首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
1. Sternopygus macrurus were collected in Venezuela during the period of gonadal recrudescence in early or late dry season. Electric organ discharge (EOD) frequencies were recorded, blood samples were taken for analysis of steroid titers, and gonads were taken for determination of reproductive condition. 2. Mean EOD frequencies were significantly lower in males than in females in all samples. EOD frequency was inversely correlated with body length in males in late, but not early, dry season, and these parameters were never correlated in females. 3. Plasma levels of testosterone (T) and 11-ketotestosterone (11-KT), but not estradiol-17 beta (E2), were inversely correlated with EOD frequency in males. No 11-KT was observed in plasma of females, and plasma levels of T and E2 in females were comparable to those of males. Neither T nor E2 were correlated with EOD frequency in females. 4. Testes collected in late dry season were more mature than those from early dry season; androgen levels and EOD frequency were correlated with testicular maturity. Ovaries collected in early dry season were immature, while those from late dry season were more mature. There was no relationship between EOD frequency and stage of ovarian development. 5. These results suggest that plasma androgens modulate EOD frequency in males during the reproductive season and that plasma E2 has little relationship to EOD frequency in either sex.  相似文献   

2.
Sex steroids were initially defined by their actions shaping sexually dimorphic behavioral patterns. More recently scientists have begun exploring the role of steroids in determining sex differences in behavioral plasticity. We investigated the role of androgens in potentiating circadian, pharmacological, and socially-induced plasticity in the amplitude and duration of electric organ discharges (EODs) of female gymnotiform fish. We first challenged female fish with injections of serotonin (5-HT) and adrenocorticotropic hormone (ACTH), and with social encounters with female and male conspecifics to characterize females' pre-implant responses to each treatment. Each individual was then implanted with a pellet containing dihydrotestosterone (DHT) concentrations of 0.0, 0.03, 0.1, 0.3, or 1.0 mg 10 g− 1 body weight. We then repeated all challenges and compared each female's pre- and post-implant responses. The highest implant dose enhanced EOD duration modulations in response to all challenge types, responses to male challenge were also greater at the second highest dose, and responses to ACTH challenge were enhanced in females receiving all but the smallest dose (and blank) implants. Alternatively, amplitude modulations were enhanced only during female challenges and only when females received the highest DHT dose. Our results highlight the differential regulation of EOD duration and amplitude, and suggest that DHT enhanced the intrinsic plasticity of the electrogenic cells that produce the EOD rather than modifying behavioral phenotypes. The relative failure of DHT to enhance EOD amplitude plasticity also implies that factors other than androgens are involved in regulating/promoting male-typical EOD circadian rhythms and waveform modulations displayed in social contexts.  相似文献   

3.
The weakly electric fish, Apteronotus leptorhynchus, produces a wave-like electric organ discharge (EOD) utilized for electrolocation and communication. Both sexes communicate by emitting chirps: transient increases in EOD frequency. In males, chirping behavior and the jamming avoidance response (JAR) can be evoked by an artificial EOD stimulus delivered to the water at frequencies 1–10 Hz below the animal's own EOD. In contrast, females rarely chirp in response to this stimulus even though they show consistent JARs. To investigate whether this behavioral difference is hormone dependent, we implanted females with testosterone (T) and monitored their chirping activity over a 5 week period. Our findings indicate that elevations in blood levels of T cause an enhancement of chirping behavior and a lowering of basal EOD frequency in females. Elevated blood levels of T also appear to modulate the quality of chirps produced by hormone treated females. The effects of T on female chirping behavior and basal EOD frequency appear specific, since the magnitude of the JAR was not affected by the hormonal treatment. These findings suggest that seasonal changes in circulating concentrations of T may regulate behavioral changes in female chirping behavior and basal EOD frequency.Abbreviations DHT dihydrotestosterone - E estradiol - EOD elecdric organ discharge - GSI gonadal size index - JAR jamming avoidance response - PPn prepacemaker nucleus - T testosterone  相似文献   

4.
I recorded the electric organ discharges (EODs) of 331 immature Brachyhypopomus pinnicaudatus 6–88 mm long. Larvae produced head-positive pulses 1.3 ms long at 7 mm (6 days) and added a second, small head-negative phase at 12 mm. Both phases shortened duration and increased amplitude during growth. Relative to the whole EOD, the negative phase increased duration until 22 mm and amplitude until 37 mm. Fish above 37 mm produced a “symmetric” EOD like that of adult females. I stained cleared fish with Sudan black, or fluorescently labeled serial sections with anti-desmin (electric organ) or anti-myosin (muscle). From day 6 onward, a single electric organ was found at the ventral margin of the hypaxial muscle. Electrocytes were initially cylindrical, overlapping, and stalk-less, but later shortened along the rostrocaudal axis, separated into rows, and formed caudal stalks. This differentiation started in the posterior electric organ in 12-mm fish and was complete in the anterior region of fish with “symmetric” EODs. The lack of a distinct “larval” electric organ in this pulse-type species weakens the hypothesis that all gymnotiforms develop both a temporary (larval) and a permanent (adult) electric organ. Accepted: 1 March 1997  相似文献   

5.
The African electric fish Gymnarchus niloticus rhythmically emits electric organ discharges (EODs) for communication and navigation. The EODs are generated by the electric organ in the tail in response to the command signals from the medullary pacemaker complex, which consists of a pacemaker nucleus (PN), two lateral relay nuclei (LRN) and a medial relay nucleus (MRN). The premotor structure and its modulatory influences on the pacemaker complex have been investigated in this paper. A bilateral prepacemaker nucleus (PPn) was found in the area of the dorsal posterior nucleus (DP) of the thalamus by retrograde labeling from the PN. No retrogradely labeled neurons outside the pacemaker complex were found after tracer injection into the LRN or MRN. Accordingly, anterogradely labeled terminal fibers from PPn neurons were found only in the PN. Iontophoresis of l-glutamate into the region of the PPn induced EOD interruptions. Despite the exclusive projection of the PPn neurons to the PN, extracellular and intracellular recordings showed that PN neurons continue their firing while MRN neurons ceased their firing during EOD interruption. This mode of EOD interruption differs from those found in any other weakly electric fishes in which EOD cessation mechanisms have been known.  相似文献   

6.
The communication signals of electric fish can be dynamic, varying between the sexes on a circadian rhythm and in response to social and environmental cues. In the gymnotiform fish Brachyhypopomus gauderio waveform shape of the electric organ discharge (EOD) is regulated by steroid and peptide hormones. Furthermore, EOD amplitude and duration change on different timescales and in response to different social stimuli, suggesting that they are regulated by different mechanisms. Little is known about how androgen and peptide hormone systems interact to regulate signal waveform. We investigated the relationship between the androgens testosterone (T) and 11-ketotestosterone (11-KT), the melanocortin peptide hormone α-MSH, and their roles in regulating EOD waveform of male B. gauderio. Males were implanted with androgen (T, 11-KT, or blank), and injected with α-MSH before and at the peak of androgen effect. We compared the effects of androgen implants and social interactions by giving males a size-matched male stimulus with which they could interact electrically. Social stimuli and both androgens increased EOD duration, but only social stimuli and 11-KT elevated amplitude. However, no androgen enhanced EOD amplitude to the extent of a social stimulus, suggesting that a yet unidentified hormonal pathway regulates this signal parameter. Additionally, both androgens increased response of EOD duration to α-MSH, but only 11-KT increased response of EOD amplitude to α-MSH. Social stimuli had no effect on EOD response to α-MSH. The finding that EOD amplitude is preferentially regulated by 11-KT in B. gauderio may provide the basis for independent control of amplitude and duration.  相似文献   

7.
Summary A classical conditioning paradigm was used to test the ability of Sternopygus macrurus to detect EOD-like stimuli (sine waves) of different frequencies. The behavioral tuning curves were quite close in shape to tuning curves based on single-unit recordings of T units, although the sensitivity at all frequencies was much greater. The behavioral curves showed notches of greatly reduced sensitivity when the test frequency was equal to, or twice the EOD frequency. The EOD of each of the fish was eliminated by lesioning the medullary pacemaker nucleus, and the fish were retested. The resulting tuning curves were nearly the same in shape as those of the EOD-intact individuals, but the PMN-lesioned fish showed an overall reduction of sensitivity of 30 dB. The EOD appears to enhance sensitivity by placing the summed stimulus (test stimulus + fish's EOD) at an amplitude where T units are maximally sensitive to small temporal modulations in the fish's own EOD. Peripheral tuning appears to limit the ability of males to detect the EOD of females, since these are, on average, an octave higher in frequency than the male EOD, while the peak sensitivity of the male occurs 5–10 Hz above its own EOD frequency.Abbreviations EOD electric organ discharge - PMN pacemaker nucleus - BF best frequency - DF difference frequency  相似文献   

8.
There is a sexual dimorphism in the frequency of the quasi-sinusoidal electric organ discharge (EOD) of Sternopygus macrurus, with males, on average, an octave lower. EODs are detected by tuberous electroreceptor organs, which exhibit V-shaped frequency tuning with maximal sensitivity near the fish's own EOD frequency. This would seem to limit the ability of a fish to detect the EODs of opposite-sex conspecifics. However, electroreceptor tuning has always been based on single-frequency stimulation, while actual EOD detection involves the addition of a conspecific EOD to the fish's own. In the present study, recordings were made from single electroreceptive units while the fish were stimulated with pairs of sine waves: one (S1) representing the fish's own EOD added to a second (S2) representing a conspecific EOD. T unit response was easily predicted by assuming that the electroreceptor acts as a linear filter in series with a threshold-sensitive spike initiator. P unit response was more complex, and unexpectedly high sensitivity was found for frequencies of S2 well displaced from the fish's EOD frequency. For both P and T units, detection thresholds for S2 were much lower when added to S1, than when presented alone.  相似文献   

9.
The weakly electric fish from the main channel of the Amazon river, Sternarchogiton nattereri, offers a striking case of morphological variation. Females and most males are toothless, or present only few minute teeth on the mandible, whereas some males exhibit exaggerated, spike-like teeth that project externally from the snout and chin. Androgens are known to influence the expression of sexually dimorphic traits, and might be involved in tooth emergence. In this study we assess the relationship in S. nattereri between morphological variation, 11 ketotestosterone (11-KT) and testosterone (T). We also examine relationships of morphology and androgen levels with electric organ discharge (EOD) frequency, reproductive condition, and seasonality. Our main finding is that male morph categories differed significantly in plasma concentrations of 11-KT, with toothed males showing higher levels of 11-KT than toothless males. By contrast, we did not detect statistical differences in T levels among male morph categories. Reproductive condition, as measured by gonadosomatic indexes (GSI), differed across two sample years, increased as the season progressed, and was higher in toothed males than in non-toothed males. EOD frequency was higher in toothed males than in either toothless males or females. Taken together, our findings suggest that S. nattereri male sexual characters are regulated by 11-KT levels, and that both morphology and androgens interact with reproductive condition and EOD frequency in ways that vary within and across reproductive seasons.  相似文献   

10.
Serotonin (5-HT) is an indirect modulator of the electric organ discharge (EOD) in the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Injections of 5-HT enhance EOD waveform "masculinity", increasing both waveform amplitude and the duration of the second phase. This study investigated the pharmacological identity of 5-HT receptors that regulate the electric waveform and their effects on EOD amplitude and duration. We present evidence that two sets of serotonin receptors modulate the EOD in opposite directions. We found that the 5HT1AR agonist 8-OH-DPAT diminishes EOD duration and amplitude while the 5HT1AR antagonist WAY100635 increases these parameters. In contrast, the 5HT2R agonist alpha-Me-5-HT increases EOD amplitude but not duration, yet 5-HT-induced increases in EOD duration can be inhibited by blocking 5HT2A/2C-like receptors with ketanserin. These results show that 5-HT exerts bi-directional control of EOD modulations in B. pinnicaudatus via action at receptors similar to mammalian 5HT1A and 5HT2 receptors. The discordant amplitude and duration response suggests separate mechanisms for modulating these waveform parameters.  相似文献   

11.
Summary The electric organ discharge (EOD) potential was mapped on the skin and midplane of several Apteronotus leptorhynchus. The frequency components of the EOD on the surface of the fish have extremely stable amplitude and phase. However, the waveform varies considerably with different positions on the body surface. Peaks and zero crossings of the potential propagate along the fish's body, and there is no point where the potential is always zero. The EOD differs significantly from a sinusoid over at least one third of the body and tail. A qualitative comparison between fish showed that each individual had a unique spatiotemporal pattern of the EOD potential on its body.The potential waveforms have been assembled into high temporal and spatial resolution maps which show the dynamics of the EOD. Animation sequences and Macintosh software are available by anonymous ftp (mordor.cns.caltech.edu; cd/pub/ElectricFish).We interpret the EOD maps in terms of ramifications on electric organ control and electroreception. The electrocytes comprising the electric organ do not all fire in unison, indicating that the command pathway is not synchronized overall. The maps suggest that electroreceptors in different regions fulfill different computational roles in electroreception. Receptor mechanisms may exist to make use of the phase information or harmonic content of the EOD, so that both spatial and temporal patterns could contribute information useful for electrolocation and communication.Abbreviations EOD electric organ discharge - EO electric organ - CV coefficient of variance  相似文献   

12.
In electric fish, Apteronotus leptorhynchus, both long-term social interaction and cortisol treatment potentiates chirping, an electrocommunication behavior that functions in aggression. Chirping is controlled by the diencephalic prepacemaker nucleus (PPn-C) located just lateral to the ventricle. Cells born in adult proliferative zones such as the periventricular zone (PVZ) can migrate along radial glial fibers to other brain regions, including the PPn-C. We examined whether social interactions or cortisol treatment influenced cell addition and radial glia fiber formation by (1) pairing fish (4 or 7 days) or (2) implanting fish with cortisol (7 or 14 days). Adult fish were injected with bromodeoxyuridine 3 days before sacrifice to mark cells that were recently added. Other fish were sacrificed after 1 or 7 days of treatment to examine vimentin immunoreactivity (IR), a measure of radial glial fiber density. Paired fish had more cell addition than isolated fish at 7 days, coinciding temporally with the onset of socially induced increase in chirping behavior. Paired fish also had higher vimentin IR at 1 and 7 days. For both cell addition and vimentin IR, the effect was regionally specific, increasing in the PVZ adjacent to the PPn-C, but not in surrounding regions. Cortisol increased cell addition at 7 days, correlating with the onset of cortisol-induced changes in chirping, and in a regionally specific manner. Cortisol for 14 days increased cell addition, and cortisol for 7 days increased vimentin IR but in a regionally non-specific manner. The correlation between treatment-induced changes in chirping and regionally specific increases in cell addition, and radial glial fiber formation suggests a causal relationship between such behavioral and brain plasticity in adults, but this hypothesis will require further testing.  相似文献   

13.
In wave-type weakly electric fish, two distinct types of primary afferent fibers are specialized for separately encoding modulations in the amplitude and phase (timing) of electrosensory stimuli. Time-coding afferents phase lock to periodic stimuli and respond to changes in stimulus phase with shifts in spike timing. Amplitude-coding afferents fire sporadically to periodic stimuli. Their probability of firing in a given cycle, and therefore their firing rate, is proportional to stimulus amplitude. However, the spike times of time-coding afferents are also affected by changes in amplitude; similarly, the firing rates of amplitude-coding afferents are also affected by changes in phase. Because identical changes in the activity of an individual primary afferent can be caused by modulations in either the amplitude or phase of stimuli, there is ambiguity regarding the information content of primary afferent responses that can result in ‘phantom’ modulations not present in an actual stimulus. Central electrosensory neurons in the hindbrain and midbrain respond to these phantom modulations. Phantom modulations can also elicit behavioral responses, indicating that ambiguity in the encoding of amplitude and timing information ultimately distorts electrosensory perception. A lack of independence in the encoding of multiple stimulus attributes can therefore result in perceptual illusions. Similar effects may occur in other sensory systems as well. In particular, the vertebrate auditory system is thought to be phylogenetically related to the electrosensory system and it encodes information about amplitude and timing in similar ways. It has been well established that pitch perception and loudness perception are both affected by the frequency and intensity of sounds, raising the intriguing possibility that auditory perception may also be affected by ambiguity in the encoding of sound amplitude and timing.  相似文献   

14.
When animals are under stress, glucocorticoids commonly inhibit adult neurogenesis by acting through glucocorticoid receptors (GRs). However, in some cases, conditions that elevate glucocorticoids promote adult neurogenesis, and the role of glucocorticoid receptors in these circumstances is not well understood. We examined the involvement of GRs in social enhancement of brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus. In this species, long-term social interaction simultaneously elevates plasma cortisol, enhances brain cell addition and increases production of aggressive electrocommunication signals (“chirps”). We implanted isolated and paired fish with capsules containing nothing (controls) or the GR antagonist, RU486, recorded chirp production and locomotion for 7 d, and measured the density of newborn cells in the periventricular zone. Compared to isolated controls, paired controls showed elevated chirping in two phases: much higher chirp rates in the first 5 h and moderately higher nocturnal rates thereafter. Treating paired fish with RU486 reduced chirp rates in both phases to those of isolated fish, demonstrating that GR activation is crucial for socially induced chirping. Neither RU486 nor social interaction affected locomotion. RU486 treatment to paired fish had a partial effect on cell addition: paired RU486 fish had less cell addition than paired control fish but more than isolated fish. This suggests that cortisol activation of GRs contributes to social enhancement of cell addition but works in parallel with another GR-independent mechanism. RU486 also reduced cell addition in isolated fish, indicating that GRs participate in the regulation of cell addition even when cortisol levels are low.  相似文献   

15.
Serotonin modulates agonistic and reproductive behavior across vertebrate species. 5HT1A and 5HT1B receptors mediate many serotonergic effects on social behavior, but other receptors, including 5HT2 receptors, may also contribute. We investigated serotonergic regulation of electrocommunication signals in the weakly electric fish Apteronotus leptorhynchus. During social interactions, these fish modulate their electric organ discharges (EODs) to produce signals known as chirps. Males chirp more than females and produce two chirp types. Males produce high-frequency chirps as courtship signals; whereas both sexes produce low-frequency chirps during same-sex interactions. Serotonergic innervation of the prepacemaker nucleus, which controls chirping, is more robust in females than males. Serotonin inhibits chirping and may contribute to sexual dimorphism and individual variation in chirping. We elicited chirps with EOD playbacks and pharmacologically manipulated serotonin receptors to determine which receptors regulated chirping. We also asked whether serotonin receptor activation generally modulated chirping or more specifically targeted particular chirp types. Agonists and antagonists of 5HT1B/1D receptors (CP-94253 and GR-125743) did not affect chirping. The 5HT1A receptor agonist 8OH-DPAT specifically increased production of high-frequency chirps. The 5HT2 receptor agonist DOI decreased chirping. Receptor antagonists (WAY-100635 and MDL-11939) opposed the effects of their corresponding agonists. These results suggest that serotonergic inhibition of chirping may be mediated by 5HT2 receptors, but that serotonergic activation of 5HT1A receptors specifically increases the production of high-frequency chirps. The enhancement of chirping by 5HT1A receptors may result from interactions with cortisol and/or arginine vasotocin, which similarly enhance chirping and are influenced by 5HT1A activity in other systems.  相似文献   

16.
In contrast to mammals, teleost fish exhibit an enormous potential to regenerate adult spinal cord tissue after injury. However, the mechanisms mediating this ability are largely unknown. Here, we analyzed the major processes underlying structural and functional regeneration after amputation of the caudal portion of the spinal cord in Apteronotus leptorhynchus, a weakly electric teleost. After a transient wave of apoptotic cell death, cell proliferation started to increase 5 days after the lesion and persisted at high levels for at least 50 days. New cells differentiated into neurons, glia, and ependymal cells. Retrograde tract tracing revealed axonal re-growth and innervation of the regenerate. Functional regeneration was demonstrated by recovery of the amplitude of the electric organ discharge, a behavior generated by spinal motoneurons. Computer simulations indicated that the observed rates of apoptotic cell death and cell proliferation can adequately explain the re-growth of the spinal cord. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Electric signals of mormyrid fishes have recently been described from several regions of Africa. Members of the Mormyridae produce weak electric organ discharges (EODs) as part of a specialized electrosensory communication and orientation system. Sympatric species often express distinctive EODs, which may contribute to species recognition during mate choice in some lineages. Striking examples of interspecific EOD variation within assemblages have been reported for two monophyletic radiations: the Paramormyrops of Gabon and the Campylomormyrus of Lower Congo. Here, we describe a speciose assemblage of Petrocephalus in the Lékoli River system of Odzala National Park, Republic of Congo. This widespread genus comprises the subfamily (Petrocephalinae) that is the sister group to all other mormyrids (Mormyrinae). Eleven Petrocephalus species were collected in Odzala, five of which are not described taxonomically. We quantify EOD variation within this assemblage and show that all eleven species produce EOD waveforms of brief duration (species means range from 144 to 663 μs) compared to many other mormyrids. We also present reconstructed phylogenetic relationships among species based on cytochrome b sequences. Discovery of the Odzala assemblage greatly increases the number of Petrocephalus species for which EODs and DNA sequence data are available, permitting a first qualitative comparison between mormyrid subfamilies of the divergence patterns that have been described within lineages. We find that the Petrocephalus assemblage in Odzala is not a monophyletic radiation. Genetic divergence among Petrocephalus species often appears higher than among Paramormyrops or Campylomormyrus species. In contrast, results of this study and others suggest that Petrocephalus may generally exhibit less interspecific EOD divergence, as well as smaller sex differences in EOD waveforms, compared to Paramormyrops and Campylomormyrus. We discuss possible causes and consequences of EOD diversification patterns observed within mormyrid subfamilies as a framework for future comparative studies of signal evolution using this emerging model system.  相似文献   

18.
The dwarf stonebasher sibling species Pollimyrus castelnaui and P. marianne use differences in the electric organ discharges (EODs) for species recognition. As EOD waveforms are affected by water conductivity changes, the reliability of species recognition might be impeded due to natural variability in the environment. EODs of P. castelnaui (N = 8) and P. marianne (N = 8) under high (250 muS/cm) and low (25 muS/cm) conductivity were recorded and compared. Local peaks of the EODs of both species were significantly and predictably modified due to the conductivity change but species-specific differences were always recognizable. The duration of the EODs was not influenced by the conductivity change. Temperature alterations modified the duration in a linear relationship, allowing the determination of Q (10) values (1.6 for P. castelnaui's and 1.7 for P. marianne's EODs). As the species-specific differences are not masked by conductivity effects, EOD discrimination seems to be a reliable species recognition mechanism under natural circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号