首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levels of basal chitin synthetase in cell-free extracts from Phycomyces blakesleeanus were reduced by breakage of cells in the presence of EDTA or EGTA. Addition of Ca2+ to these extracts activated chitin synthetase. Maximal activation was obtained after 2 h at a Ca2+ concentration of 2–5 mM. Activation by calcium was not reduced by any protease inhibitor tested but benzamidine, whereas the weak proteolytic activity of the extracts was inhibited by antipain. Larger levels of chitin synthetase activation were obtained by the simultaneous addition of calcium and calmodulin in most, but not all extracts. This further activation by calmodulin was prevented by TFP. ATP or cAMP did not stimulate activation by calcium or calcium-calmodulin.Abbreviations EGTA ethylene glycol-bis(B-aminoethylether)-N,NN-tetraacetic acid - GlcNAc N-acetyl-d-glucosamine - PMSF phenylmethylsulfonyl fluoride - SBTI soybean trypsin inhibitor - TFP trifluoperazine - TLCK N-p-tosyl-l-lysine choromethyl ketone - UDPGlcNAc uridine diphosphate N-acetyl-d-glucosamine  相似文献   

2.
The chitin synthetase of Phycomyces blakesleeanus mycelium is a particulate enzyme sedimenting mostly at 1000xg. The activity in crude extracts or cellular fractions can be increased more than tenfold by mild trypsin treatment. Plotting the reaction velocity versus UDP-N-acetylglucosamine concentration yields a sigmoidal curve. N-acetylglucosamine, which greatly stimulates the enzyme, changes the kinetics to an almost normal hyperbolic relationship.The enzyme is nearly absent in dormant spores and is synthesized de novo in germinating spores (from 4 h germination on). Trypsin treatment of extracts from germinating spores to assay the synthesis of the proenzyme did not reveal an earlier synthesis of the zymogen, which therefore might have some activity of its own.Abbreviations Used UDP-GlcNAc Uridinediphosphate-N-acetylglucosamine - GlcNAc N-acetylglucosamine - Chitin synthetase UDP-2-acetylamino-deoxyglucosyltransferase (EC 2.4.1.16)  相似文献   

3.
Addition of cycloheximide rapidly inhibited protein synthesis in Phycomyces blakesleeanus. In contrast, chitin biosynthesis decreased with biphasic kinetics displaying a slow and a rapid decay phases. Electron microscopic studies revealed a decrease in the number of apical vesicles and chitosomes after cycloheximide addition; and no change in wall thickness. It is proposed that the slow phase of decay in chitin biosynthesis represents the exhaustion of the pool of chitosomes which transport the chitin synthase necessary to maintain apical wall growth; whereas the second one corresponds to inactivation of the enzyme, which is short lived in vivo. Data also rule out a change in the polarization of wall synthesis induced by cycloheximide, as suggested in other systems.  相似文献   

4.
Chitin synthetase was isolated and purified 120-fold from the supernatant fraction (54,500 X g) of broken yeast cells of Mucor rouxii. The purified preparations consisted mainly of chitin synthetase particles (chitosomes) with an average size larger than 7 X 10(6) daltons (by gel filtration) and an average sedimentation coefficient of 105 S. The samples also contained other enzyme complexes (fatty acid synthetase, pyruvate dehydrogenase, and, depending on method, ribosomes). Nearly all of the chitosomal chitin synthetase occurred in a zymogenic form that required proteolytic activation. In most properties, the chitosomal enzyme was similar to crude enzyme (54,000 X g sediment): kinetics, activation by proteases, response to metals, stimulation by N-acetylglucosamine, and inhibition by polyoxin or UDP. One mamor difference was the much greater stability of the chitosomal chitin synthetase zymogen against spontaneous activation and destruction. Product (chitin microfibril) and enzyme (chitin synthetase) remained associated in a complex that was readily separated by centrifugation.  相似文献   

5.
Chitin synthetase activity in cell-free preparations from a wild-type strain and a 'slime' variant of Neurospora crassa was monitored over many days in samples stored at 0 degrees C. Total activity in whole-cell-free extracts and low-speed supernatants from both organisms was very unstable, losing more than 90% of the initial activity on storage at 0 degrees C for 96 h. Chitin synthetase detection was not masked by chitinase activity present in the preparations. Gel-filtration chromatography of these preparations increased the stability of the activity from the 'slime' variant, whereas removal of particulate structures by high-speed centrifugation stabilized the chitin synthetase activity in the supernatant, particularly in the wild type. These results suggest that factor(s) involved in the regulation of chitin synthetase may be differentially located or altered in 'slime' cells.  相似文献   

6.
Summary This study was undertaken to assess the distribution and localization of chitin synthetase in a fungal cell and to evaluate the sedimentation behavior of chitosomes (microvesicular containers of chitin synthetase). Chitosomes were isolated from cell-free extracts of yeast cells ofMucor rouxii by rate-zonal and isopycnic sedimentation in sucrose density gradients. Because of their small size and low density, chitosomes were effectively separated from other subcellular particles. Rate-zonal sedimentation was a suitable final step for isolating chitosomes as long as ribosomes had been eliminated by enzymic digestion. By isopycnic centrifugation, chitosomes could be separated directly from a crude cell-free extract; they cosedimented with a sharp symmetrical peak of chitin synthetase at a buoyant density of d=1.14–1.15g/cm3; the only significant contaminants were particles of fatty acid synthetase complex. From such sedimentations, we estimated that 80–85% of the chitin synthetase activity in the cell-free extract was associated with chitosomes; the rest was found in two smaller peaks sedimenting at d=1.19–1.20 and d=1.21–1.22 (5–10%), and in the cell wall fraction (5–10%). By consecutive rate-zonal and isopycnic sedimentations, chitosome preparations with relatively few contaminating particles were obtained. Potassium/sodium phosphate buffer (pH 6.5)+MgCl2 was the most effective isolation medium for chitosomes. Other buffers such as TRIS-MES+MgCl2 led to massive aggregation of chitosomes and a change in sedimentation properties. This tendency of chitosomes to aggregate could explain why most of the chitin synthetase activity of a fungus is sometimes found associated with other subcellular structures,e.g., plasma membrane.  相似文献   

7.
After hydrolysis of chitin in 6 M HCl, the glucosamine produced was assayed colorimetrically. The pH of the hydrolysate was adjusted to a value close to three by addition of Na acetate; this procedure avoids the elimination of excess acid by evaporation under reduced pressure or freeze-drying. Under these conditions, the amount of glucosamine determined by the assay represented an average of 90% of the amount which would result from a total hydrolysis of the chitin. The method was used to assay the chitin in the mycelia of basidomycetes obtained in vitro. The measured amount of glucosamine was proportional to the mycelial biomass and allowed the estimation of fungal growth.  相似文献   

8.
The sub-cellular distribution of chitin synthetase was studied in homogenates of Saccharomyces cerevisiae protoplasts. Use of a mild disruption method minimized rupture of vacuoles and ensuing contamination of subcellular fractions by vacoular proteinases. After fractionation of whole or partially purified homogenates through an isopycnic sucrose gradient chitin synthetase activity was found to be distributed between two distinct particulate fractions with different buoyant density and particle diameter. When whole homogenates were used, about 52% of the chitin synthetase loaded was localized in a microvesicular population identified as chitosomes (diameter 40–110 nm; bouyant density (d) = 1.146 g/cm3). Another vesicular population containing 26% of the activity was identified as plasma membrane vesicles because of its large mean diameter (260 nm), its high buoyant density (d = 1.203 g/cm3) and by the presence of the vanadate-sensitive ATPase activity. Moreover, after surface labeling of protoplasts with 3H-concanavalin A, the label cosedimented with the presumed plasma membrane vesicles. There was a negligible cross-contamination of the chitosome fraction by yeast plasma membrane markers. In both the plasma membrane and the chitosome fractions, the chitin synthetase was stable and essentially zymogenic. Activation of the chitosome fraction produces microfibrils 100–250 nm in length. Our results support the idea that chitosomes do not originate by plasma membrane vesiculation but are defined sub-cellular organelles containing most of the chitin synthetase in protoplasts of Saccharomyces cerevisiae.  相似文献   

9.
Blastocladiella emersonii zoospores are not encased by a cell wall and do not detectably synthesize or contain chitin; accompanying de novo cell wall formation during zoospore encystment, chitin rapidly accumulates and is incorporated into the cell wall. Essential for understanding this abrupt change in chitin synthesis is the location of zoospore chitin synthetase. The enzyme has previously been reported to the sequestered with distinctive cytoplasmic organelles (gamma particles) characteristic for the zoospore cell type. Using similar differential and equilibrium density centrifugation procedures to those reported previously, we have observed the vast majority of zoospore homogenate chitin synthetase activity in fractions distinct from the gamma particle-enriched fractions. Over 90% of the homogenate enzyme activity could be recovered in a sucrose buoyant density region (1.14–1.18 g/ml) containing membranous elements and well separated from the region enriched for gamma particles (1.30–1.34 g/ml). When zoospores were surface-labelled with [3H]concanavalin A prior to homogenization, the buoyant density regions of radioactivity and of chitin synthetase activity exhibited nearly complete coincidence. At least the bulk of zoospore chitin synthetase appears to be located at the plasma membrane, rather than in gamma particles.  相似文献   

10.
Digitonin exerts profound effects on chitosomes (microvesicular structures with chitin synthetase activity isolated from the fungus Mucor rouxii). At low concentrations, it stimulates chitin synthetase (UDP-2-acetamido-2-deoxy-D-glucose: chitin 4-beta acetamidodeoxy-D-glucosyltransferase, EC 2.4.1.16) activity; at higher concentrations, it inhibits it. Digitonin also causes disintegration of the chitosome and the release of a homogeneous population of chitosome subunits with chitin synthetase activity. These chitosome subunits have a sedimentation coefficient of 16 S, compared to 105 S for whole chitosomes, as determined by centrifugation in sucrose density gradients, and measure 7--12 nm in diameter. After dissociation, chitin synthetase remains in a zymogenic state, and requires treatment with a protease for activation. No change in sedimentation coefficient of chitosome subunits was observed after proteolytic activation. The product synthesized by the chitosome subunits was characterized by X-ray diffractometry ad alpha-chitin and was by the criterion indistinfuishable from chitin made by preparations of undissociated chitosomes. However, in the electron microscope, the chitin microfibrils made from chitosome subunits were, in general, much shorter than those produced by undissociated chitosomes and often exhibited a needle-like appearance.  相似文献   

11.
The chitin deacetylase gene from Colletotrichum lindemuthianum UPS9 was isolated and cloned in Pichia pastoris as a tagged protein with six added terminal histidine residues. The expressed enzyme was recovered from the culture supernatant and further characterized. A single-step purification based on specific binding of the histidine residues was achieved. The purified enzyme has a molecular mass of 25 kDa and is not glycosylated as determined by mass spectrometry. The activity of the recombinant chitin deacetylase on chitinous substrates was investigated. With chitotetraose as substrate, the optimum temperature and pH for enzyme activity are 60 degrees C and 8.0, respectively. The specific activity of the pure protein is 72 U/mg. One unit of enzyme activity is defined as the amount of enzyme that produces 1 micromol of acetate per minute under the assay conditions employed. The enzyme activity is enhanced in the presence of Co2+ ions. A possible use of the recombinant chitin deacetylase for large-scale biocatalytic conversion of chitin to chitosan is discussed.  相似文献   

12.
Using genetic crosses between single chs mutants of Ustilago maydis inoculated into maize ( Zea mays ) seedlings, two classes of double mutants affected in genes coding for chitin synthetases were isolated: chs3 / chs4 , and chs4 / chs5 . Analysis of the mutants showed almost no change in their phenotype compared with wild-type strains. Growth rate, effect of stress conditions, dimorphic transition and mating were not affected. The only salient differences were increased sensitivity to osmotics at acid pH, and decrease in chitin synthetase activity, especially when measured with CO2+, and in chitin content. Most significant was a decrease in virulence, although this appeared to be due a factor unrelated to CHS genes. These data can be taken as further evidence that multigenic control of chitin synthetase in fungi operates as a safety mechanism to guarantee fungal viability in changing and hostile environmental conditions.  相似文献   

13.
The production of an extracellular chitin deacetylase (CDA) produced by Aspergillus flavus under solid-substrate fermentation (SSF) using wheat bran as substrate was optimized using statistical methods. The CDA production in SSF increased 1.79-fold in comparison to the unoptimized basal level medium. It was purified to a final purity of 3.94-fold by ammonium sulphate precipitation, ion-exchange chromatography, and gel-permeation chromatography (GPC) consecutively and further characterized. The molecular mass of the enzyme was estimated to be about 28?kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and GPC analysis. The optimum pH and temperature of the purified enzyme were pH 8.0 and 50?°C, respectively. Additionally, the effect of some cations and other chemical compounds on the CDA activity was studied. A marginal increase in enzyme activity was observed with metal ions mainly Mn2+ and Zn2+. No inhibition of the enzyme was observed by the end product, that is, acetate up to 70?mM concentration. The Km and kcat values of the enzyme were determined to be 9.45?mg mL?1 and 26.72?s?1 respectively, using colloidal chitin as substrate. Among various substrates tested, glycol chitin and colloidal chitin were deacetylated.  相似文献   

14.
An acid protease was purified from the mycelial form of Mucor rouxii by a method which involved salt and acid precipitation, gel filtration and anion-exchange chromatography. The enzyme had a molecular mass of 16,000 Da. Its optimum pH was 4.0, maximal activity was obtained at 50°C, and it was inactivated at 70°C. It was not affected by leupeptin or N -p-tosyl-L-lysine chloromethyl ketone (TLCK) but diazoacetyl-DL-norleucine methyl ester (DNME) in the presence of Cu2+ and more noticeably pepstatin A, strongly inhibited the activity. This acid protease did not activate zymogenic chitin synthetase from the fungus, but brought about its inactivation even at low concentrations and after short periods of incubation time.Abbreviations TLCK N -p-tosyl-L-lysine chloromethyl ketone - DNME diazoacetyl-DL-norleucine methyl ester - TCA trichloroacetic acid - SDS sodium dodecyl sulfate  相似文献   

15.
16.
Glutamine synthetase (GS; EC 6.3.1.2), a key enzyme of glutamate metabolism, and another enzyme possessing high hydroxylamine-L-glutamine transferase activity comparable to that of GS and termed GS-like protein (GSLP) were purified from human brain concurrently. In two-dimensional electrophoresis, GS subunits migrate to at least six different positions (44 +/- 1 kDa, pl = 6. 4-6.7), whereas GSLP subunits migrate to at least four different positions (54 +/- 1 kDa, pl = 5.9-6.2). Dependences of enzymatic activity in the transferase reaction on concentrations of Mn(2+) and Mg(2+) for GS and GSLP are different. High immunological cross-reactivity between GS and GSLP was observed in ELISA. Nevertheless, antisera were raised to GS and GSLP, and a method was developed for the separate detection of GS and GSLP in brain extracts by enzyme-chemiluminescent amplified (ECL) immunoblotting. The distribution of GS and GSLP immunoreactivities between soluble protein and crude mitochondrial fractions indicates tighter association with the particulate fraction for GSLP than for GS. The results from activity measurements suggest that the hydroxylamine-L-glutamine transferase activity measured routinely in protein extracts from brain is the sum of GS and GSLP activities. Similarly, immunoreactivity evaluated by ELISA is a sum of immunoreactivities of GS and GSLP. The relative contributions of GS and GSLP to the total immunoreactivity can be evaluated by ECL-immunoblotting.  相似文献   

17.
A detailed account of physical bulk gel and bead formation from various chitin solutions and nonsolvents is given. Instant gel formation occurs upon contact of chitin solutions in dimethylacetamide (DMAc)/lithium chloride (LiCl) or N-methyl-pyrrolidinone (NMP)/LiCl solvents and nonsolvents such as water, ethanol, or acetone. Ethanol was found to be the optimal nonsolvent for homogeneous spherical bead formation from chitin solutions. Similarly, DMAc-based chitin solutions proved to yield higher quality beads compared to NMP-based solutions. The differences in bead morphology, crystallinity, and thermal degradation are explained in light of the attainment of a balance between attractive hydrogen bonding in the chitin gel network and segment–nonsolvent interactions. The dependence of swelling of chitin gels on pH indicated a maximum of swelling ratio value of 4.3 at pH 11 in aqueous solutions while the equilibrium swelling ratio value of chitin beads formed with ethanol reached a maximum of 2.4. Bulk gels formed under favorable conditions were demonstrated to be recyclable after solvent separation and drying.  相似文献   

18.
The distribution of endogenous 3-hydroxylipins (3-OH oxylipins) in representatives of the Mucorales was mapped using immunofluorescence microscopy. Strains of each of the following genera were examined: Absidia, Actinomucor, Cunninghamella, Mortierella (subgenus Micromucor), Mortierella (subgenus Mortierella), Mucor and Rhizomucor. Immunofluorescence microscopy was carried out using an antibody that was raised against 3R-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid (3R-HETE), which cross-reacts with other 3-OH oxylipins. Subsequently, the occurrence and distribution of the antibody on the various reproductive stages of each fungus was noted. In Absidia, Actinomucor, Mortierella (subgenus Micromucor), Mucor and Rhizomucor, 3-OH oxylipins were found to be associated with the columellae and/or wall of the sporangium. In the representative of Cunninghamella, the 3-OH oxylipins were associated with the single-spored sporangiola. No 3-OH oxylipins were detected in the strains representing Mortierella (subgenus Mortierella).  相似文献   

19.
Mutants resistant to nikkomycin, an inhibitor of chitin biosynthesis, were isolated after exposure of wild-type spores of the fungus Phycomyces blakesleeanus to N-methyl-N-nitro-N-nitrosoguanidine. Genetic analysis revealed that nikkomycin resistance was due to mutations in a single gene, chsA. Mutants and wild type grew equally well in the absence of nikkomycin. In contrast to the wild type, whose spore germination and mycelial growth were inhibited by 5 M nikkomycin, chsA mutants grew reasonably well in the presence of 50 M nikkomycin. Chitin synthesis in vivo was much less affected by the drug in the mutants than in the wild type. Resistance was not due to impaired uptake or detoxification of the drug. Analysis of the kinetics of chitin synthesis in vitro showed that the mutants had a decreased Ka for the allosteric activator, N-acetylglucosamine, and gross alterations in nikkomycin inhibition kinetics. These results indicate that chsA is the structural gene for chitin synthetase, or at least for the polypeptide that bears the catalytic and allosteric sites.  相似文献   

20.
Chitin, the structural component that provides rigidity to the cell wall of fungi is the product of chitin synthases (Chs). These enzymes are not restricted to fungi, but are amply distributed in four of the five eukaryotic 'crown kingdoms'. Dendrograms obtained by multiple alignment of Chs revealed that fungal enzymes can be classified into two divisions that branch into at least five classes, independent of fungal divergence. In contrast, oomycetes and animals each possess a single family of Chs. These results suggest that Chs originated as a branch of beta-glycosyl-transferases, once the kingdom Plantae split from the evolutionary line of eukaryotes. The existence of a single class of Chs in animals and Stramenopiles, against the multiple families in fungi, reveals that Chs diversification occurred after fungi departed from these kingdoms, but before separation of fungal groups. Accordingly, each fungal taxon contains members with enzymes belonging to different divisions and classes. Multiple alignment revealed the conservation of specific motifs characteristic of class, division and kingdom, but the strict conservation of only three motifs QXXEY, EDRXL and QXRRW, and seven isolated amino acids in the core region of all Chs. Determination of different structural features in this region of Chs brought to light a noticeable conservation of secondary structure in the proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号