首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adaptor protein Grb10 is an interacting partner of the IGF-I receptor (IGF-IR) and the insulin receptor (IR). Previous work from our laboratory has established the role of Grb10 as a negative regulator of IGF-IR-dependent cell proliferation. We have shown that Grb10 binds the E3 ubiquitin ligase Nedd4 and promotes IGF-I-stimulated ubiquitination, internalization, and degradation of the IGF-IR, thereby giving rise to long-term attenuation of signaling. Recent biochemical evidence suggests that tyrosine-kinase receptors (RTK) may not be polyubiquitinated but monoubiquitinated at multiple sites (multiubiquitinated). However, the type of ubiquitination of the IGF-IR is still not defined. Here we show that the Grb10/Nedd4 complex upon ligand stimulation mediates multiubiquitination of the IGF-IR, which is required for receptor internalization. Moreover, Nedd4 by promoting IGF-IR ubiquitination and internalization contributes with Grb10 to negatively regulate IGF-IR-dependent cell proliferation. We also demonstrate that the IGF-IR is internalized through clathrin-dependent and-independent pathways. Grb10 and Nedd4 remain associated with the IGF-IR in early endosomes and caveosomes, where they may participate in sorting internalized receptors. Grb10 and Nedd4, unlike the IGF-IR, which is targeted for lysosomal degradation are not degraded and likely directed into recycling endosomes. These results indicate that Grb10 and Nedd4 play a critical role in mediating IGF-IR down-regulation by promoting ligand-dependent multiubiquitination of the IGF-IR, which is required for receptor internalization and regulates mitogenesis.  相似文献   

2.
The Y1250F/Y1251F mutant of the insulin-like growth factor I receptor (IGF-IR) has tyrosines 1250 and 1251 mutated to phenylalanines and is deficient in IGF-I-mediated suppression of apoptosis in FL5.12 lymphocytic cells. To address the mechanism of loss of function in this mutant we investigated signaling responses in FL5.12 cells overexpressing either a wild-type (WT) or Y1250F/Y1251F (mutant) IGF-IR. Cells expressing the mutant receptor were deficient in IGF-I-induced phosphorylation of the JNK pathway and had decreased ERK and p38 phosphorylation. IGF-I induced phosphorylation of Akt was comparable in WT and mutant expressing cells. The decreased activation of the mitogen-activated protein kinase (MAPK) pathways was accompanied by greatly decreased Ras activation in response to IGF-I. Although phosphorylation of Gab2 was similar in WT and mutant cell lines, phosphorylation of Shc on Tyr(313) in response to IGF-I was decreased in cells expressing the mutant receptor, as was recruitment of Grb2 and Ship to Shc. However, phosphorylation of Shc on Tyr(239), the Src phosphorylation site, was normal. A role for JNK in the survival of FL5.12 cells was supported by the observation that the JNK inhibitor SP600125 suppressed IGF-I-mediated protection from apoptosis. Altogether these data demonstrate that phosphorylation of Shc, and assembly of the Shc complex necessary for activation of Ras and the MAPK pathways are deficient in cells expressing the Y1250F/Y1251F mutant IGF-IR. This would explain the loss of IGF-I-mediated survival in FL5.12 cells expressing this mutant and may also explain why this mutant IGF-IR is deficient in functions associated with cellular transformation and cell migration in fibroblasts and epithelial tumor cells.  相似文献   

3.
4.
Insulin-like growth factor-I (IGF-I) stimulates vascular smooth muscle cell proliferation and migration by activating both MAPK and phosphatidylinositol 3-kinase (PI3K). Vascular smooth muscle cells (VSMCs) maintained in 25 mm glucose sustain MAPK activation via increased Shc phosphorylation and Grb2 association resulting in an enhanced mitogenic response compared with cells grown in 5 mm glucose. PI3K plays a major role in IGF-I-stimulated VSMC migration, and hyperglycemia augments this response. In contrast to MAPK activation the role of Shc in modulating PI3K in response to IGF-I has not been determined. In this study we show that impaired Shc association with Grb2 results in decreased Grb2-p85 association, SHPS-1-p85 recruitment, and PI3K activation in response to IGF-I. Exposure of VSMCs to cell-permeable peptides, which contained polyproline sequences from p85 proposed to mediate Grb2 association, resulted in inhibition of Grb2-p85 binding and AKT phosphorylation. Transfected cells that expressed p85 mutant that had specific prolines mutated to alanines resulted in less Grb2-p85 association, and a Grb2 mutant (W36A/W193A) that attenuated p85 binding showed decreased association of p85 with SHPS-1, PI3K activation, AKT phosphorylation, cell proliferation, and migration in response to IGF-I. Cellular exposure to 25 mm glucose, which is required for Shc phosphorylation in response to IGF-I, resulted in enhanced Grb2 binding to p85, activation of PI3K activity, and increased AKT phosphorylation as compared with cells exposed to 5 mm glucose. We conclude that in VSMCs exposed to hyperglycemia, IGF-I stimulation of Shc facilitates the transfer of Grb2 to p85 resulting in enhanced PI3K activation and AKT phosphorylation leading to enhanced cell proliferation and migration.  相似文献   

5.
We show here that beta1 integrins selectively modulate insulin-like growth factor type I receptor (IGF-IR) signaling in response to IGF stimulation. The beta1A integrin forms a complex with the IGF-IR and insulin receptor substrate-1 (IRS-1); this complex does not promote IGF-I mediated cell adhesion to laminin (LN), although it does support IGF-mediated cell proliferation. In contrast, beta1C, an integrin cytoplasmic variant, increases cell adhesion to LN in response to IGF-I and its down-regulation by a ribozyme prevents IGF-mediated adhesion to LN. Moreover, beta1C completely prevents IGF-mediated cell proliferation and tumor growth by inhibiting IGF-IR auto-phosphorylation in response to IGF-I stimulation. Evidence is provided that the beta1 cytodomain plays an important role in mediating beta1 integrin association with either IRS-1 or Grb2-associated binder1 (Gab1)/SH2-containing protein-tyrosine phosphate 2 (Shp2), downstream effectors of IGF-IR: specifically, beta1A associates with IRS-1 and beta1C with Gab1/Shp2. This study unravels a novel mechanism mediated by the integrin cytoplasmic domain that differentially regulates cell adhesion to LN and cell proliferation in response to IGF.  相似文献   

6.
Caveolae are abundant plasma membrane invaginations in airway smooth muscle that may function as preorganized signalosomes by sequestering and regulating proteins that control cell proliferation, including receptor tyrosine kinases (RTKs) and their signaling effectors. We previously demonstrated, however, that p42/p44 MAP kinase, a critical effector for cell proliferation, does not colocalize with RTKs in caveolae of quiescent airway myocytes. Therefore, we investigated the subcellular sites of growth factor-induced MAP kinase activation. In quiescent myocytes, though epidermal growth factor receptor (EGFR) was almost exclusively found in caveolae, p42/p44 MAP kinase, Grb2, and Raf-1 were absent from these membrane domains. EGF induced concomitant phosphorylation of caveolin-1 and p42/p44 MAP kinase; however, EGF did not promote the localization of p42/p44 MAP kinase, Grb2, or Raf-1 to caveolae. Interestingly, stimulation of muscarinic M(2) and M(3) receptors that were enriched in caveolae-deficient membranes also induced p42/p44 MAP kinase phosphorylation, but this occurred in the absence of caveolin-1 phosphorylation. This suggests that the localization of receptors to caveolae and interaction with caveolin-1 is not directly required for p42/p44 MAP kinase phosphorylation. Furthermore, we found that EGF exposure induced rapid translocation of EGFR from caveolae to caveolae-free membranes. EGFR trafficking coincided temporally with EGFR and p42/p44 MAP kinase phosphorylation. Collectively, this indicates that although caveolae sequester some receptors associated with p42/p44 MAP kinase activation, the site of its activation is associated with caveolae-free membrane domains. This reveals that directed trafficking of plasma membrane EGFR is an essential element of signal transduction leading to p42/p44 MAP kinase activation.  相似文献   

7.
The insulin receptor (IR) and the insulin-like growth factor receptor I (IGF-IR) have different functions in cell growth, apoptosis, differentation, and transformation. Although some of these differences may be explained by the relative level of receptor expression and receptor structure (alpha and beta subunits), they may also be attributed to differences in intracellular signals generated by insulin and IGF-I. The presence of hybrid receptors (IR alphabeta subunits and IGF-IR alphabeta subunits) making up the heterotetramers has added a new dimension to our understanding of the functional roles of these receptors. However, to date the results of efforts to understand the differences between these two closely related receptors have indicated mostly similarities. For example, both receptors utilize IRS-1/IRS-2 and Shc as immediate downstream adaptors, leading to activation of the Ras, Raf, ERK kinases and PI-3 kinase pathways. We have used the yeast two hybrid system to identify proteins which bind to the activated IGF-IR but not to the IR. The cytoplasmic domain of the IGF-IR was used to screen a human fetal brain library and two isoforms of the 14-3-3 family were identified. 14-3-3 proteins are a highly conserved family of proteins which have recently been shown to interact with other components of the mitogenic and apoptotic signaling pathways, including Raf, BAD, Bcr/Bcr-Abl, middle-T antigen, Ksr, PKC, PI-3 kinase, ASK1 kinase, and cdc25C phosphatase. We also identified human Grb10, an adaptor protein with SH2 domain associated with the IGF-IR beta subunit. Smith's laboratory showed that Grb10 preferentially binds to the IR in intact cells. Using the interaction trap screen (active cytoplasmic domain of the IGF-IR) 55PIK and SOCS-2 proteins were also identified. However, 55PIK and SOCS-2 also interact with the IR in the yeast two hybrid system. These studies raise the possibility that 14-3-3 and Grb10 may play a role in insulin and IGF-I signal transduction and may underlie the observed differences.  相似文献   

8.
Overexpression of the ErbB2 receptor in one-third of human breast cancers contributes to the transformation of epithelial cells and predicts poor prognosis for breast cancer patients. We report that the overexpression of ErbB2 inhibits IGF-I-induced MAPK signaling. IGF-I-induced MAPK phosphorylation and MAPK kinase activity are reduced in ErbB2 overexpressing MCF-7/HER2-18 cells relative to control MCF-7/neo cells. In SKBR3/IGF-IR cells, reduction of ErbB2 by antisense methodology restores the IGF-I-induced MAPK activation. The inhibition of IGF-I-induced MAP kinase activation in ErbB2 overexpressing breast cancer cells is correlated with decreased IGF-I-induced Shc tyrosine-phosphorylation, leading to a decreased association of Grb2 with Shc and decreased Raf phosphorylation. However, IGF-I-induced tyrosine-phosphorylation of IGF-I receptor and IRS-I and AKT phosphorylation were unaffected by ErbB2 overexpression. Consistent with these results, we observed that the proportion of IGF-I-stimulated proliferation blocked by the MAPK inhibitor PD98059 fell from 82.6% in MCF-7/neo cells to 41.2% in MCF-7/HER2-18 cells. These data provide evidence for interplay between the IGF-IR and ErbB2 signaling pathways. They are consistent with the view that the IGF-IR mediated attenuation of trastuzumab-induced growth inhibition we recently described is dependent on IGF-I-induced PI3K signaling rather than IGF-I-induced MAPK signaling.  相似文献   

9.
Functions of signaling mediators Grb10 or Gab1 have been described in mitogenesis but remained disconnected. Here, we report the peptide hormone-dependent direct association between Grb10 and Gab1 and their functional connection in mitogenic signaling via MAP kinase using cultured fibroblasts as a model. In response to PDGF-, IGF-I, or insulin increased levels of Grb10 potentiated cell proliferation or survival whereas dominant-negative, domain-specific Grb10 peptide mimetics attenuated cell proliferation. This response was sensitive to p44/42 MAPK inhibitor but not to p38 MAPK inhibitor. In response to IGF-I or insulin Raf-1, MEK 1/2, and p44/42 MAPK were regulated by Grb10 but not Ras or p38 MAPK. In response to PDGF MEK 1/2, p44/42 MAPK and p38 MAPK were regulated by Grb10 but not Ras or Raf-1. Peptide hormone-dependent co-immunoprecipitation of Grb10 and Gab1 was demonstrated and specifically blocked by a Grb10 SH2 domain peptide mimetic. This domain was sufficient for direct, peptide hormone-dependent association with Gab1 via the Crk binding region. In response to PDGF, IGF-I, or insulin, in a direct comparison, elevated levels of mouse Grb10 delta, or human Grb10 beta or zeta equally potentiated fibroblast proliferation. Proliferation was severely reduced by Gab1 gene disruption whereas an elevated Gab1 gene dose proportionally stimulated Grb10-potentiated cell proliferation. In conclusion, Gab1 and Grb10 function as direct binding partners in the regulation of the mitogenic MAP kinase signal. In cultured fibroblasts, elevated levels of human Grb10 beta, zeta or mouse Grb10 delta comparably potentiate mitogenesis in response to PDGF, IGF-I, or insulin.  相似文献   

10.
Grb7 is an adapter-type signaling protein, which is recruited via its SH2 domain to a variety of receptor tyrosine kinases (RTKs), including ErbB2 and ErbB3. It is overexpressed in breast, esophageal, and gastric cancers, and may contribute to the invasive potential of cancer cells. Molecular interactions involving Grb7 therefore provide attractive targets for therapeutic intervention. We have utilized phage display random peptide libraries as a source of small peptide ligands to the SH2 domain of Grb7. Screening these libraries against purified Grb7 SH2 resulted in the identification of Grb7-binding peptide phage clones that contained a non-phosphorylated Tyr-X-Asn (YXN) motif. The tyrosine-phosphorylated form of this motif is characteristic of Grb7 SH2 domain binding sites identified in RTKs and other signaling proteins such as Shc. Peptides that are non-phosphorylated have greater potential in the development of therapeutics because of the instability of a phosphate group in vivo. Using a biased library approach with this conserved YXN motif, we identified seven different peptide phage clones, which bind specifically to the SH2 domain of Grb7. These peptides did not bind to the SH2 domain of Grb2 (which also selects for Asn at pY(+2)) or Grb14, a closely related family member. The cyclic structure of the peptides was required to bind to the Grb7 SH2 domain. Importantly, the synthetic Grb7-binding peptide G7-18 in cell lysates was able to specifically inhibit the association of Grb7 with the ErbB family of RTKs, in particular ErbB3, in a dose-dependent manner. These peptides will be useful in the development of targeted molecular therapeutics for cancers overexpressing Grb7 and in the development of Grb7-specific inhibitors to gain a complete understanding of the physiological role of Grb7.  相似文献   

11.
Grb14 is an adapter protein that is known to be overexpressed in estrogen receptor positive breast cancers, and in a number of prostate cancer cell lines. Grb14 has been demonstrated to bind to a number of activated receptor tyrosine kinases (RTKs) and to modulate signals transduced through these receptors. The RTKs to which Grb14 binds include the insulin receptor (IR), the fibroblast growth factor receptor (FGFR), the platelet-derived growth factor receptor (PDGFR), and the tunica endothelial kinase (Tek/Tie2) receptor. Grb14 has been shown to bind to these activated RTKs through its Src homology 2 (SH2) domain, with the exception of the insulin receptor, where the primary binding interaction is via a small domain adjacent to the SH2 domain (the BPS or PIR domain). Grb14 is a member of the Grb7 family of proteins, which also includes Grb7 and Grb10. We have solved the solution structure of the human Grb14-SH2 domain and compared it with the recently determined Grb7-SH2 and Grb10-SH2 domain structures.  相似文献   

12.
13.
Growth factor-induced signaling by receptor tyrosine kinases (RTKs) plays a central role in embryonic development and in pathogenesis and, hence, is tightly controlled by several regulatory proteins. Recently, Sprouty, an inhibitor of Drosophila development-associated RTK signaling, has been discovered. Subsequently, four mammalian Sprouty homologues (Spry-1-4) have been identified. Here, we report the functional characterization of two of them, Spry-1 and -2, in endothelial cells. Overexpressed Spry-1 and -2 inhibit fibroblast growth factor- and vascular endothelial growth factor-induced proliferation and differentiation by repressing pathways leading to p42/44 mitogen-activating protein (MAP) kinase activation. In contrast, although epidermal growth factor-induced proliferation of endothelial cells was also inhibited by Spry-1 and -2, activation of p42/44 MAP kinase was not affected. Biochemical and immunofluorescence analysis of endogenous and overexpressed Spry-1 and -2 reveal that both Spry-1 and -2 are anchored to membranes by palmitoylation and associate with caveolin-1 in perinuclear and vesicular structures. They are phosphorylated on serine residues and, upon growth factor stimulation, a subset is recruited to the leading edge of the plasma membrane. The data indicate that mammalian Spry-1 and -2 are membrane-anchored proteins that negatively regulate angiogenesis-associated RTK signaling, possibly in a RTK-specific fashion.  相似文献   

14.
The scaffolding protein receptor for activated C kinase (RACK1) has been proposed to mediate the integration of insulin-like growth factor I receptor (IGF-IR) and adhesion signaling. Here we investigated the mechanism of this integration of signaling, by using an IGF-IR mutant (Y1250F/Y1251F) that is deficient in anti-apoptotic and transforming function. RACK1 was found to associate with the IGF-IR only in adherent cells and did not associate with the IGF-IR in nonadherent cells, lymphocytic cells, or cells expressing the Y1250F/Y1251F mutant. In R- cells transiently expressing the Y1250F/Y1251F mutant RACK1 became constitutively associated with beta1 integrin and did not associate with Shc, Src, or Shp2. This was accompanied by the loss of formation of a complex containing the IGF-IR, RACK1, and beta1 integrin; loss of migratory capacity; enhanced Src and FAK activity; enhanced Akt phosphorylation; and decreased p38 mitogen-activated protein kinase activity. Shc was not phosphorylated in response to IGF-I in cells expressing the Y1250F/Y1251F mutant and remained associated with protein phosphatase 2A. Similar alterations in signaling were observed in cells that were stimulated with IGF-I in nonadherent cultures. Our data suggest that disruption of RACK1 scaffolding function in cells expressing the Y1250F/Y1251F mutant results in the loss of adhesion signals that are necessary to regulate Akt activity and to promote turnover of focal adhesions and cell migration.  相似文献   

15.
Insulin-like growth factor I (IGF-I) stimulates smooth muscle cell (SMC) proliferation, and the mitogen-activated protein kinase (MAPK) pathway plays an important role in mediating IGF-I-induced mitogenic signaling. Our prior studies have shown that recruitment of Src homology 2 domain tyrosine phosphatase (SHP-2) to the membrane scaffolding protein Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1) is required for IGF-I-dependent MAPK activation. The current studies were undertaken to define the upstream signaling components that are required for IGF-I-stimulated MAPK activation and the role of SHPS-1 in regulating this process. The results show that IGF-I-induced Shc phosphorylation and its subsequent binding to Grb2 is required for sustained phosphorylation of MAPK and increased cell proliferation in SMCs. Furthermore, for Shc to be phosphorylated in response to IGF-I requires that Shc must associate with SHPS-1 and this association is mediated in part by SHP-2. Preincubation of cells with a peptide that contains a phospho-tyrosine binding motif sequence derived from SHPS-1 inhibited IGF-I-stimulated SHP-2 transfer to SHPS-1, the association of Shc with SHPS-1, and IGF-I-dependent Shc phosphorylation. Expression of an SHPS-1 mutant that did not bind to Shc or SHP-2 resulted in decreased Shc and MAPK phosphorylation in response to IGF-I. In addition, SMCs expressing a mutant form of the beta3 subunit of the alphaVbeta3, which results in impairment of SHP-2 transfer to SHPS-1, also showed attenuated IGF-I-dependent Shc and MAPK phosphorylation. Further analysis showed that Shc and SHP-2 can be coimmunoprecipitated after IGF-I stimulation. A cell-permeable peptide that contained a polyproline sequence from Shc selectively inhibited Shc/SHP-2 association and impaired Shc but not SHP-2 binding to SHPS-1. Exposure to this peptide also inhibited IGF-I-stimulated Shc and MAPK phosphorylation. Cells expressing a mutant form of Shc with the four prolines substituted with alanines showed no Shc/SHPS-1 association in response to IGF-I. We conclude that SHPS-1 functions as an anchor protein that recruits both Shc and SHP-2 and that their recruitment is necessary for IGF-I-dependent Shc phosphorylation, which is required for an optimal mitogenic response in SMCs.  相似文献   

16.
Neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor, activate Trk receptor tyrosine kinases through receptor dimerization at the cell surface followed by autophosphorylation and recruitment of intracellular signaling molecules. The intracellular pathways used by neurotrophins share many common protein substrates that are used by other receptor tyrosine kinases (RTK), such as Shc, Grb2, FRS2, and phospholipase C-gamma. Here we describe a novel RTK mechanism that involves a 220-kilodalton membrane tetraspanning protein, ARMS/Kidins220, which is rapidly tyrosine phosphorylated in primary neurons after neurotrophin treatment. ARMS/Kidins220 undergoes multiple tyrosine phosphorylation events and also serine phosphorylation by protein kinase D. We have identified a single tyrosine (Tyr(1096)) phosphorylation event in ARMS/Kidins220 that plays a critical role in neurotrophin signaling. A reassembled complex of ARMS/Kidins220 and CrkL, an upstream component of the C3G-Rap1-MAP kinase cascade, is SH3-dependent. However, Tyr(1096) phosphorylation enables ARMS/Kidins220 to recruit CrkL through its SH2 domain, thereby freeing the CrkL SH3 domain to engage C3G for MAP kinase activation in a neurotrophin dependent manner. Accordingly, mutation of Tyr(1096) abolished CrkL interaction and sustained MAPK kinase activity, a response that is not normally observed in other RTKs. Therefore, Trk receptor signaling involves an inducible switch mechanism through an unconventional substrate that distinguishes neurotrophin action from other growth factor receptors.  相似文献   

17.
The adapter protein Grb10 belongs to a superfamily of related proteins, including Grb7, -10, and -14 and Caenorhabditis elegans Mig10. Grb10 is an interacting partner of the insulin-like growth factor I receptor (IGF-IR) and the insulin receptor (IR). Previous work showed an inhibitory effect of mouse Grb10 (mGrb10alpha) on IGF-I-mediated mitogenesis (A. Morrione et al., J. Biol. Chem. 272:26382-26387, 1997). With mGrb10alpha as bait in a yeast two-hybrid screen, mouse Nedd4 (mNedd4-1), a ubiquitin protein ligase, was previously isolated as an interacting protein of Grb10 (A. Morrione et al., J. Biol. Chem. 274:24094-24099, 1999). However, Grb10 is not ubiquitinated by Nedd4 in cells. Here we show that in mouse embryo fibroblasts overexpressing Grb10 and the IGF-IR (p6/Grb10), there is a strong ligand-dependent increase in ubiquitination of the IGF-IR compared with that in parental cells (p6). This increased ubiquitination is associated with a shorter half-life and increased internalization of the IGF-IR. The IGF-IR is stabilized following treatment with both MG132 and chloroquine, indicating that both the proteasome and lysosomal pathways mediate degradation of the receptor. Ubiquitination of the IGF-IR likely occurs at the plasma membrane, prior to the formation of endocytic vesicles, as it is insensitive to dansylcadaverine, an inhibitor of early endosome formation in IGF-IR endocytosis. Grb10 coimmunoprecipitates with the IGF-IR and endogenous Nedd4 in p6/Grb10 cells, suggesting the presence of a Grb10/Nedd4/IGF-IR complex. Ubiquitination of the IGF-IR in p6/Grb10 cells is severely impaired by overexpression of a catalytically inactive Nedd4 mutant (Nedd4-CS), which also stabilizes the receptor. Likewise, overexpression of a Grb10 mutant lacking the Src homology 2 (SH2) domain impaired ubiquitination of the IGF-IR in parental p6 and p6/Grb10 cells, indicating that Grb10 binding to Nedd4 is critical for ubiquitination of the receptor. These results suggest a role for the Grb10/Nedd4 complex in regulating ubiquitination and stability of the IGF-IR, and they suggest that Grb10 serves as an adapter to form a bridge between Nedd4 and the IGF-IR. This is the first demonstration of regulation of stability of a tyrosine kinase receptor by the Nedd4 (HECT) family of E3 ligases.  相似文献   

18.
Unlike prototypical receptor tyrosine kinases (RTKs), which are single-chain polypeptides, the insulin receptor (InsR) is a preformed, covalently linked tetramer with two extracellular α subunits and two membrane-spanning, tyrosine kinase-containing β subunits. A single molecule of insulin binds asymmetrically to the ectodomain, triggering a conformational change that is transmitted to the cytoplasmic kinase domains, which facilitates their trans-phosphorylation. As in prototypical RTKs, tyrosine phosphorylation in the juxtamembrane region of InsR creates recruitment sites for downstream signaling proteins (IRS [InsR substrate] proteins, Shc) containing a phosphotyrosine-binding (PTB) domain, and tyrosine phosphorylation in the kinase activation loop stimulates InsR’s catalytic activity. For InsR, phosphorylation of the activation loop, which contains three tyrosine residues, also creates docking sites for adaptor proteins (Grb10/14, SH2B2) that possess specialized Src homology-2 (SH2) domains, which are dimeric and engage two phosphotyrosines in the activation loop.Insulin is a highly potent anabolic hormone that is critical for tissue development and for glucose homeostasis (Taniguchi et al. 2006). Released from the β cells of the pancreas, insulin regulates glucose output from the liver and glucose uptake into (primarily) skeletal muscle and adipose tissue. In addition, insulin promotes the synthesis and storage of carbohydrates, lipids, and protein. Insulin’s actions are mediated by the insulin receptor (InsR), a plasma membrane-resident glycoprotein and member of the receptor tyrosine kinase (RTK) family. Other members of the InsR subfamily of RTKs include the insulinlike growth factor-1 receptor (IGF1R) and insulin receptor-related receptor, the latter of which has no known ligand. As an RTK, InsR is ligand-activated through mechanisms that are both prototypical and atypical of RTKs. These mechanisms will be the focus of this article.  相似文献   

19.
The role of somatostatin (SST) and epidermal growth factor (EGF) in breast cancer is undisputed; however, the molecular mechanisms underlying their antiproliferative or proliferative effects are not well understood. We initially confirmed that breast tumour tissues express all five somatostatin receptors (SSTR1-5) and four epidermal growth factor receptors (ErbB1-4). Subsequently, to gain insight into the function of SSTRs and ErbBs in oestrogen receptor (ER)-positive (MCF-7) or ERα-negative (MDA-MB-231) breast cancer cells, we defined SSTR1, SSTR5 and ErbB1 mRNA and protein expression in these two tumour cell lines. Consistent with previous studies showing SSTR1/SSTR5 heterodimerization and having seen cell-specific and ligand-selective alterations in receptor expression, we next elucidated whether SSTR1 and SSTR5 functionally interact with ErbB1 using pbFRET analysis. We subsequently determined the effects of SST and EGF either alone, or in combination, on selected downstream signalling molecules such as erk1/2, p38 and JNK. Here, we showed that both SST and EGF influenced erk1/2 phosphorylation and that SST modulated the effects of EGF in a cell-specific manner. We also demonstrated agonist-, time and cell-dependent regulation of p38 phosphorylation. We further investigated modulation of Grb2, SOS, Shc, SH-PTP1 and SH-PTP2. ErbB1 adaptor proteins known to play a role in MAPK activation, Shc, Grb2 and SOS, changed in an agonist- and cell-specific manner whereas, SH-PTP1 and SH-PTP2, adaptor proteins reported to interact with SSTRs, translocated from the cytosol to membrane in a cell-specific manner following SST and/or EGF treatment. Although several previous studies have shown crosstalk between RTKs and GPCRs, there are no reports describing SSTR (GPCR) modulation of ErbBs (RTK) in breast cancer. To the best of our knowledge, this is the first report describing crosstalk/interactions between SSTRs and ErbBs.  相似文献   

20.
Receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs) can both activate mitogen-activated protein kinase (MAPK), a critical intermediate in the transduction of proliferative signals. Numerous observations have demonstrated that integrin-mediated cell anchorage can regulate the efficiency of signaling from RTKs to MAPK. Recently, a relationship between integrins and GPCR signaling has also emerged; however, little is understood concerning the mechanisms involved. Here, we investigate integrin regulation of GPCR signaling to MAPK, focusing on the P2Y class of GPCRs that function through activation of phospholipase Cbeta. P2Y receptor signaling to the downstream components mitogen-activated protein kinase kinase and MAPK is highly dependent on integrin-mediated cell anchorage. However, activation of upstream events, including inositol phosphate production and generation of calcium transients, is completely independent of cell anchorage. This indicates that integrins regulate the linkage between upstream and downstream events in this GPCR pathway, just as they do in some aspects of RTK signaling. However, the P2Y pathway does not involve cross-activation of a RTK, nor a role for Shc or c-Raf; thus, it is quite distinct from the classical RTK-Ras-Raf-MAPK cascade. Rather, integrin-modulated P2Y receptor stimulation of MAPK depends on calcium and on the activation of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号