首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutualisms require protection from non‐reciprocating exploiters. Pseudomyrmex workers that engage in an obligate defensive mutualism with Acacia hosts feed exclusively on the sucrose‐free extrafloral nectar (EFN) that is secreted by their hosts, a behaviour linking ant energy supply directly to host performance and thus favouring reciprocating behaviour. We tested the hypothesis that Acacia hosts manipulate this digestive specialisation of their ant mutualists. Invertase (sucrose hydrolytic) activity in the ant midguts was inhibited by chitinase, a dominant EFN protein. The inhibition occurred quickly in cell‐free gut liquids and in native gels and thus likely results from an enzyme–enzyme interaction. Once a freshly eclosed worker ingests EFN as the first diet available, her invertase becomes inhibited and she, thus, continues feeding on host‐derived EFN. Partner manipulation acts at the phenotypic level and means that one partner actively controls the phenotype of the other partner to enhance its dependency on host‐derived rewards.  相似文献   

2.
Ascertaining the costs and benefits of mutualistic interactions is important for predicting their stability and effect on community dynamics. Despite widespread designation of the interaction between ants and extrafloral nectaries (EFNs) as a mutualism and over 100 years of studies on ant benefits to plants, the benefits to ants have never been experimentally quantified. The success of invasive ants is thought to be linked to the availability of carbohydrate-rich resources, though reports of invasive ant visits to EFNs are mixed. In two laboratory experiments, we compared worker survival of one native (Iridomyrmex chasei) and two invasive ant species (Linepithema humile and Pheidole megacephala) exposed to herbivorized or non-herbivorized EFN-bearing plants (Acacia saligna) or positive and negative controls. We found that non-herbivorized plants did not produce any measurable extrafloral nectar, and ants with access to non-herbivorized plants had the same survival as ants with access to an artificial plant and water (unfed ants). Ants given herbivorized plants had 7–11 times greater worker survival relative to unfed ants, but there were no differences in survival between native and invasive ants exposed to herbivorized plants. Our results reveal that ants cannot induce A. saligna extrafloral nectar production, but workers of both native and invasive ant species can benefit from extrafloral nectar as much as they benefit from sucrose.  相似文献   

3.
Mutualisms are ubiquitous in nature, as is their exploitation by both conspecific and heterospecific cheaters. Yet, evolutionary theory predicts that cheating should be favoured by natural selection. Here, we show theoretically that asymmetrical competition for partners generally determines the evolutionary fate of obligate mutualisms facing exploitation by third-species invaders. When asymmetry in partner competition is relatively weak, mutualists may either exclude exploiters or coexist with them, in which case their co-evolutionary response to exploitation is usually benign. When asymmetry is strong, the mutualists evolve towards evolutionary attractors where they become extremely vulnerable to exploiter invasion. However, exploiter invasion at an early stage of the mutualism's history can deflect mutualists' co-evolutionary trajectories towards slightly different attractors that confer long-term stability against further exploitation. Thus, coexistence of mutualists and exploiters may often involve an historical effect whereby exploiters are co-opted early in mutualism history and provide lasting 'evolutionary immunization' against further invasion.  相似文献   

4.
Myrmecophytic Acacia species produce food bodies (FBs) to nourish ants of the Pseudomyrmex ferrugineus group, with which they live in an obligate mutualism. We investigated how the FBs are protected from exploiting nonmutualists. Two‐dimensional gel electrophoresis of the FB proteomes and consecutive protein sequencing indicated the presence of several Kunitz‐type protease inhibitors (PIs). PIs extracted from Acacia FBs were biologically active, as they effectively reduced the trypsin‐like and elastase‐like proteolytic activity in the guts of seed‐feeding beetles (Prostephanus truncatus and Zabrotes subfasciatus), which were used as nonadapted herbivores representing potential exploiters. By contrast, the legitimate mutualistic consumers maintained high proteolytic activity dominated by chymotrypsin 1, which was insensitive to the FB PIs. Larvae of an exploiter ant (Pseudomyrmex gracilis) taken from Acacia hosts exhibited lower overall proteolytic activity than the mutualists. The proteases of this exploiter exhibited mainly elastase‐like and to a lower degree chymotrypsin 1‐like activity. We conclude that the mutualist ants possess specifically those proteases that are least sensitive to the PIs in their specific food source, whereas the congeneric exploiter ant appears partly, but not completely, adapted to consume Acacia FBs. By contrast, any consumption of the FBs by nonadapted exploiters would effectively inhibit their digestive capacities. We suggest that the term ‘exclusive rewards’ can be used to describe situations similar to the one that has evolved in myrmecophytic Acacia species, which reward mutualists with FBs but safeguard the reward from exploitation by generalists by making the FBs difficult for the nonadapted consumer to use.  相似文献   

5.
Abstract.  1. The simultaneous occupation of a rare understorey ant-acacia Acacia mayana by its guarding ant Pseudomyrmex ferrugineus , and an apparent opportunist parasite of the mutualism, the generalist ant Camponotus planatus is described. The two ant species occur together in 30.7% of the 26 mature A. mayana plants [23.5% of all trees ( n  = 34)] surveyed, but C. planatus is absent from saplings below 1 m in height ( n  = 8).
2. While P. ferrugineus shows behaviour compatible with effective host-tree defence, C. planatus does not attack phytophagous insects and appears ineffective as an ant-guard. Camponotus planatus does, however, occupy swollen thorns (pseudogalls) on the host tree, and harvests nectar from extrafloral leaf nectaries. It is proposed that C. planatus is a parasite of the Acacia–Pseudomyrmex mutualism.
3. Camponotus planatus does not harvest the second trophic reward produced by the tree for its Pseudomyrmex ant-guards, protein-rich food (Beltian) bodies. Camponotus planatus lack the specialised larval adaptations needed to use Beltian bodies as brood food, suggesting that this resource is potentially more resistant to exploitation by generalists than extrafloral nectar.
4. In competition for access to nectaries, C. planatus effectively displaced P. ferrugineus in 99.8% of encounters. These results suggest not only that C. planatus is a parasite of this mutualism, but also that it is able to effectively counteract the aggression shown to other insects by the resident ant-guards.  相似文献   

6.
The exploitation of mutualisms   总被引:8,自引:0,他引:8  
Mutualisms (interspecific cooperative interactions) are ubiquitously exploited by organisms that obtain the benefits mutualists offer, while delivering no benefits in return. The natural history of these exploiters is well-described, but relatively little effort has yet been devoted to analysing their ecological or evolutionary significance for mutualism. Exploitation is not a unitary phenomenon, but a set of loosely related phenomena: exploiters may follow mixed strategies or pure strategies at either the species or individual level, may or may not be derived from mutualists, and may or may not inflict significant costs on mutualisms. The evolutionary implications of these different forms of exploitation, especially the threats they pose to the stability of mutualism, have as yet been minimally explored. Studies of this issue are usually framed in terms of a "temptation to defect" that generates a destabilizing conflict of interest between partners. I argue that this idea is in fact rather inappropriate for interpreting most observed forms of exploitation in mutualisms. I suggest several alternative and testable ideas for how mutualism can persist in the face of exploitation.  相似文献   

7.
Plants produce nectar to attract pollinators in the case of floral nectar (FN) and defenders in the case of extrafloral nectar (EFN). Whereas nectars must function in the context of plant-animal mutualisms, their chemical composition makes them also attractive for non-mutualistic, exploiting organisms: nectar robbers and nectar-infesting microorganisms. We reviewed the chemical composition of both FNs and EFNs and found that nectar composition appears tailored to fulfil these ambivalent roles. Carbohydrates and amino acids usually function in the attraction of mutualists and appear adapted to the physiological needs of the respective mutualists. Volatiles are a further group of compounds that serves in the attractive function of nectars. By contrast, secondary compounds such as alkaloids and phenols serve the protection from nectar robbers, and most nectar proteins that have been characterised to date protect FN and EFN from microbial infestation. Nectar components serve both in attraction and the protection of nectar.Key words: extrafloral nectar, floral nectar, indirect defence, mutualism, pollination  相似文献   

8.
Many tropical ant-plants provide specialized ant partners with food, which may attract foreign ants parasitizing the mutualism. We present evidence for the ant-plant genus Macaranga , showing that ant competition has forced host plants to hide food resources and restrict access to the mutualists. In Macaranga myrmecophytes, the influence of ant competition strongly depends on the presence of slippery 'wax barriers'. Of all Macaranga ant-plant species, 50% have waxy stems that can be climbed only by the specific ant partners and not by other ant species. We compared the presentation of food (food bodies and extrafloral nectar) between waxy and non-waxy Macaranga host plants using traditional and phylogenetic comparative methods. Consistent with the hypothesized effect of ant competition, wax-free Macaranga host species had fewer extrafloral nectaries and more often produced food bodies under recurved or tubular stipules inaccessible to other ants; closed stipules were less persistent in waxy hosts. Several traits showed phylogenetic signal, but our finding of a more promiscuous food presentation in waxy Macaranga hosts was still supported by phylogenetic comparative analyses. We conclude that competition among ants is an important factor in the evolution of myrmecophytism, and that it has given rise to traits acting as protective filter mechanisms.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 177–193.  相似文献   

9.
We observed nectar use by native and exotic ant species in nature, garden, and urban situations, and found ants utilizing floral and extrafloral nectar of a variety of flowering plant species. We collected 31 plant nectars (29 floral, 2 extrafloral) and used them in feeding preference tests against standard solutions of sugars (20 percent fructose, glucose, and sucrose, and their mixture), 10 trials for each nectar-ant comparison. We compared time-to-discovery and total ant visits to each droplet using ANOVA, and found that both trial and solution contributed significantly to the variation in most experiments. Seven of the floral nectars tested were significantly more attractive to certain ant species than the sugar solutions. Not only do ants use floral nectar, but it appears that some floral nectars contain compounds that are especially attractive to ants.  相似文献   

10.
Geographic variation in the outcome of interspecific interactions may influence not only the evolutionary trajectories of species but also the structure of local communities. We investigated this community consequence of geographic variation for a facultative mutualism between ants and wild cotton (Gossypium thurberi). Ants consume wild cotton extrafloral nectar and can protect plants from herbivores. We chose three sites that differed in interaction outcome, including a mutualism (ants provided the greatest benefits to plant fitness and responded to manipulations of extrafloral nectar), a potential commensalism (ants increased plant fitness but were unresponsive to extrafloral nectar), and a neutral interaction (ants neither affected plant fitness nor responded to extrafloral nectar). At all sites, we manipulated ants and extrafloral nectar in a factorial design and monitored the abundance, diversity, and composition of other arthropods occurring on wild cotton plants. We predicted that the effects of ants and extrafloral nectar on arthropods would be largest in the location with the mutualism and weakest where the interaction was neutral. A non-metric multidimensional scaling analysis revealed that the presence of ants altered arthropod composition, but only at the two sites in which ants increased plant fitness. At the site with the mutualism, ants also suppressed detritivore/scavenger abundance and increased aphids. The presence of extrafloral nectar increased arthropod abundance where mutual benefits were the strongest, whereas both arthropod abundance and morphospecies richness declined with extrafloral nectar availability at the site with the weakest ant–plant interaction. Some responses were geographically invariable: total arthropod richness and evenness declined by approximately 20% on plants with ants, and extrafloral nectar reduced carnivore abundance when ants were excluded from plants. These results demonstrate that a facultative ant–plant mutualism can alter the composition of arthropod assemblages on plants and that these community-level consequences vary across the landscape.  相似文献   

11.
When aphids parasitize plants with extrafloral nectaries (EFNs) and aphid colony size is small, ants frequently use EFNs but hardly tend aphids. However, as the aphid colony size increases, ants stop using EFNs and strengthen their associations with aphids. Although the shift in ant behavior is important for determining the dynamics of the ant–plant–aphid interaction, it is not known why this shift occurs. Here, we test two hypotheses to explain the mechanism responsible for this behavioral shift: (1) Extrafloral nectar secretion changes in response to aphid herbivory, or (2) plants do not change extrafloral nectar secretion, but the total reward to ants from aphids will exceed that from EFNs above a certain aphid colony size. To judge which mechanism is plausible, we investigated secretion patterns of extrafloral nectar produced by plants with and without aphids, compared the amount of sugar supplied by EFNs and aphids, and examined whether extrafloral nectar or honeydew was more attractive to ants. Our results show that there was no inducible extrafloral secretion in response to aphid herbivory, but the sugar concentration in extrafloral nectar was higher than in honeydew, and more ant workers were attracted to an artificial extrafloral nectar solution than to an artificial aphid honeydew solution. These results indicate that extrafloral nectar is a more attractive reward than aphid honeydew per unit volume. However, even an aphid colony containing only two individuals can supply a greater reward to ants than EFNs. This suggests that the ant behavioral shift may be explained by the second hypothesis.  相似文献   

12.
Mounting evidence indicates that trade-offs between plant defense and reproduction arise not only from resource allocation but also from interactions among mutualists. Indirect costs of plant defense by ants, for example, can outweigh benefits if ants deter pollinators. Plants can dissuade ants from occupying flowers, but such arrangements may break down when novel ant partners infiltrate mutualisms. Here, we examine how floral visitation by ants affects pollination services when the invasive Argentine ant (Linepithema humile) replaces a native ant species in a food-for-protection mutualism with the coast barrel cactus (Ferocactus viridescens), which, like certain other barrel cacti, produces extrafloral nectar. We compared the effects of floral visitation by the Argentine ant with those of the most prevalent native ant species (Crematogaster californica). Compared to C. californica, the Argentine ant was present in higher numbers in flowers. Cactus bees (Diadasia spp.), the key pollinators in this system, spent less time in flowers when cacti were occupied by the Argentine ant compared to when cacti were occupied by C. californica. Presumably as a consequence of decreased duration of floral visits by Diadasia, cacti occupied by L. humile set fewer seeds per fruit and produced fewer seeds overall compared to cacti occupied by C. californica. These data illustrate the importance of mutualist identity in cases where plants balance multiple mutualisms. Moreover, as habitats become increasingly infiltrated by introduced species, the loss of native mutualists and their replacement by non-native species may alter the shape of trade-offs between plant defense and reproduction.  相似文献   

13.
Ants, by consuming floral nectar, are potential parasites of plant–pollinator mutualisms, the persistence of which depends on mechanisms preventing ants from visiting flowers. Here I report the existence of such a mechanism which, uniquely, appears general in its effects. I show that two acacia–ant mutualists are repelled by floral tissue chemicals from their own host-plants as well as those from 13 other plant genera, only one of which associates symbiotically with ants. Furthermore, 18 of 25 ant species, from several subfamilies representing degrees of ant–plant interaction, are repelled by acacia floral chemicals. Thus floral ant repellents are widespread among plants, repel most ant species, and can prevent ants from parasitizing plant–pollinator mutualisms.  相似文献   

14.
Many mutualisms host "exploiter" species that consume the benefits provided by one or both mutualists without reciprocating. Exploiters have been widely assumed to destabilize mutualisms, yet they are common. We develop models to explore conditions for local coexistence of obligate plant/pollinating seed parasite mutualisms and nonpollinating exploiters. As the larvae of both pollinators and (at a later time) exploiters consume seeds, we examine the importance of intraspecific and (asymmetric) interspecific competition among and between pollinators and exploiters for achieving three-way coexistence. With weak intra- and interspecific competition, exploiters can invade the stable mutualism and coexist with the mutualists (either stably or with oscillations), provided the exploiters' intrinsic birthrate (b(E)) slightly exceeds that of the pollinators. At higher b(E), all three species go locally extinct. When facing strong interspecific competition, exploiters cannot invade and coexist with the mutualists if intraspecific competition in pollinators and exploiters is weak. However, strong intraspecific competition in pollinators and exploiters facilitates exploiter invasion and coexistence and greatly expands the range of b(E) over which stable coexistence occurs. Our results suggest that mutualist/exploiter coexistence may be more easily achieved than previously thought, thus highlighting the need for a better understanding of competition among and between mutualists and exploiters.  相似文献   

15.
Plants bearing extrafloral nectaries (EFNs) vary the secretion of nectar between day and night, which creates turnover in the composition of interacting ant species. Daily variation in the composition of ant species foraging on vegetation is commonly observed, but its mechanisms are poorly understood. We evaluated the daily variation in nectar availability and interspecific aggressiveness between ants as possible regulatory mechanisms of the turnover in ant–plant interactions. We hypothesized that (i) plants would interact with more ant species during periods of higher secretion of nectar and that (ii) aggressive ant species would compete for nectar, creating a daily turnover of species collecting nectar. We tested this hypothesis by measuring the production of nectar during the day and night and by experimentally removing EFNs of Bionia coriacea (=Camptosema coriaceum) (Nees & Mart.) Benth. (Fabaceae: Faboideae) plants in a Brazilian savanna (Cerrado). We then compared the abundance and composition of ant species between those treatments and during the day. Our results indicate that more ant workers forage on plants during the day, when nectar was sugary, while more ant species forage at night, when aggressiveness between ant species was lower. We also detected a day/night turnover in ant species composition. Ant species foraging for nectar during the day were not the same at night, and this turnover did not occur on plants without EFNs. Both dominant ant species, diurnal Camponotus crassus (Hymenoptera: Formicidae) and nocturnal Camponotus rufipes (Hymenoptera: Formicidae), were the most aggressive species, attacking other ants in their specific periods of forage while also being very aggressive toward each other. However, this aggressiveness did not occur in the absence of nectar, which allowed non‐aggressive nocturnal ant species to forage only during the daytime, disrupting the turnover. We conclude that extrafloral‐nectar presence and interspecific aggressiveness between ants, along with other environmental factors, are important mechanisms creating turnovers in ants foraging on plants.  相似文献   

16.
Mutualisms, cooperative interactions between species, generally involve an economic exchange: species exchange commodities that are cheap for them to provide, for ones that cannot be obtained affordably or at all. But these associations can only succeed if effective partners can be enticed to interact. In some mutualisms, partners can actively seek one another out. However, plants, which use mutualists for a wide array of essential life history functions, do not have this option. Instead, natural selection has repeatedly favoured the evolution of rewards – nutritional substances (such as sugar‐rich nectar and fleshy fruit) with which plants attract certain organisms whose feeding activities can then be co‐opted for their own benefit. The trouble with rewards, however, is that they are usually also attractive to organisms that confer no benefits at all. Losing rewards to ‘exploiters’ makes a plant immediately less attractive to the mutualists it requires; if the reward cannot be renewed quickly (or at all), then mutualistic service is precluded entirely. Thus, it is in plants' interests to either restrict rewards to only the most beneficial partners or somehow punish or deter exploiters. Yet, at least in cases where the rewards are highly nutritious, we can expect counter‐selection for exploiter traits that permit them to skirt such control. How, then, can mutualisms persist? In this issue, Orona‐Tamayo et al. ( 2013 ) describe a remarkable adaptation that safeguards one particularly costly reward from nonmutualists. Their study helps to explain the evolutionary success of an iconic interaction and illuminates one way in which mutualism as a whole can persist in the face of exploitation.  相似文献   

17.
Plants often associate with multiple arthropod mutualists. These partners provide important services to their hosts, but multiple interactions can constrain a plant's ability to respond to complex, multivariate selection. Here, we quantified patterns of genetic variance and covariance among rewards for pollination, biotic defence and seed dispersal mutualisms in multiple populations of Turnera ulmifolia to better understand how the genetic architecture of multiple mutualisms might influence their evolution. We phenotyped plants cultivated from 17 Jamaican populations for several mutualism and mating system-related traits. We then fit genetic variance–covariance (G) matrices for the island metapopulation and the five largest individual populations. At the metapopulation level, we observed significant positive genetic correlations among stigma–anther separation, floral nectar production and extrafloral nectar production. These correlations have the potential to significantly constrain or facilitate the evolution of multiple mutualisms in T. ulmifolia and suggest that pollination, seed dispersal and defence mutualisms do not evolve independently. In particular, we found that positive genetic correlations between floral and extrafloral nectar production may help explain their stable coexistence in the face of physiological trade-offs and negative interactions between pollinators and ant bodyguards. Locally, we found only small differences in G among our T. ulmifolia populations, suggesting that geographic variation in G may not shape the evolution of multiple mutualisms.  相似文献   

18.
Extrafloral nectar (EFN) plays an important role as plant indirect defence through the attraction of defending ants. Like all rewards produced in the context of a mutualism, however, EFN is in danger of being exploited by non-ant consumers that do not defend the plant against herbivores. Here we asked whether plants, by investing more in EFN, can improve their indirect defence, or rather increase the risk of losing this investment to EFN thieves. We used the obligate plant-ant Acacia-Pseudomyrmex system and examined experimentally in the field during the dry and the rainy seasons how variations in EFN secretion are related to (i) ant activity, to (ii) the ant-mediated defence against herbivores and (iii) the exploitation of EFN by non-ant consumers. Extrafloral investment enhanced ant recruitment and was positively related to the ant mediated defence against herbivores. The ant-mediated protection from exploiters also increased in proportion to the nectar sugar concentration. Although the daily peak of EFN production coincided with the highest activity of EFN thieves, Pseudomyrmex ferrugineus ants protected this resource effectively from exploiters. Nevertheless, the defensive effects by ants differed among seasons. During the dry season, plants grew slower and secreted more EFN than in the rainy season, and thus, experienced a higher level of ant-mediated indirect defence. Our results show that an increased plant investment in an indirect defence trait can improve the resulting defensive service against both herbivores and exploiters. EFN secretion by obligate ant-plants represents a defensive trait for which the level of investment correlates positively with the beneficial effects obtained.  相似文献   

19.
Mutualisms involve the exchange of resources and these resources attract exploiters and predators. Because predators may have a stronger effect either on mutualists or on exploiters, their net effect on the mutualism may be positive or negative. Ants and Ficus -associated wasps are a potential example. These wasps could represent sufficient food to ensure a permanent presence of predators. If this is the case then we may expect divergent selection (dependent on fig species) on traits facilitating or impeding ant predatory activity. Dioecious Ficus species in Brunei present the opportunity to determine whether presence of fig wasps on a tree ensures increased presence of ants because: (1) wasps are mainly present on male trees, thus allowing study of the effect of wasp abundance on ant presence; and (2) preliminary observations showed that ants present on trees were mainly predatory species that do not tend hemipterans. We show here, for several dioecious Ficus species, that many more ants were present on male trees than on female trees. Furthermore, these ants were mainly dominant predatory taxa that often nested in the male trees. Hence, wasps on male trees provide a sufficient resource in terms of quantity and reliability to ensure the continuous presence of dominant ants on the trees.  相似文献   

20.

Background and Aims

In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants. Consequently, HPI and EFN-bearing plants may experience non-additive benefits or costs when these groups co-occur. The outcomes of these interactions are likely to be influenced by variation in preferences among ants for honeydew vs. nectar. In this study, a test was made for non-additive effects on HPI and EFN-bearing plants resulting from sharing exotic ant guards. Preferences of the dominant exotic ant species for nectar vs. honeydew resources were also examined.

Methods

Ant access, HPI and nectar availability were manipulated on the EFN-bearing shrub, Morinda citrifolia, and ant and HPI abundances, herbivory and plant growth were assessed. Ant-tending behaviours toward HPI across an experimental gradient of nectar availability were also tracked in order to investigate mechanisms underlying ant responses.

Key Results

The dominant ant species, Anoplolepis gracilipes, differed from less invasive ants in response to multiple mutualists, with reductions in plot-wide abundances when nectar was reduced, but no response to HPI reduction. Conversely, at sites where A. gracilipes was absent or rare, abundances of less invasive ants increased when nectar was reduced, but declined when HPI were reduced. Non-additive benefits were found at sites dominated by A. gracilipes, but only for M. citrifolia plants. Responses of HPI at these sites supported predictions of the non-additive cost model. Interestingly, the opposite non-additive patterns emerged at sites dominated by other ants.

Conclusions

It was demonstrated that strong non-additive benefits and costs can both occur when a plant and herbivore share mutualist partners. These findings suggest that broadening the community context of mutualism studies can reveal important non-additive effects and increase understanding of the dynamics of species interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号