共查询到20条相似文献,搜索用时 15 毫秒
1.
An important feature of Parkinson's disease is the degeneration of dopaminergic neurons in the Substantia Nigra pars compacta . Paraquat (PQ) and MPTP cause the selective degeneration of these neurons in vivo , and combining PQ with maneb exacerbates that pathology. Elucidation of the cell death mechanisms involved is important to understand how multiple environmental toxins may contribute to sporadic Parkinson's disease. We recently reported that PQ induces neuronal apoptosis through Bak activation, in contrast to MPP+ , the toxic metabolite of MPTP, which relies on Bax and p53. Here we show that individually PQ and maneb activate Bak, but together they trigger Bax-dependent cell death. Focusing on mechanisms responsible for this synergy, we found that maneb+PQ increased the expression of three strong Bak inhibitors, Bfl-1, Bcl-xL and Mcl-1, and also induced Bax activators that included Bik and Bim. Those responses favor Bax-dependent MOMP and apoptosis. SiRNA knockdown of Bax and Bak confirmed that individually PQ and maneb induce Bak-dependent cell death, but together they block the Bak pathway and activate apoptosis through Bax. 相似文献
2.
3.
Increased interactions between pro-apoptotic BH3-only proteins and anti-apoptotic Bcl-2 family proteins at mitochondria result in tumor initiation, progression and resistance to traditional chemotherapy. Drugs that mimic the BH3 region are expected to release BH3-only proteins from anti-apoptotic proteins, inducing apoptosis in some cancer cells and sensitizing others to chemotherapy. Recently, we applied fluorescence lifetime imaging microscopy and fluorescence resonance energy transfer to measure protein:protein interactions for the Bcl-2 family of proteins in live MCF-7 cells using fluorescent fusion proteins. While the BH3-proteins bound to Bcl-XL and Bcl-2, the BH3 mimetic ABT-737 inhibited binding of only Bad and tBid, but not Bim. We have extended our studies by investigating ABT-263, a clinical drug based on ABT-737. We show that the inhibitory effects and pattern of the two drugs are comparable for both Bcl-XL and Bcl-2. Furthermore, we show that mutation of a conserved residue in the BH3 region in Bad and tBid disrupted their interactions with Bcl-XL and Bcl-2, while the corresponding BimEL mutant showed no decrease in binding to these anti-apoptotic proteins. Therefore, in MCF-7 cells, Bim has unique binding properties compared with other BH3-only proteins that resist displacement from Bcl-XL and Bcl-2 by BH3 mimetics. 相似文献
4.
《Cell cycle (Georgetown, Tex.)》2013,12(19):3536-3542
Increased interactions between pro-apoptotic BH3-only proteins and anti-apoptotic Bcl-2 family proteins at mitochondria result in tumor initiation, progression and resistance to traditional chemotherapy. Drugs that mimic the BH3 region are expected to release BH3-only proteins from anti-apoptotic proteins, inducing apoptosis in some cancer cells and sensitizing others to chemotherapy. Recently, we applied fluorescence lifetime imaging microscopy and fluorescence resonance energy transfer to measure protein:protein interactions for the Bcl-2 family of proteins in live MCF-7 cells using fluorescent fusion proteins. While the BH3-proteins bound to Bcl-XL and Bcl-2, the BH3 mimetic ABT-737 inhibited binding of only Bad and tBid, but not Bim. We have extended our studies by investigating ABT-263, a clinical drug based on ABT-737. We show that the inhibitory effects and pattern of the two drugs are comparable for both Bcl-XL and Bcl-2. Furthermore, we show that mutation of a conserved residue in the BH3 region in Bad and tBid disrupted their interactions with Bcl-XL and Bcl-2, while the corresponding BimEL mutant showed no decrease in binding to these anti-apoptotic proteins. Therefore, in MCF-7 cells, Bim has unique binding properties compared with other BH3-only proteins that resist displacement from Bcl-XL and Bcl-2 by BH3 mimetics. 相似文献
5.
Laura Vela Oscar Gonzalo Javier Naval Isabel Marzo 《The Journal of biological chemistry》2013,288(7):4935-4946
The key event in the mitochondrial pathway of apoptosis is the activation of Bax and Bak by BH3-only proteins through a molecular mechanism that is still a matter of debate. Here we studied interactions among anti- and proapoptotic proteins of the Bcl-2 family in living cells by using bimolecular fluorescence complementation analysis. Our results indicate that the antiapoptotic proteins Mcl-1 and Bcl-xL bind preferably to the BH3-only proteins Bim, PUMA, and Noxa but can also bind to Bak and Bax. We also found a direct interaction between Bim, PUMA, or Noxa with either Bax or Bak during apoptosis induction. In HeLa cells, interaction of Bim with Bax occurs in cytosol, and then Bim-Bax complexes translocate to mitochondria. Complexes of either PUMA or Noxa with Bax or Bak were always detected at mitochondria. Overexpression of Bcl-xL or Mcl-1 delayed Bim/Bax translocation to mitochondria. These results reveal the ability of main BH3-only proteins to directly activate Bax and Bak in living cells and suggest that a complex network of interactions regulate the function of Bcl-2 family members during apoptosis. 相似文献
6.
Bcl-2家族蛋白质在细胞凋亡的调控机制中起着重要的作用,该家族包括唯BH3结构域的蛋白质(only BH3 domain protein),如Bid、Bik、Puma、Nova、Bmf等。随着凋亡研究的深入,在哺乳动物中现已发现10多种唯BH3结构域的蛋白质,并且在凋亡中发挥重要的作用。本文主要论述唯BH3域蛋白的作用机制及其应用的研究进展。 相似文献
7.
8.
Juhásová B Mentel M Bhatia-Kiššová I Zeman I Kolarov J Forte M Polčic P 《FEBS letters》2011,585(17):2709-2713
Proteins of the Bcl-2 family regulate programmed cell death in mammals by promoting the release of cytochrome c from mitochondria in response to various proapoptotic stimuli. The mechanism by which BH3-only members of the family activate multidomain proapoptotic proteins Bax and Bak to form a pore in mitochondrial membranes remains under dispute. We report that cell death promoting activity of BH3-only protein Bim can be reconstituted in yeast when both Bax and antiapoptotic protein Bcl-X(L) are present, suggesting that Bim likely activates Bax indirectly by inhibiting antiapoptotic proteins. 相似文献
9.
Wilfling F Weber A Potthoff S Vögtle FN Meisinger C Paschen SA Häcker G 《Cell death and differentiation》2012,19(8):1328-1336
During mitochondrial apoptosis, pro-apoptotic BH3-only proteins cause the translocation of cytosolic Bcl-2-associated X protein (Bax) to the outer mitochondrial membrane (OMM) where it is activated to release cytochrome c from the mitochondrial intermembrane space, but the mechanism is under dispute. We show that most BH3-only proteins are mitochondrial proteins that are imported into the OMM via a C-terminal tail-anchor domain in isolated yeast mitochondria, independently of binding to anti-apoptotic Bcl-2 proteins. This C-terminal domain acted as a classical mitochondrial targeting signal and was sufficient to direct green fluorescent protein to mitochondria in human cells. When expressed in mouse fibroblasts, these BH3-only proteins localised to mitochondria and were inserted in the OMM. The BH3-only proteins Bcl-2-interacting mediator of cell death (Bim), tBid and p53-upregulated modulator of apoptosis sensitised isolated mitochondria from Bax/Bcl-2 homologous antagonist/killer-deficient fibroblasts to cytochrome c-release by recombinant, extramitochondrial Bax. For Bim, this activity is shown to require the C-terminal-targeting signal and to be independent of binding capacity to and presence of anti-apoptotic Bcl-2 proteins. Bim further enhanced Bax-dependent killing in yeast. A model is proposed where OMM-tail-anchored BH3-only proteins permit passive 'recruitment' and catalysis-like activation of extra-mitochondrial Bax. The recognition of C-terminal membrane-insertion of BH3-only proteins will permit the development of a more detailed concept of the initiation of mitochondrial apoptosis. 相似文献
10.
11.
Fuminori Tsuruta Eric M. Green Matthieu Rousset Ricardo E. Dolmetsch 《The Journal of cell biology》2009,185(2):279-290
It is still unclear whether the BH3-only protein Puma (p53 up-regulated modulator of apoptosis) can prime cells to death and render antiapoptotic BH3-binding Bcl-2 homologues necessary for survival through its ability to directly interact with proapoptotic Bax and activate it. In this study, we provide further evidence, using cell-free assays, that the BH3 domain of Puma binds Bax at an activation site that comprises the first helix of Bax. We also show that, in yeast, Puma interacts with Bax and triggers its killing activity when Bcl-2 homologues are absent but not when Bcl-xL is expressed. Finally, endogenous Puma is involved in the apoptotic response of human colorectal cancer cells to the Bcl-2/Bcl-xL inhibitor ABT-737, even in conditions where the expression of Mcl-1 is down-regulated. Thus, Puma is competent to trigger Bax activity by itself, thereby promoting cellular dependence on prosurvival Bcl-2 family members. 相似文献
12.
The BH3-only protein Puma is both necessary and sufficient for neuronal apoptosis induced by DNA damage in sympathetic neurons 总被引:4,自引:0,他引:4
DNA damage activates apoptosis in several neuronal populations and is an important component of neuropathological conditions. While it is well established that neuronal apoptosis, induced by DNA damage, is dependent on the key cell death regulators p53 and Bax, it is unknown which proteins link the p53 signal to Bax. Using rat sympathetic neurons as an in vitro model of neuronal apoptosis, we show that cytosine arabinoside is a DNA damaging drug that induces the expression of the BH3-only pro-apoptotic genes Noxa, Puma and Bim. Increased expression occurred after p53 activation, measured by its phosphorylation at serine 15, but prior to the conformational change of Bax at the mitochondria, cytochrome c (cyt c) release and apoptosis. Hence Noxa, Puma and Bim could potentially link p53 to Bax. We directly tested this hypothesis by the use of nullizygous mice. We show that Puma, but not Bim or Noxa, is a crucial mediator of DNA damage-induced neuronal apoptosis. Despite the powerful pro-apoptotic effects of overexpressed Puma in Bax-expressing neurons, Bax nullizygous neurons were resistant to Puma-induced death. Therefore, Puma provides the critical link between p53 and Bax, and is both necessary and sufficient to mediate DNA damage-induced apoptosis of sympathetic neurons. 相似文献
13.
Xiaoping Zhang Changjiang Weng Yuan Li Xiaoyan Wang Chunsun Jiang Xuemei Li Youli Xu Quan Chen Lei Pan Hong Tang 《蛋白质与细胞》2012,3(10):790
One group of Bcl-2 protein family, which shares only the BH3 domain (BH3-only), is critically involved in the regulation of programmed cell death. Herein we demonstrated a novel human BH3-only protein (designated as Bop) which could induce apoptosis in a BH3 domain-dependent manner. Further analysis indicated that Bop mainly localized to mitochondria and used its BH3 domain to contact the loop regions of voltage dependent anion channel 1 (VDAC1) in the outer mitochondrial membrane. In addition, purified Bop protein induced the loss of mitochondrial transmembrane potential (ΔΨm) and the release of cytochrome c. Furthermore, Bop used its BH3 domain to contact pro-survival Bcl-2 family members (Bcl-2, Bcl-XL, Mcl-1, A1 and Bcl-w), which could inhibit Bop-induced apoptosis. Bop would be constrained by pro-survival Bcl-2 proteins in resting cells, because Bop became released from phosphorylated Bcl-2 induced by microtubule-interfering agent like vincristine (VCR). Indeed, knockdown experiments indicated that Bop was partially required for VCR induced cell death. Finally, Bop might need to function through Bak and Bax, likely by releasing Bak from Bcl-XL sequestration. In conclusion, Bop may be a novel BH3-only factor that can engage with the regulatory network of Bcl-2 family members to process intrinsic apoptotic signaling. 相似文献
14.
The Bcl-2 family of proteins are key regulators of programmed cell death. A distinct subfamily of BH3-only molecules has been identified, but their exact mechanism of action remains unclear. Here we show that the BH3-only Bcl-2 family members, Dp5/Hrk and Bim, are induced upstream of the Bax checkpoint in neuronal apoptosis in a manner that shows significant dependence on JNK signaling. We also show that Dp5 and other BH3-only proteins kill cerebellar granule neurons in a Bax-dependent manner. These studies demonstrate that BH3-only members do not act independently in their proapoptotic activities but rather require the action of multidomain proapoptotic Bcl-2 family members to produce cell death. 相似文献
15.
p53-A pro-apoptotic signal transducer involved in AIDS 总被引:2,自引:0,他引:2
Castedo M Perfettini JL Piacentini M Kroemer G 《Biochemical and biophysical research communications》2005,331(3):701-706
16.
Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim 总被引:9,自引:0,他引:9 下载免费PDF全文
Akiyama T Bouillet P Miyazaki T Kadono Y Chikuda H Chung UI Fukuda A Hikita A Seto H Okada T Inaba T Sanjay A Baron R Kawaguchi H Oda H Nakamura K Strasser A Tanaka S 《The EMBO journal》2003,22(24):6653-6664
Osteoclasts (OCs) undergo rapid apoptosis without trophic factors, such as macrophage colony-stimulating factor (M-CSF). Their apoptosis was associated with a rapid and sustained increase in the pro-apoptotic BH3-only Bcl-2 family member Bim. This was caused by the reduced ubiquitylation and proteasomal degradation of Bim that is mediated by c-Cbl. Although the number of OCs was increased in the skeletal tissues of bim-/- mice, the mice exhibited mild osteosclerosis due to reduced bone resorption. OCs differentiated from bone marrow cells of bim-/- animals showed a marked prolongation of survival in the absence of M-CSF, compared with bim+/+ OCs, but the bone-resorbing activity of bim-/- OCs was significantly reduced. Overexpression of a degradation-resistant lysine-free Bim mutant in bim-/- cells abrogated the anti-apoptotic effect of M-CSF, while wild-type Bim did not. These results demonstrate that ubiquitylation-dependent regulation of Bim levels is critical for controlling apoptosis and activation of OCs. 相似文献
17.
Gurudutta GU Verma YK Singh VK Gupta P Raj HG Sharma RK Chandra R 《FEBS letters》2005,579(17):3503-3507
The sequence of Bcl-2 homology domains, BH1 and BH2, is known to be conserved among anti- and pro-apoptotic members of Bcl-2 family proteins. But structural conservation of these domains with respect to functionally active residues playing role in heterodimerization-mediated regulation of apoptosis has never been elucidated. Here, we have suggested the formation of an active site by structurally conserved residues in BH1 (glycine, arginine) and BH2 (tryptophan) domains of Bcl-2 family members, which also accounts for the functional effect of known mutations in BH1 (G145A, G145E) and BH2 (W188A) domains of Bcl-2. 相似文献
18.
19.
Protein-protein interactions within the Bcl-2 family are mediated by the helical BH3 domains of pro-apoptotic family members. To study the mechanism of this BH3 domain-protein interaction, a series of cyclic lactam bridged BH3 peptide analogues were synthesized by a novel combined Fmoc/tBu/Bzl protections strategy. These peptide analogues were studied by circular dichroism spectroscopy and found to adopt highly helical structure. These helical peptides stabilized by a lactam bridge serve as useful models to analyze the structure-function relationship of the pro-apoptotic BH3 domains. Furthermore, the synthetic method for lactam bridge incorporation reported here may find application in studies of other helical structures and development of helix mimics. 相似文献
20.
Müer A Overkamp T Gillissen B Richter A Pretzsch T Milojkovic A Dörken B Daniel PT Hemmati P 《The Journal of biological chemistry》2012,287(21):17343-17352
The p14(ARF) tumor suppressor plays a central role in regulating cell cycle arrest and apoptosis. We reported previously that p14(ARF) is capable of triggering apoptosis in a p53-independent manner. However, the mechanism remained unclear. Here we demonstrate that the p53-independent activation of the mitochondrial apoptosis pathway by p14(ARF) is primarily mediated by the pro-apoptotic Bax-homolog Bak. Expression of p14(ARF) exclusively triggers a N-terminal conformational switch of Bak, but not Bax, which allows for mitochondrial permeability shift, release of cytochrome c, activation of caspases, and subsequent fragmentation of genomic DNA. Although forced expression of Bak markedly sensitizes toward p14(ARF)-induced apoptosis, re-expression of Bax has no effect. Vice versa, knockdown of Bak by RNA interference attenuates p14(ARF)-induced apoptosis, whereas down-regulation of Bax has no effect. Bak activation coincides with a prominent, caspase-independent deprivation of the endogenous Bak inhibitors Mcl-1 and Bcl-x(L). In turn, mitochondrial apoptosis is fully blocked by overexpression of either Mcl-1 or Bcl-x(L). Taken together, these data indicate that in the absence of functional p53 and Bax, p14(ARF) triggers mitochondrial apoptosis signaling by activating Bak, which is facilitated by down-regulating anti-apoptotic Mcl-1 and Bcl-x(L). Moreover, our data suggest that the simultaneous inhibition of two central endogenous Bak inhibitors, i.e. Mcl-1 and Bcl-x(L), may be sufficient to activate mitochondrial apoptosis in the absence of BH3-only protein regulation. 相似文献