首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Phenylalanine hydroxylase activity in mammalian cells   总被引:9,自引:0,他引:9  
Survey of twelve mouse tissues revealed the presence of appreciable phenylalanine hydroxylase activity in the pancreas and kidney as well as the liver but in no other of the tissues tested. Single cell suspensions of mouse liver were prepared by use of tetraphenylboron. The enzyme activity of such suspensions was much more stable than that of liver extracts, and permitted determination of the Michaelis-Menten constant, the pseudo-first order reaction velocity constant on a cell-number basis, and the temperature coefficient and apparent activation energy of the enzyme activity. Possible applications of these methods to problems in cellular biology have been indicated.  相似文献   

4.
5.
6.
The regulation of renal mitochondrial 1-hydroxylase activity in chronic vitamin D deficiency was studied in male rats. These rats were born of mothers who had been raised from weaning (21 days) on a vitamin D deficient diet and who had no detectable serum 1,25-dihydroxycholecalciferol (1,25-(OH)2D) at the time their offspring were weaned (28 days). In the pups, renal mitochondrial 1-hydroxylase activity was undetectable before the 3rd week of life even though the animals were severely hypocalcemic from birth. The 1-hydroxylase activity first became detectable at 26 days of age, rapidly reached a maximum at day 34, then decreased to become undetectable again by 65 days. Throughout this time serum calcium concentration was less than 5.0 mg/dL and serum parathyroid hormone (PTH) concentration, measured by a midmolecule radioimmunoassay, was two- to five-fold greater than that found in vitamin D replete rats. 1-Hydroxylase activity could be restored in the +65-day-old animals by administration of a single dose of 2.5 micrograms vitamin D3. Enzyme activity was detected within 24 h, was maximal at 72 h, and returned to undetectable levels by 96 h after administration of the vitamin. Serum 1,25-(OH)2D which was undetectable before administration of the vitamin D3, was 108 and 458 pg/mL at 16 and 40 h, respectively, after the injection. The serum concentration of this metabolite then decreased progressively to 80 pg/mL by 6 days. 24-Hydroxylase activity first became detectable 48 h after vitamin D administration, increased to a maximum at 96 h, and thereafter decreased to become undetectable by 7 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A mutant of Geotrichum candidum was isolated with a tyrosine requirement which could be satisfied by l-tyrosine or l-phenylalanine. l-Phenylalanine is converted by cell suspensions to l-tyrosine, which can be detected in the growth medium. The incorporation of the tyrosine into cell protein is described. l-Phenylalanine is converted to tyrosine by cell-free extracts with a requirement for some dialysable components. The adaptation of intact cells to phenylalanine metabolism is also described.  相似文献   

8.
9.
The effect of riboflavin and (or) pyridoxine deficiency and repletion on tissue iron content was studied in rats. The iron content in liver, spleen, and kidney and plasma iron concentration of riboflavin deficient (RD) rats was lower, but hematocrit was not. In pyridoxine deficient (PD) rats versus control rats, the iron content in liver was significantly higher but not in spleen and kidney. In PD rats hematocrit was lower but plasma iron concentration was not. Although combined riboflavin and pyridoxine deficient (CD) rats had lower iron content in liver and spleen compared with control rats, these values were intermediate between those of RD rats and PD rats. After RD and PD rats were repleted, the iron content in liver, spleen, and kidney returned to that of control rats, and the hematological indices were improved significantly. These results suggest that riboflavin and pyridoxine deficiency may impair the absorption and utilization of iron and may result in altered tissue iron content.  相似文献   

10.
11.
12.
Phenylalanine hydroxylase: metabolic aspects   总被引:1,自引:0,他引:1  
  相似文献   

13.
A pigmented subclone of Cloudman S91 melanoma cells, PS1-wild type, can grow in medium lacking tyrosine. This ability is conferred by phenylalanine hydroxylase activity, and not by tryptophan hydroxylase, tyrosine hydroxylase or tyrosinase activities, although the latter activity is also present in these cells. Conversion of phenylalanine to tyrosine was measured in living cells by chromatographic identification of the metabolites of [14C]phenylalanine and in cell extracts using a sensitive assay for phenylalanine hydroxylase. Phenylalanine hydroxylase activity in melanoma cell extracts was identified by its inhibition with p-chlorophenylalanine and not with 6-fluorotryptophan, 3-iodotyrosine, phenylthiourea, tyrosine or tryptophan; and by adsorption with antiserum prepared against purified rat liver phenylalanine hydroxylase, and migration of immunoprecipitable activity with authentic phenylalanine hydroxylase subunits in sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

14.
15.
16.
17.
18.
19.
Phenylalanine is transported rapidly into, but is not concentrated by, liver cells. Glucagon increased flux through phenylalanine hydroxylase; a half-maximal response was obtained at 0.7 nM. Under control conditions, 0.2-0.3 mol of phosphate were incorporated per mol of subunit of the hydroxylase at steady state. Glucagon increased this incorporation of phosphate into the hydroxylase to a maximal value of approx. 0.6 mol of phosphate per subunit; a half-maximal response was obtained at 0.3 nM. Glucagon, added simultaneously with [32P]Pi to liver cells, inhibited incorporation of 32P into the enzyme. The effects of glucagon were reproduced with dibutyryl cyclic AMP. Changes in phosphorylation correlated closely with changes in flux through phenylalanine hydroxylase in cell incubations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号