous chromosomes to opposite spindle poles during meiosis I, both sister kinetochores of a homologue must face toward the same pole which is very different from mitosis and meiosis II. As a core member of checkpoint proteins, the individual role of Bub3 in mammalian oocyte meiosis is unclear. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of Bub3 in mouse oocyte meiosis. Our data showed that overexpressed Bub3 inhibited meiotic metaphase-anaphase transition by preventing homologous chromosome and sister chromatid segregations in meiosis I and II, respectively. Misaligned chromosomes, abnormal polar body and double polar bodies were observed in Bub3 knock-down oocytes, causing aneuploidy. Furthermore, through cold treatment combined with Bub3 overexpression, we found that overexpressed Bub3 affected the attachments of microtubules and kinetochores during metaphase-anaphase transition. We propose that as a member of SAC, Bub3 is required for regulation of both meiosis I and II, and is potentially involved in kinetochore-microtubule attachment in mammalian oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号