首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA transfection of Escherichia coli by electroporation   总被引:17,自引:0,他引:17  
Electroporation was applied to transfection and transformation of Escherichia coli. Efficient transfer of DNA was achieved by a single voltage pulse at 2.5 kV (initial electric field strength = 6.25 kV/cm), with a 25 microF capacitor. As the recipient for transfecting DNA in the electroporation, spheroplasts, EDTA-treated cells and osmotically shocked bacteria were inferior to intact E. coli. Various parameters affecting the transfection efficiency were defined including growth phase of recipient cells, concentrations of DNA and cells, temperature and additions. In most strains tested, electroporation was far more efficient than Ca2+-dependent transfection (transformation). Various aspects of the electroporation-mediated DNA uptake are discussed.  相似文献   

2.
Simian Cos-1 cells were transfected electrically with the plasmid pCH110 carrying the beta-galactosidase gene. The efficiency of transfection was determined by a transient expression of this gene. When the plasmid was introduced into a cell suspension 2 s after pulse application, the transfection efficiency was shown to be less than 1% as compared with a prepulse addition of DNA. Addition of DNAase to suspension immediately after a pulse did not decrease transfection efficiency, thus the time of DNA translocation was estimated to be less than 3 s. The use of electric treatment medium, in which the postpulse colloid-osmotic cell swelling was prevented, did not affect the transfection efficiency. These results contradict both assumptions of free DNA diffusion into cell through the long-lived pores and of involvement of osmotic effects in DNA translocation. Transfection of cells in monolayer on a porous film allowed creation of the spatial asymmetry of cell-plasmid interaction along the direction of electric field applied. A pulse with a polarity inducing DNA electrophoresis toward the cells resulted in the 10-fold excess of transfection efficiency compared with a pulse with reverse polarity. Ficoll (10%) which increases medium viscosity or Mg2+ ions (10 mM) which decrease the effective charge of DNA, both reduced transfection efficiency 2-3-fold. These results prove a significant role of DNA electrophoresis in the phenomenon considered. The permeability of cell membranes for an indifferent dye was shown to increase noticeably if the cells were pulsed in the presence of DNA. This indicates a possible interaction of DNA translocated with the pores in an electric field, that results in pore expansion.  相似文献   

3.
Electric parameters, osmolality, temperature, and pH of the suspending medium and the growth phase of cells, etc., are known to influence the efficiency of the pulsed electric field (PEF)-induced DNA transfection of cells. PEF-induced transfection of Escherichia coli JM105 by plasmid DNA PUC18, PUC19, PBR322, and PMSG has been used as a model system to establish quantitative relationships between these parameters and transfection efficiency. The main findings are summarized for experiments using unipolar square wave PEF. (a) For a given field strength (up to 6 kV/cm), the transfection efficiency (TE) was linearly dependent on the pulse width (up to 1 ms). (b) When field strength is fixed, Log [TE] correlated with the number of pulses applied. Similarly, when field duration was fixed, Log [TE] correlated with the number of pulses. (c) In the absence of MgCl2, TE showed a maximal value at 50 mM sucrose and was reduced by several fold at lower and higher sucrose concentrations. Cell survival was nearly constant in the range 1-300 mM sucrose. (d) E. coli in the early and mid-exponential growth phases was more susceptible to PEF for DNA transfection than it was in the stationary phase. (e) For a given set of electric parameters, TE was the highest at neutral pH and was greatly reduced at acidic and alkaline pH. (f) Increasing the temperature from 0 to 37 degrees C resulted in the reduction of TE by three orders of magnitude. This could reflect a rapid shrinking of pores at higher temperatures. (g) TE was inversely proportional to the square of the size of the plasmid DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The study examines the relationship between electric field-induced conductivity and permeability changes in a biological membrane (electroporation) and the amplitude-duration parameters of the externally applied electric field. These reversible changes were characterized in giant photosynthetic membrane vesicles by means of the calibrated response of an intrinsic voltage-sensitive optical probe (electrophotoluminescence) and by the uptake studies of dextran-FITC fluorescent probes of different molecular weights. We quantitatively monitored electric field-induced conductivity changes by translating the electrophotoluminescence changes into conductivity changes. This was carried out by measuring the attenuation of the electrophotoluminescent signal after the addition of known amounts of gramicidin. The results demonstrate that electroporation involves the reversible formation of discrete holes in the membrane having radii <5.8 nm. The total area of the electric field-induced holes was 0.075% of the total surface of the vesicle. The formation of the electropores was affected differently by the electric field strength than by its duration. Increase in electric field strength caused increase in the total area of the vesicle that undergoes electroporation. Increase in the duration of the electric field increases the area of single electropores. Each of the two electric parameters can be rate limiting for the dynamics of electropore formation. These results are in accordance with the model of electroporation based on electric field-induced expansion of transient aqueous holes.  相似文献   

5.
A study of mechanisms of electrotransfection using Escherichia coli (JM 105) and the plasmid DNA pBR322 as model system is reported. pBR322 DNA carries an ampicillin resistance gene: E. coli transformants are conveniently assayed by counting colonies in a selection medium containing 50 micrograms/ml ampicillin and 25 micrograms/ml streptomycin. Samples not exposed to the electric field showed no transfection. In the absence of added cations, the plasmid DNA remains in solution and the efficiency of the transfection was 2 x 10(6)/micrograms DNA for cells treated with a 8-kV/cm, 1-ms electric pulse (square wave). DNA binding to the cell membrane greatly enhanced the efficiency of the transfection and this binding was increased by milimolar concentrations of CaCl2, MgCl2, or NaCl (CaCl2 greater than MgCl2 greater than NaCl). For example, in the presence of 2.5 mM CaCl2, 55% of the DNA added bound to E. coli and the transfection efficiency was elevated by two orders of magnitude (2 x 10(8)/micrograms DNA). These ions did not cause cell aggregation. With a low ratio of DNA to cells (less than 1 copy/cell), transfection efficiency correlated with the amount of DNA bound to the cell surface irrespective of salts. When the DNA binding ratio approached zero, the transfection efficiency was reduced by two to three orders, indicating that DNA entry by diffusion through the bulk solution was less than 1%. Square pulses of up to 12 kV/cm and 1 ms were used in the electrotransfection experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
M. Pollak  H. A. Glick 《Biopolymers》1977,16(5):1007-1013
We measured electrically induced changes of some optical properties of DNA solutions. These were the absorption coefficient and the reduced dichroism. The electric fields were applied in the form of 50–300-μsec-long pulses of varying field strength, up to 20 kV/cm. Changes of the optical properties were studied during the pulse. Solutions of varying DNA and salt concentrations were used. The qualitative predictions expected from the theory of electrically induced partial denaturation of the DNA were all observed. These are: (1) a decrease of the reduced dichroism at high fields; (2) a concurrent increase in the absorption coefficient; (3) a critical field above which effect (1) and (2) begin to occur; (4) a decrease of the magnitude of the above effects with increasing salt concentration; (5) a return to the status quo ante after short pulses.  相似文献   

7.
The effects of intense submicrosecond electrical pulses on cells   总被引:5,自引:0,他引:5       下载免费PDF全文
A simple electrical model for living cells predicts an increasing probability for electric field interactions with intracellular substructures of both prokaryotic and eukaryotic cells when the electric pulse duration is reduced into the sub-microsecond range. The validity of this hypothesis was verified experimentally by applying electrical pulses (durations 100 micros-60 ns, electric field intensities 3-150 kV/cm) to Jurkat cells suspended in physiologic buffer containing propidium iodide. Effects on Jurkat cells were assessed by means of temporally resolved fluorescence and light microscopy. For the longest applied pulses, immediate uptake of propidium iodide occurred consistent with electroporation as the cause of increased surface membrane permeability. For nanosecond pulses, more delayed propidium iodide uptake occurred with significantly later uptake of propidium iodide occurring after 60 ns pulses compared to 300 ns pulses. Cellular swelling occurred rapidly following 300 ns pulses, but was minimal following 60 ns pulses. These data indicate that submicrosecond pulses achieve temporally distinct effects on living cells compared to microsecond pulses. The longer pulses result in rapid permeability changes in the surface membrane that are relatively homogeneous across the cell population, consistent with electroporation, while shorter pulses cause surface membrane permeability changes that are temporally delayed and heterogeneous in their magnitude.  相似文献   

8.
Extremely large but very short (20 kV/cm, 300 ns) electric field pulses were reported recently to non-thermally destroy melanoma tumors. The stated mechanism for field penetration into cells is pulse characteristic times faster than charge redistribution (displacement currents). Here we use a multicellular model with irregularly shaped, closely spaced cells to show that instead overwhelming pore creation (supra-electroporation) is dominant, with field penetration due to pores (ionic conduction currents) during most of the pulse. Moreover, the model's maximum membrane potential (about 1.2 V) is consistent with recent experimental observations on isolated cells. We also use the model to show that conventional electroporation resulting from 100 microsecond, 1 kV/cm pulses yields a spatially heterogeneous electroporation distribution. In contrast, the melanoma-destroying pulses cause nearly homogeneous electroporation of cells and their nuclear membranes. Electropores can persist for times much longer than the pulses, and are likely to be an important mechanism contributing to cell death.  相似文献   

9.
E M el-Mashak  T Y Tsong 《Biochemistry》1985,24(12):2884-2888
Temperature and electric field are known to alter the permeability of the bilayer membrane in phospholipid vesicles. A study of cation selectivity of these membrane pores is reported for multilamellar liposomes (MLV) and unilamellar large vesicles (ULV, 95 +/- 5 nm diameter) of dipalmitoylphosphatidylcholine (DPPC). The permeability of ULV to Rb+ was 1.0 X 10(-6) micrograms/s at 22 degrees C and increased to 1.1 X 10(-5) micrograms/s at the gel to liquid-crystalline transition temperature (Tm) of the bilayer, at 42 degrees C. The permeability of ULV to Rb+ continued to increase beyond the Tm and reached 1.0 X 10(-4) micrograms/s at 56 degrees C, a 100-fold increase over the permeability at 22 degrees C. In contrast, the permeability of ULV to Na+ showed a local maximum of 6.0 X 10(-6) micrograms/s at 42 degrees C and decreased at temperatures higher or lower than the Tm. For MLV, the permeability to both Rb+ and Na+ peaked dramatically at the phase transition temperature, 42 degrees C, and subsided at lower and higher temperatures. When ULV were exposed to an electric field, the permeability to Rb+, Na+, and sucrose surged at a field strength of 30 kV/cm; 30 kV/cm can induce a transmembrane potential of 210 mV. In ULV, the electrically perforated lipid bilayer exhibited selectivity for Rb+ over Na+ only at a narrow electric field range, between 31 and 33 kV/cm. For MLV, no well-defined breakdown voltage was recorded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We have established a simple and efficient method of electroporation applicable to gene transfer in mammalian cells. It uses a single decaying pulse of around 1 ms at room temperature in the medium such as Saline G appropriate for repair of pulse-induced pores in the plasma membrane. Many types of cells (both floating and adherent) could be transformed efficiently by the electric field strengths between 1-2 kV/cm. For instance P3U1, mouse myeloma cell, could be transformed by a pulse at 1.2 kV/cm with the frequency of 10(-2) per viable cells and with survivals of 90%. We have applied these conditions to transform tsBN2 cell line of BHK21/13 by a cosmid clone (approximately 45 kb) carrying the human gene complementing to tsBN2 mutation. Significant levels of transformation were observed for this gene. Since this gene can only work as a whole size (approximately 30 kb), the results show that electroporation is useful to introduce cosmid or possibly genomic DNA to mammalian cells.  相似文献   

11.
Electrostimulated uptake of DNA by liposomes   总被引:4,自引:0,他引:4  
High molecular mass DNA was efficiently taken up by large unilamellar vesicles exposed to a short pulse of electric field (0.1-1 ms) with an intensity as high as 12.5 kV/cm. The efficiency of uptake increased significantly in presence of Mg2+ ions and was approximately 0.6 and 1.5 micrograms of DNA per mumol of lipid for T7 DNA and plasmid pBR 322, respectively. The results presented indicate that DNA was taken up as a result of the electrostimulated formation of endosome-like vesicles rather than via field-induced membrane pores.  相似文献   

12.
Summary An electric field-mediated transformation (i.e. electroporation) was performed to determine optimal conditions for P. putida transformation. The effects of culture age, electroporation buffer composition, electric field strength, pulse time constant and DNA concentration on transformation efficiency were examined. When plasmid DNA of 8 to 11 kb in size was used with an electroporation buffer containing 1 mM HEPES (pH 7.0), maximum transformation efficiency of 1.0 × 107 transformants/g DNA was obtained at field strength of 12 kV/cm with pulse time of 2.5 millisecond. A linear increase in the number of transformants was observed as DNA concentration was increased over 4 orders of magnitude. A linear relationship was observed between growth phase and transformation efficiency up to OD600 = 2.0. This reliable and simple method should be useful for introduction of plasmid DNA into intact P. putida cells.  相似文献   

13.
Nanosecond bipolar pulse cancellation, a recently discovered phenomenon, is modulation of the effects of a unipolar electric pulse exposure by a second pulse of opposite polarity. This attenuation of biological response by reversal of the electric field direction has been reported with pulse durations from 60 ns to 900 ns for a wide range of endpoints, and it is not observed with conventional electroporation pulses of much longer duration (>100 μs) where pulses are additive regardless of polarity. The most plausible proposed mechanisms involve the field-driven migration of ions to and from the membrane interface (accelerated membrane discharge). Here we report 2 ns bipolar pulse cancellation, extending the scale of previously published results down to the time required to construct the permeabilizing lipid electropores observed in molecular simulations. We add new cancellation endpoints, and we describe new bipolar pulse effects that are distinct from cancellation. This new data, which includes transport of cationic and anionic permeability indicators, fluorescence of membrane labels, and patterns of entry into permeabilized cells, is not readily explained by the accelerated discharge mechanism. We suggest that multi-step processes that involve first charged species movement and then responses of cellular homeostasis and repair mechanisms are more likely to explain the broad range of reported results.  相似文献   

14.
To apply recombinant DNA techniques for genetic manipulation of the industrially important lactococci, an efficient and reliable high-frequency transformation system must be available. High-voltage electric pulses have been demonstrated to enhance uptake of DNA into protoplasts and intact cells of numerous gram-negative and gram-positive microorganisms. The objective of this study was to develop a system for electroporating intact cells of Lactococcus lactis subsp. lactis LM0230 (previously designated Streptococcus lactis LM0230) with a commercially available electroporation unit (BTX Transfector 100; BTX, Inc., San Diego, Calif.). Parameters which influenced the efficiency of transformation included growth phase and final concentration of cells, ionic strength of the suspending medium, concentration of plasmid DNA, and the amplitude and duration of the pulse. Washed suspensions of intact cells suspended in deionized distilled water were subjected to one high-voltage electric pulse varying in voltage (300 to 900 V corresponding to field strengths of 5 to 17 kV/cm) and duration (100 microseconds to 1 s). Transformation efficiencies of 10(3) transformants per microgram of DNA were obtained when dense suspensions (final concentration, 5 x 10(10) CFU/ml) of stationary-phase cells were subjected to one pulse with a peak voltage of 900 V (field strength, 17 kV/cm) and a pulse duration of 5 ms in the presence of plasmid DNA. Dilution of porated cells in broth medium followed by an expression period of 2 h at 30 degrees C was beneficial in enhancing transformation efficiencies. Plasmids ranging in size from 9.8 to 30.0 kilobase pairs could be transformed by this procedure.  相似文献   

15.
The kinetics of electrically induced fusion of human erythrocyte ghosts were monitored by the Tb/DPA and ANTS/DPX fluorescence fusion assays. Ghosts were aligned by dielectrophoresis using a 3-MHz 350-V/cm alternating field and were fused by single 15- or 50-microseconds electric field pulses of amplitude 2.5-5.0 kV/cm. Fusion was detected immediately after the pulse. The peak fluorescence change due to fusion was always obtained within 7 s of pulse application, and was highest for a 5.0 kV/cm 15-microseconds pulse. Probe leakage was measured separately and became apparent only 2-3 s after the initiation of fusion. Increasing pulse amplitudes produced higher fusion yields but produced more leakage from the fusion products. 50-microseconds pulses produced less fusion, resulting from a disruption of the dielectrophoretic alignment by fluid turbulence immediately after pulse application. Probe leakage was observed only when pulse application was preceded by dielectrophoresis, suggesting that close membrane positioning allows for additional membrane destabilization caused by the high field pulse. The fluorescence kinetics are interpreted using a simplified model depicting three major types of events: (a) fusion without observable leakage, (b) fusion followed by probe leakage, and (c) contact-related leakage from ghosts which do not undergo contents mixing.  相似文献   

16.
Electric Field Pulses Can Induce Apoptosis   总被引:5,自引:0,他引:5  
Injection of electric field pulses of high intensity (kV/cm) and short duration (microsecond range) into a cell suspension results in a temporary increase of the membrane permeability due to a reversible electric breakdown of the cell membrane. Here we demonstrate that application of supercritical field pulses between 4.5 and 8.1 kV/cm strength and 40 μsec duration induce typical features of apoptosis in Jurkat T-lymphoblasts and in HL-60 cells including DNA fragmentation and cleavage of the poly(ADP ribose) polymerase. Apoptosis induction did not depend on the presence of any particular electrolyte in the extracellular medium. However, no apoptosis was observed in solutions without a minimum amount of salt. Apoptotic DNA fragmentation was prevented by the caspase inhibitor zVAD. Received: 16 December 1998/Revised: 24 February 1999  相似文献   

17.
Electroporation is a simple and versatile approach for DNA transfer but needs to be optimized for specific cells. We conducted square wave electroporation experiments for rat dental follicle cells under various conditions. These experiments indicated that the optimal electroporation electric field strength was 375 V/cm, and that plasmid concentrations greater than 0.18 μg/μL were required to achieve high transfection efficiency. BSA or fetal bovine serum in the pulsing buffer significantly improved cell survival and increased the number of transfected cells. The optimal pulsing duration was in the range of 45–120 ms at 375 V/cm. This electroporation protocol can be used to deliver DNA into dental follicle cells to study the roles of candidate genes in regulating tooth eruption. This is the first report showing the transfection of dental follicle cells using electroporation. The parameters determined in this study are likely to be applied to transfection of other fibroblast cells.  相似文献   

18.
Membrane electroporation, vesicle shape deformation and aggregation of small, NaCl-filled lipid vesicles (of radius a = 50 nm) in DC electric fields was characterized using conductometric and turbidimetrical data. At pulse durations tE≤ 55 ± 5 ms the increase in the conductivity of the vesicle suspension is due to the field-induced efflux of electrolyte through membrane electropores. Membrane electroporation and Maxwell stress on the vesicle membrane lead to vesicle elongation concomitant with small volume reduction (up to 0.6% in an electric field of E = 1 MV m–1). At tE > 55 ± 5 ms, further increases in the conductivity and the optical density suggest electroaggregation and electrofusion of vesicles. The conductivity changes after the electric pulse termination reflect salt ion efflux through slowly resealing electropores. The analysis of the volume reduction kinetics yields the bending rigidity κ = (4.1 ± 0.3) ⋅ 10–20 J of the vesicle membrane. If the flow of Na+ and Cl ions from the vesicle interior is treated in terms of Hagen-Poiseuille's equation, the number of permeable electropores is N = 39 per vesicle with mean pore radius rp = 0.85 ± 0.05 nm at E = 1 MVm–1 and tE≤ 55 ± 5 ms. The turbidimetric and conductometric data suggest that small lipid vesicles (a ≤ 50 nm) are not associated with extensive membrane thermal undulations or superstructures. In particular with respect to membrane curvature, the vesicle results are suggestive for the design and optimization of electroporative delivery of drugs and genes to cell tissue at small field strengths (≤1 MVm–1) and large pulse durations (≤100 ms). Received: 8 July 1997 / Accepted: 15 September 1997  相似文献   

19.
The influence of electric field treatments on the interaction of large unilamellar vesicles (liposomes) with animal cells was monitored by the fluorescence assay based on the use of the liposomes loaded by a dye 1-hydroxypyrene-1,3,6-trisulfonic acid (HPTS). It was shown that application of a short electric pulse (100 microseconds of 3-4 kV/cm) to the suspension of cells in presence of vesicles resulted in significant (more than 2 times) increase of the fluorescence associated with cells. The pH-sensitivity of the excitation spectrum of the dye and its interaction with the quencher were used to determine the nature of the phenomenon as the increase of the liposome binding onto the cell surface but not the consequence of a promotion of liposome uptake into the cells by endocytosis. The higher affinity for the liposome caused by the electric field has a lifetime of several minutes. The possible relation of the effect described to the electroporation of cell membranes and to macroscopic changes in membrane structure is discussed.  相似文献   

20.
We developed a multi-channel electroporation microchip made of polydimethylsiloxane (PDMS) and glass for gene transfer in mammalian cells. This chip produces multiple electric field gradients in a single microchip by varying the lengths of the microchannels from 2 to 4 cm. Electric fields of 0.65, 0.57, 0.49, 0.41, and 0.33 kV/cm were simultaneously produced in a single chip when the voltage of 1.3 kV was applied. We transferred enhanced green fluorescent protein genes (pEGFP) into HEK-293 and CHO cells, which were cultured within the microchannels. The feasibility of our device was demonstrated because it was able to produce five different transfection rates and survival rates at different electric fields produced in a single microchip. This system is expected to optimize the experimental conditions in gene transfection research more easily and faster than conventional electroporation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号