首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An activity stain to detect glutamine transaminase K subjected to nondenaturing polyacrylamide gel electrophoresis (ND-PAGE) was developed. The gel is incubated with a reaction mixture containing L-phenyl-alanine, alpha-keto-gamma-methiolbutyrate (alpha KMB), glutamate dehydrogenase, phenazine methosulfate (PMS) and nitroblue tetrazolium (NBT). Glutamine transaminase K catalyzes a transamination reaction between phenylalanine and alpha KMB. The resultant methionine is a substrate of glutamate dehydrogenase. The NADH formed in the oxidative deamination of methionine reacts with PMS and NBT to form a blue band on the surface of the gel coincident with glutamine transaminase K activity. Cysteine S-conjugate beta-lyase activity is detected in the gel by incubating the gel with a reaction mixture containing alpha KMB (to ensure maintenance of the enzyme in the pyridoxal 5'-phosphate form), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), PMS, and NBT. The products of the lyase reaction interact with PMS and NBT to form a blue dye coincident with the lyase activity. In addition, a new assay procedure for measuring cysteine S-conjugate beta-lyase activity was devised. This procedure couples pyruvate formation from DCVC to the alanine dehydrogenase reaction. Preparations of purified rat kidney glutamine transaminase K yield a single protein band on ND-PAGE (apparent Mr approximately 95,000). This band coincides with both the cysteine S-conjugate beta-lyase and glutamine transaminase K activities. Activity staining showed that homogenates of rat kidney, liver, skeletal muscle, and heart possess a glutamine transaminase K/cysteine S-conjugate beta-lyase activity with an Rf value on ND-PAGE identical to that of purified rat kidney glutamine transaminase K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Cysteine conjugate beta-lyase activity from rat kidney cortex was found in the cystosolic and mitochondrial fractions. With 2 mM S-(2-benzothiazolyl)-L-cysteine as the substrate, approximately two-thirds of the total beta-lyase activity was present in the cytosolic fraction. The kinetics of beta-lyase activity with three cysteine S-conjugates were different in the cytosolic and mitochondrial fractions, and the mitochondrial beta-lyase was much more sensitive to inhibition by aminooxyacetic acid than was the cytosolic activity. These results indicate that the beta-lyase activities in the two subcellular fractions are catalyzed by distinct enzymes. Nephrotoxic cysteine S-conjugates of halogenated hydrocarbons that require bioactivation by cysteine conjugate beta-lyase (S-(1,2-dichlorovinyl)-L-cysteine (DCVC), S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine, CTFC) were potent inhibitors of state 3 respiration in rat kidney mitochondria. Fractionation of mitochondria by digitonin treatment and comparison with marker enzyme distributions showed that the mitochondrial beta-lyase activity is localized in the outer mitochondrial membrane. Inhibition of the beta-lyase prevented the mitochondrial toxicity of DCVC and CTFC, and nonmetabolizable, alpha-methyl analogues of DCVC and CTFC were not toxic. Neither DCVC nor CTFC was toxic to mitoplasts, indicating that activation by the beta-lyase occurs on the outer membrane and may be essential for the expression of toxicity; in contrast, the direct acting nephrotoxin S-(2-chloroethyl)-DL-cysteine was toxic to both mitochondria and mitoplasts. Thus, the suborganelle localization of DCVC and CTFC bioactivation correlates with the observed pattern of toxicity.  相似文献   

3.
Mutagenicity of amino acid and glutathione S-conjugates in the Ames test   总被引:1,自引:0,他引:1  
The mutagenicity of the glutathione S-conjugate S-(1,2-dichlorovinyl)glutathione (DCVG), the cysteine conjugates S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and S-(1,2-dichlorovinyl)-DL-alpha-methylcysteine (DCVMC), and the homocysteine conjugates S-(1,2-dichlorovinyl)-L-homocysteine (DCVHC) and S-(1,2-dichlorovinyl)-DL-alpha-methylhomocysteine (DCVMHC) was investigated in Salmonella typhimurium strain TA2638 with the preincubation assay. DCVC was a strong, direct-acting mutagen; the cysteine conjugate beta-lyase inhibitor aminooxyacetic acid decreased significantly the number of revertants induced by DCVC; rat renal mitochondria (11,000 X g pellet) and cytosol (105,000 X g supernatant) with high beta-lyase activity increased DCVC mutagenicity at high DCVC concentrations. DCVG was also mutagenic without the addition of mammalian activating enzymes; the presence of low gamma-glutamyltransferase activity in bacteria, the reduction of DCVG mutagenicity by aminooxyacetic acid, and the potentiation of DCVG mutagenicity by rat kidney mitochondria and microsomes (105,000 X g pellet) with high gamma-glutamyltransferase activity indicate that gamma-glutamyltransferase and beta-lyase participate in the metabolism of DCVG to mutagenic intermediates. The homocysteine conjugate DCVHC was only weakly mutagenic in the presence of rat renal cytosol, which exhibits considerable gamma-lyase activity, this mutagenic effect was also inhibited by aminooxyacetic acid. The conjugates DCVMC and DCVMHC, which are not metabolized to reactive intermediates, were not mutagenic at concentrations up to 1 mumole/plate. The results demonstrate that gamma-glutamyltransferase and beta-lyase are the key enzymes in the biotransformation of cysteine and glutathione conjugates to reactive intermediates that interact with DNA and thereby cause mutagenicity.  相似文献   

4.
S-(1,2-Dichlorovinyl)glutathione (DCVG) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) produced time- and concentration-dependent cell death in isolated rat kidney proximal tubular cells. AT-125 blocked and glycylglycine potentiated DCVG toxicity, indicating that metabolism by gamma-glutamyltransferase is required. S-(1,2-Dichlorovinyl)-L-cysteinylglycine, a putative metabolite of DCVG, also produced cell death, which was prevented by 1,10-phenanthroline, phenylalanylglycine, and aminooxyacetic acid, inhibitors of aminopeptidase M, cysteinylglycine dipeptidase, and cysteine conjugate beta-lyase, respectively. Aminooxyacetic acid and probenecid protected against DCVC toxicity, indicating a role for metabolism by cysteine conjugate beta-lyase and organic anion transport, respectively. DCVC produced a small decrease in cellular glutathione concentrations and did not change cellular glutathione disulfide concentrations or initiate lipid peroxidation. DCVC caused a large decrease in cellular glutamate and ATP concentrations with a parallel decrease in the total adenine nucleotide pool; these changes were partially prevented by aminooxyacetic acid. Both DCVG and DCVC inhibited succinate-dependent oxygen consumption, but DCVC had no effect when glutamate + malate or ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine were the electron donors. DCVC inhibited mitochondrial, but not microsomal, Ca2+ sequestration. These alterations in mitochondrial function were partially prevented by inhibition of DCVG and DCVC metabolism and were strongly correlated with decreases in cell viability, indicating that mitochondria may be the primary targets of nephrotoxic cysteine S-conjugates.  相似文献   

5.
6.
A cell line derived from pig kidney, LLC-PK1, was grown in a culture system in which the cells express morphological and biochemical characteristics of the proximal tubule. This model was used to investigate the mechanism of S-cysteine conjugate toxicity and the role of glutathione conjugate metabolism. LLC-PK1 cells have the degradative enzymes of the mercapturate pathway, and S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-L-glutathione are toxic. S-(1,2-Dichlorovinyl)-L-glutathione is not toxic when the cells are pretreated with AT-125, an inhibitor of gamma-glutamyl transpeptidase. The cells respond to a variety of toxic cysteine conjugates. Cysteine conjugate beta-lyase activity is not detectable by standard assays, but can be measured using radiolabeled S-(1,2-dichlorovinyl)-L-cysteine. Pyruvate stimulates the beta-elimination reaction with S-(1,2-dichlorovinyl)-L-cysteine as substrate 2-3-fold. The data suggest that a side transamination reaction regulates the flux of substrate through the beta-elimination pathway; therefore, cysteine conjugate beta-lyase in LLC-PK1 cells may be regulated by transamination, and measurement of lyase activity in some systems may require the presence of alpha-ketoacids. Aminoxyacetic acid blocks both the metabolism of S-(1,2-dichlorovinyl)-L-cysteine to a reactive species which covalently binds to cellular macromolecules and toxicity. Glutathione inhibits the binding of the sulfur containing cleavage fragment to acid insoluble material in vitro. The data provide direct evidence that S-(1,2-dichlorovinyl)-L-cysteine is metabolized to a reactive species which covalently binds to cellular macromolecules, and the binding is proportional to toxicity.  相似文献   

7.
An enzyme which actively transaminates L-cystathionine, L-cystine, L-lanthionine and S-aminoethyl-L-cysteine has been purified from bovine kidney. The transaminase appears to be pure up to 90% and probably consists of two subunits of similar molecular mass of about 47 kDa. The enzymatic products arising from the transamination of L-cystathionine and related compounds spontaneously cyclize into ketiminic structures, which are the immediate precursors of unusual imino acids recovered in biological materials. The specificity towards other amino acid and oxo acid acceptors is similar to the specificity exhibited by rat kidney glutamine transaminase. This suggests that the sulfur amino acid transaminations that have been described could be performed by the bovine kidney glutamine transaminase.  相似文献   

8.
Glutamine transaminase K (GTK), which is a freely reversible glutamine (methionine) aromatic amino acid aminotransferase, is present in most mammalian tissues, including brain. Quantitatively, the most important amine donor in vivo is glutamine. The product of glutamine transamination (i.e., alpha-ketoglutaramate; alphaKGM) is rapidly removed by cyclization and/or conversion to alpha-ketoglutarate. Transamination is therefore "pulled" in the direction of glutamine utilization. Major biological roles of GTK are to maintain low levels of phenylpyruvate and to close the methionine salvage pathway. GTK also catalyzes the transamination of cystathionine, lanthionine, and thialysine to the corresponding alpha-keto acids, which cyclize to ketimines. The cyclic ketimines and several metabolites derived therefrom are found in brain. It is not clear whether these compounds have a biological function or are metabolic dead-ends. However, high-affinity binding of lanthionine ketimine (LK) to brain membranes has been reported. Mammalian tissues possess several enzymes capable of catalyzing transamination of kynurenine in vitro. Two of these kynurenine aminotransferases (KATs), namely KAT I and KAT II, are present in brain and have been extensively studied. KAT I and KAT II are identical to GTK and alpha-aminoadipate aminotransferase, respectively. GTK/KAT I is largely cytosolic in kidney, but mostly mitochondrial in brain. The same gene codes for both forms, but alternative splicing dictates whether a 32-amino acid mitochondrial-targeting sequence is present in the expressed protein. The activity of KAT I is altered by a missense mutation (E61G) in the spontaneously hypertensive rat. The symptoms may be due in part to alteration of kynurenine transamination. However, owing to strong competition from other amino acid substrates, the turnover of kynurenine to kynurenate by GTK/KAT I in nervous tissue must be slow unless kynurenine and GTK are sequestered in a compartment distinct from the major amino acid pools. The possibility is discussed that the spontaneous hypertension in rats carrying the GTK/KAT I mutation may be due in part to disruption of glutamine transamination. GTK is one of several pyridoxal 5'-phosphate (PLP)-containing enzymes that can catalyze non-physiological beta-elimination reactions with cysteine S-conjugates containing a good leaving group attached at the sulfur. These elimination reactions may contribute to the bioactivation of certain electrophiles, resulting in toxicity to kidney, liver, brain, and possibly other organs. On the other hand, the beta-lyase reaction catalyzed by GTK may be useful in the conversion of some cysteine S-conjugate prodrugs to active components in vivo. The roles of GTK in (a) brain nitrogen, sulfur, and aromatic amino acid/kynurenine metabolism, (b) brain alpha-keto acid metabolism, (c) bioactivation of certain electrophiles in brain, (d) prodrug targeting, and (e) maintenance of normal blood pressure deserve further study.  相似文献   

9.
Selenocysteine Se-conjugates (e.g. methylselenocysteine) have been shown to be potent chemopreventive and chemoprotective agents, and inducers of apoptosis. Although the mechanism of action remains to be elucidated, beta-elimination of these compounds by beta-lyase enzymes into corresponding selenols, pyruvate and ammonia is thought to be critical. This study describes in vitro beta-lyase activity in nine rat organs using three selenocysteine Se-conjugates and S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine. For all substrates the highest beta-elimination rates were found in kidney, followed by liver, while brain, spleen, heart, large and small intestine, thyroid and lung were of minor importance. Since liver plays an important role in beta-elimination, hepatic beta-lyase activity was extensively studied using 23 selenocysteine Se-conjugates and S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine and was compared with previously obtained renal beta-lyase data. The results showed that hepatic beta-lyase activities were 4-25-fold lower than the corresponding renal beta-lyase activities. Hepatic beta-elimination of the substrates appeared to be exclusively catalyzed by the pyridoxal 5'-phosphate-dependent beta-lyase enzyme kynureninase. Studies performed with human hepatic cytosols of three individuals showed that hepatic beta-lyase activity was 2-5-fold higher when compared with the previously obtained human renal activity. Significant correlation was obtained between human hepatic beta-lyase activities of three individuals. The relevance of this data for using SeCys-conjugates as chemopreventive and a chemoprotective agent is discussed. Based on the large differences in organ-selective beta-elimination and specific beta-lyase activity between rat and humans, the rat might not be a good model to investigate nephrotoxicity of cysteine S-conjugates, and chemoprevention and chemoprotection of SeCys-conjugates in man.  相似文献   

10.
Nephrotoxic cysteine conjugates kill cells after they are metabolized by the enzyme cysteine conjugate beta-lyase to reactive fragments which bind to cellular macromolecules. We have investigated the cellular events which occur after the binding and lead ultimately to cell death in renal epithelial cells. Using S-(1,2-dichlorovinyl)-L-cysteine (DCVC) as a model conjugate, we found that the phenolic antioxidants N,N'-diphenyl-p-phenylenediamine (DPPD), butylated hydroxyanisole, butylated hydroxytoluene, propyl galate, and butylated hydroxyquinone, and the iron chelator deferoxamine inhibited the cytotoxicity significantly. Among the five antioxidants, DPPD was most potent. DPPD blocked DCVC toxicity over an extended time period, and the rescued cells remained functional as measured by protein synthetic activity. DPPD was able to block the toxicity of two other toxic cysteine conjugates S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine and S-(1,1,2,2-tetrafluoroethyl)-L-cysteine. In addition to LLC-PK1 cells, DPPD also protected freshly isolated rat kidney epithelial cells in suspension and in primary culture. In suspension cells, DPPD was effective at low doses of DCVC (25-50 microM) but not at high concentrations (250-500 microM). DPPD inhibition was not due to an inactivation of beta-lyase or a decrease in the binding of [35S]DCVC metabolites to cellular macromolecules and occurred at a step after the activation of the toxins. During DCVC treatment, lipid peroxidation products were detectable prior to cell death. DPPD blocked lipid peroxidation over the whole time course. Depletion of nonprotein thiols also occurred prior to cell death. DPPD did not prevent the loss of nonprotein thiols. However, the sulfhydryl-reducing agent DTT blocked lipid peroxidation and toxicity at a step after the activation of DCVC. Therefore, it appears that cysteine conjugates kill renal epithelial cells by a combination of covalent binding, depletion of nonprotein thiols, and lipid peroxidation.  相似文献   

11.
The metabolism of beta-lyase and the mutagenicity of the synthetic cysteine conjugates S-1,2-dichlorovinylcysteine (DCVC), S-1,2,2-trichlorovinylcysteine (TCVC), S-1,2,3,4,4-pentachlorobuta-1,3-dienylcysteine (PCBC) and S-3-chloropropenylcysteine (CPC) were investigated in Salmonella typhimurium strains TA100, TA2638 and TA98. The bacteria contained significantly higher concentrations of beta-lyase than mammalian subcellular fractions. Bacterial 100,000 X g supernatants cleaved benzthiazolylcysteine to equimolar amounts of mercaptobenzthiazole and pyruvate. DCVC, TCVC and PCBC produced a linear time-dependent increase in pyruvate formation when incubated with bacterial 100,000 X g supernatants; pyruvate formation was inhibited by the beta-lyase inhibitor aminooxyacetic acid (AOAA). CPC was not cleaved by bacterial enzymes to pyruvate. DCVC, TCVC and PCBC were mutagenic in three strains of S. typhimurium (TA100, TA2638 and TA98) in the Ames-test without addition of mammalian subcellular fractions; their mutagenicity was decreased by the addition of AOAA to the preincubation mixture. CPC was not mutagenic in any of the strains of bacteria tested. These results indicate that beta-lyase plays a key role in the metabolism and mutagenicity of haloalkenylcysteines when tested in S. typhimurium systems. The demonstrated formation in mammals of the mutagens DCVC, TCVC and PCBC during biotransformation of trichloroethylene (Tri), tetrachloroethylene (Tetra) and hexachlorobutadiene (HCBD) may provide a molecular explanation for the nephrocarcinogenicity of these compounds.  相似文献   

12.
The ability of S-(1,2-dichlorovinyl)-L-cysteine (DCVC), S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), S-(1,2,3,4,4-pentachlorobutadienyl)-L-cysteine (PCBC), S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine (CTFEC) and S-(2-chloroethyl)-L-cysteine (CEC) to induce DNA repair was investigated in LLC-PK1, a cultured line of porcine kidney tubular epithelial cells. DNA repair due to exposure of the cells to the S-conjugates was determined as unscheduled DNA synthesis (UDS) after inhibition of replicative DNA synthesis in confluent LLC-PK1 monolayers. DCVC, TCVC and PCBC induced dose-dependent UDS in LLC-PK1 at concentrations which did not impair the viability of the cells compared to untreated controls; higher concentrations were cytotoxic, resulting in lactate dehydrogenase leakage into the medium. Cell death was also induced by CTFEC, which failed to exert genotoxicity. CEC induced the highest response among these cysteine conjugates without impairing cell viability. Inhibition of cysteine conjugate beta-lyase with aminooxyacetic acid abolished the effects of DCVC, TCVC, PCBC and CTFEC but did not influence the genotoxicity of CEC.  相似文献   

13.
Abstract: Certain halogenated hydrocarbons, e.g., dichlo-roacetylene, are nephrotoxic to experimental animals and neurotoxic to humans; cysteine-S-conjugate β-lyases may play a role in the nephrotoxicity. We now show that with dichlorovinylcysteine as substrate the only detectable cysteine-S-conjugate β-lyase in rat brain homogenates is identical to glutamine transaminase K. The predominant (mitochondrial) form of glutamine transaminase K in rat brain was shown to be immunologically distinct from the predominant (cytosolic) form of the enzyme in rat kidney. Glutamine transaminase K and ω-amidase (constituents of the glutaminase II pathway) activities were shown to be widespread throughout the rat brain. However, the highest specific activities of these enzymes were found in the choroid plexus. The high activity of glutamine transaminase K in choroid plexus was also demonstrated by means of an immunohistochemical staining procedure. Glutamine transaminase K has a broad specificity toward amino acid and α-keto acid substrates. The ω-amidase also has a broad specificity; presumably, however, the natural substrates are α-ketoglutaramate and α-ketosuccinamate, the α-keto acid analogues of glutamine and aspara-gine, respectively. The high activities of both glutamine transaminase K and ω-amidase in the choroid plexus suggest that the two enzymes are linked metabolically and perhaps are coordinately expressed in that organ. The data suggest that the natural substrate of glutamine transaminase K in rat brain is indeed glutamine and that the metabolism of glutamine through the glutaminase II pathway (i.e., l -glutamine and α-keto acid α-ketoglutarate and l -amino acid + ammonia) is an important function of the choroid plexus. Moreover, the present findings also suggest that any explanation of the neurotoxicity of halogenated xenobiotics must take into account the role of glutamine transaminase K and its presence in the choroid plexus.  相似文献   

14.
Asparagine transaminase has been purified about 200-fold from rat liver. The enzyme has a broad specificity toward both amino acids and alpha-keto acids. Thus, amino acids substituted in the beta position such as asparagine, S-methylcysteine, phenylalanine, cysteine, serine, and aspartate are substrates. The enzyme is also active with alanine, methionine, homoserine, alpha-aminobutyrate, glutamine, and leucine. The enzyme has a high affinity for glyoxylate but the affinity falls off markedly through the series glyoxylate, pyruvate, alpha-ketoburyrate, alpha-Keto acids substituted in the beta or gamma position, such as alpha-ketosuccinamate, phenylpyruvate, p-hydroxyphenylpyruvate, alpha-keto-gamma-methiolburyrate, and alpha-keto-gamma-hydroxybutyrate, are substrates for the enzyme. Amino acids or alpha-keto acids possessing a branch point at the beta carbon are inactive. Kinetic analysis of the asparagine glyoxylate transamination reaction is consistent with a ping-pong mechanism.  相似文献   

15.
Cysteine-conjugate beta-lyase (EC 4.4.1.13) was purified about 880-fold from human liver obtained post mortem. The purification procedure included (NH4)2SO4 precipitation, chromatography on DEAE-cellulose and hydroxyapatite, gel filtration on Sephadex G-200, and chromatofocusing. The purified enzyme cleaves the C-S bond of several S-aryl-L-cysteines to yield equimolar amounts of thiols, pyruvic acid and ammonia via an alpha beta-elimination reaction. The Mr of the enzyme was estimated to be 88,000 by gel filtration. The enzyme is thermolabile, has a pH optimum of 8.5, and an apparent Km of 0.7 mM towards S-(p-bromophenyl)-L-cysteine. The enzyme requires pyridoxal 5'-phosphate as a cofactor, and hence the enzyme activity was completely abolished by hydroxylamine. No effect of EDTA or thiol-blocking reagents was observed on the activity of the enzyme.  相似文献   

16.
L-Thiomorpholine-3-carboxylic acid (L-TMC) is a cyclized analog of S-(2-chloroethyl)-L-cysteine, which is cytotoxic in vitro and nephrotoxic in vivo. To determine whether L-TMC may play a role in S-(2-chloroethyl)-L-cysteine-induced toxicity, the cytotoxicity of L-TMC was studied in isolated rat kidney cells. L-TMC produced time- and concentration-dependent cytotoxicity. Probenecid, an inhibitor of the renal anion transport system, and L-alpha-hydroxyisocaproic acid, a substrate for L-amino acid oxidase, inhibited L-TMC-induced cytotoxicity. Rat kidney cytosol catalyzed the metabolism of L-TMC to a product absorbing at 300 nm. The increase in absorbance at 300 nm was accompanied by an increase in oxygen consumption and was inhibited by L-alpha-hydroxyisocaproic acid; moreover, the absorbance of the metabolite was quenched by addition of potassium cyanide or sodium borohydride, which indicated the formation of an imine. When L-TMC was incubated with rat kidney cytosol and sodium borodeuteride was added at the end of the incubation period, analysis by gas chromatography/mass spectrometry of the tert-butyldimethylsilyl ester of L-TMC showed the formation of [2H]TMC, indicating the intermediate formation of the imine 5,6-dihydro-2H-1,4-thiazine-3-carboxylic acid; chemically synthesized TMC imine showed similar behavior. The enzyme responsible for the metabolism of L-TMC was purified from rat kidney and was identified as L-amino acid oxidase. These observations indicate a role for L-amino acid oxidase in the bioactivation and cytotoxicity of L-TMC.  相似文献   

17.
A transaminase which catalyses the monodeamination of L-cystathionine was purified 1100-fold with a yield of 15% from bovine liver. The monoketoderivative of cystathionine spontaneously produces the cyclic ketimine. Other sulfur-containing amino acids related to cystathionine such as cystine, lanthionine and aminoethylcysteine were also substrates for the enzyme. The relative molecular mass of the enzyme was determined to be 94 000 with a probable dimeric structure formed of identical subunits. The isoelectric point of the enzyme was at pH 5.0 and the maximal enzymatic activity was found at pH 9.0--9.2. Kinetic parameters for cystathionine and for the other sulfur amino acids as well as for some alpha-keto acids were also determined. Among the natural amino acids tested, glutamine, methionine and histidine were the best amino donors. The enzyme exhibited maximal activity toward phenylpyruvate and alpha-keto-gamma-methiolbutyrate as amino acceptors. The broad specificity of the enzyme leads us to infer that the cystathionine transaminase is very similar or identical to glutamine transaminase.  相似文献   

18.
Cysteine conjugate beta-lyase is a name applied to enzymes which cleave the S-cysteine conjugates of some xenobiotics to pyruvate, ammonia, and a thiol. Recently, several laboratories have characterized these enzymes from kidney, liver, and bacterial sources in an effort to understand their role in the genesis of novel sulfur-containing metabolites of xenobiotics and in the toxicity of some S-cysteine conjugates. Kynureninase is an enzyme which plays a key role in the biosynthesis of nicotinamide ribonucleotides. This investigation demonstrates that rat hepatic cysteine conjugate beta-lyase is the same enzyme as kynureninase. Both activities copurify on ion exchange, hydroxylapatite, and molecular exclusion chromatography. The subunit composition of enzyme prepared by two different methods is identical, Mr = 55,000. The Km values for 3-OH-kynurenine and kynurenine are 13 and 400 microM, respectively. Kynurenine and 3-hydroxykynurenine inhibit cysteine conjugate beta-lyase activity. Inactivation of the enzyme by substrates which undergo beta-elimination results in loss of kynureninase activity, but kynurenine does not inactivate the enzyme. Both enzyme activities react with anti-cysteine conjugate beta-lyase antibody. Product inhibitors of kynureninase, anthranilate, and 3-hydroxyanthranilate are also inhibitors of cysteine conjugate beta-lyase. Heat inactivation at 70 degrees C produced coincident loss of both activities. The enzyme has an absorption maximum at 432 nm suggesting a bound pyridoxal phosphate. These data show that at least one cysteine conjugate beta-lyase is a pyridoxal phosphate enzyme with a biological function other than xenobiotic metabolism. The enzyme can catalyze two distinct types of reactions, i.e. beta-elimination and the kynureninase reaction.  相似文献   

19.
Glutamine transaminase from rat brain was purified to a high degree. The isolated enzyme appeared to be homogeneous by electrophoresis on polyacrylamide gel. The molecular weight was found to be approximately 98 000; the enzyme is probably composed of two subunits. The absorbance maximum at 410 nm and the inhibition by carbonyl reagents are strong indications for the presence of pyridoxal phosphate. The enzyme showed maximal activity at pH 9.0 to 9.2. Of the amino acids tested, none could replace glutamine in the transamination reaction. Glyoxylate and phenylpyruvate was found to be the best amino acceptors. The Km values for glutamine and glyoxylate were 0.6 and 1.5 mM, respectively.  相似文献   

20.
The transformation of the hexachloro-1,3-butadiene metabolite S-(1,2,3,4,4-pentachlorobuta-1,3-dienyl)-L-cysteine (PCBC) by bacterial cysteine conjugate beta-lyase (beta-lyase) and by N-dodecylpyridoxal bromide (PLP-Br) was investigated using GC/MS to identify products formed. PCBC was transformed by both bacterial beta-lyase and PLP-Br to the major products 2,3,4,4-tetrachlorobutenoic acid and 2,3,4,4-tetrachlorothiobutenoic acid, and to the minor metabolites trichloroacetic acid and S-(1,2,3,4,4-pentachlorobuta-1,3-dienyl)-mercaptoacetic acid. In the presence of diethylamine as model nucleophile, PLP-Br transformed PCBC to yield 2,3,4,4-tetrachlorothiobutenoic acid diethylamide; attempts to trap 1,2,3,4,4-pentachlorobutadienyl thiol, the initial metabolite formed by beta-elimination from PCBC, were unsuccessful. The results obtained suggest that the formation of a thioacylating intermediate (a thioketene or a thiono acyl chloride) may be the decisive reaction during the beta-lyase dependent activation of PCBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号