首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Tir proteins of enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC respectively) are each translocated into the host plasma membrane where they promote F-actin pedestals in epithelial cells beneath adherent bacteria, but the two proteins act by different means. The canonical EPEC Tir becomes phosphorylated on tyrosine residue 474 (Y474) to recruit the host adaptor protein Nck, and also stimulates an inefficient, Nck-independent pathway utilizing tyrosine residue 454 (Y454). In contrast, the canonical EHEC Tir lacks Y474 and instead utilizes residues 452-463 to recruit EspF(U), an EHEC-specific effector that stimulates robust Nck-independent actin assembly. EHEC Tir Y458 and EPEC Tir Y454 are both part of an asparagine-proline-tyrosine (NPY) sequence. We report that each of the EHEC Tir NPY residues is required for EspF(U) recruitment and pedestal formation, and each of the EPEC Tir NPY residues is critical for inefficient, Nck-independent pedestal formation. Introduction of EspF(U) into EPEC dramatically enhanced Nck-independent actin assembly by EPEC Tir in a manner dependent on NPY(454). These results suggest that EPEC and EHEC Tir trigger a common Nck-independent actin assembly pathway and are both derived from an ancestral Tir molecule that utilized NPY to stimulate low-level pedestal formation.  相似文献   

2.
Enteropathogenic Escherichia coli (EPEC) stimulates tyrosine-kinase signalling cascades to trigger localized actin assembly within mammalian cells. During actin 'pedestal' formation, the EPEC effector protein Tir is translocated into the plasma membrane, becomes phosphorylated on tyrosine-474 (Y474) and promotes recruitment of the mammalian adaptor protein Nck to efficiently activate N-WASP-Arp2/3-mediated actin polymerization. Tir also triggers localized actin assembly in the absence of Nck, but the Tir sequences involved in this signalling cascade have not been defined. To identify and characterize the phosphotyrosines that contribute to Nck-independent pedestal formation, we investigated the regulation of Tir tyrosine phosphorylation and found that phosphorylation is stimulated by Tir clustering. In addition to Y474, residue Y454 is also phosphorylated, although at lower efficiency. These tyrosines differentially contribute to actin polymerization in a fashion reminiscent of actin 'tail' formation mediated by the vaccinia virus envelope protein A36R, which utilizes two similarly spaced phosphotyrosines to recruit the adaptors Nck and Grb2, respectively, in order to stimulate N-WASP. Neither phosphorylated Y454 nor Y474 directly bind Grb2, but Tir derivatives harbouring these residues ultimately recruit N-WASP and Arp2/3 independently of Nck, suggesting that EPEC exploits additional phosphotyrosine-binding adaptors capable of initiating actin assembly.  相似文献   

3.
Enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) each promote the reorganization of actin into filamentous pedestal structures beneath attached bacteria during colonization of the intestinal epithelium. Central to this process is the translocation of the protein Tir (translocated intimin receptor) into the plasma membrane of host cells, where it interacts with the bacterial outer membrane protein intimin and triggers cellular signalling events that lead to actin rearrangement. Actin signalling by EPEC Tir requires a tyrosine residue, Y474, which is phosphorylated in the host cell. In contrast, EHEC Tir lacks this residue and generates pedestals independently of tyrosine phosphorylation. Consistent with this difference, recent work indicates that EHEC Tir cannot functionally replace EPEC Tir. To identify the role that tyrosine phosphorylation of EPEC Tir plays in actin signalling, we generated chimeric EHEC/EPEC Tir proteins and identified a 12-residue sequence of EPEC Tir containing Y474 that confers actin-signalling capabilities to EHEC Tir when the chimera is expressed in EPEC. Nck, a mammalian adaptor protein that has been implicated in the initiation of actin signalling, binds to this sequence in a Y474 phosphorylation-dependent manner and is recruited to the pedestals of EPEC, but not of EHEC.  相似文献   

4.
Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) are diarrheagenic pathogens that colonize the gut mucosa via attaching-and-effacing lesion formation. EPEC and EHEC utilize a type III secretion system (T3SS) to translocate effector proteins that subvert host cell signalling to sustain colonization and multiplication. EspH, a T3SS effector that modulates actin dynamics, was implicated in the elongation of the EHEC actin pedestals. In this study we found that EspH is necessary for both efficient pedestal formation and pedestal elongation during EPEC infection. We report that EspH induces actin polymerization at the bacterial attachment sites independently of the Tir tyrosine residues Y474 and Y454, which are implicated in binding Nck and IRSp53/ITRKS respectively. Moreover, EspH promotes recruitment of neural Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex to the bacterial attachment site, in a mechanism involving the C-terminus of Tir and the WH1 domain of N-WASP. Dominant negative of WASP-interacting protein (WIP), which binds the N-WASP WH1 domain, diminished EspH-mediated actin polymerization. This study implicates WIP in EPEC-mediated actin polymerization and pedestal elongation and represents the first instance whereby N-WASP is efficiently recruited to the EPEC attachment sites independently of the Tir:Nck and Tir:IRTKS/IRSp53 pathways. Our study reveals the intricacies of Tir and EspH-mediated actin signalling pathways that comprise of distinct, convergent and synergistic signalling cascades.  相似文献   

5.
Several microbial pathogens including enteropathogenic E. coli (EPEC) exploit mammalian tyrosine-kinase signaling cascades to recruit Nck adaptor proteins and activate N-WASP-Arp2/3-mediated actin assembly. To promote localized actin "pedestal formation," EPEC translocates the bacterial effector protein Tir into the plasma membrane, where it is tyrosine-phosphorylated and binds Nck. Enterohemorrhagic E. coli (EHEC) also generates Tir-dependent pedestals, but in the absence of phosphotyrosines and Nck recruitment. To identify additional EHEC effectors that stimulate phosphotyrosine-independent actin assembly, we systematically generated EHEC mutants containing specific deletions in putative pathogenicity-islands. Among 0.33 Mb of deleted sequences, only one ORF was critical for pedestal formation. It lies within prophage-U, and encodes a protein similar to the known effector EspF. This proline-rich protein, EspFU, is the only EHEC effector of actin assembly absent from EPEC. Whereas EHEC Tir cannot efficiently recruit N-WASP or trigger actin polymerization, EspFU associates with Tir, binds N-WASP, and potently stimulates Nck-independent actin assembly.  相似文献   

6.
Enterohaemorrhagic Escherichia coli (EHEC) adheres to the host intestinal epithelium, resulting in the formation of actin pedestals beneath adhering bacteria. EHEC and a related pathogen, enteropathogenic E. coli (EPEC), insert a bacterial receptor, Tir, into the host plasma membrane, which is required for pedestal formation. An important difference between EPEC and EHEC Tir is that EPEC but not EHEC Tir is tyrosine phosphorylated once delivered into the host. In this study, we assessed the role of Tir tyrosine phosphorylation in pedestal formation by EPEC and EHEC. In EPEC, pedestal formation is absolutely dependent on Tir tyrosine phosphorylation and is not complemented by EHEC Tir. The protein sequence surrounding EPEC Tir tyrosine 474 is critical for Tir tyrosine phosphorylation and pedestal formation by EPEC. In contrast, Tir tyrosine phosphorylation is not required for pedestal formation by EHEC. EHEC forms pedestals with both wild-type EPEC Tir and the non-tyrosine-phosphorylatable EPEC Tir Y474F. Pedestal formation by EHEC requires the type III delivery of additional EHEC factors into the host cell. These findings highlight differences in the mechanisms of pedestal formation by these closely related pathogens and indicate that EPEC and EHEC modulate different signalling pathways to affect the host actin cytoskeleton.  相似文献   

7.
Enterohemorrhagic Escherichia coli (EHEC) generate F-actin-rich adhesion pedestals by delivering effector proteins into mammalian cells. These effectors include the translocated receptor Tir, along with EspF(U), a protein that associates indirectly with Tir and contains multiple peptide repeats that stimulate actin polymerization. In vitro, the EspF(U) repeat region is capable of binding and activating recombinant derivatives of N-WASP, a host actin nucleation-promoting factor. In spite of the identification of these important bacterial and host factors, the underlying mechanisms of how EHEC so potently exploits the native actin assembly machinery have not been clearly defined. Here we show that Tir and EspF(U) are sufficient for actin pedestal formation in cultured cells. Experimental clustering of Tir-EspF(U) fusion proteins indicates that the central role of the cytoplasmic portion of Tir is to promote clustering of the repeat region of EspF(U). Whereas clustering of a single EspF(U) repeat is sufficient to bind N-WASP and generate pedestals on cultured cells, multi-repeat EspF(U) derivatives promote actin assembly more efficiently. Moreover, the EspF(U) repeats activate a protein complex containing N-WASP and the actin-binding protein WIP in a synergistic fashion in vitro, further suggesting that the repeats cooperate to stimulate actin polymerization in vivo. One explanation for repeat synergy is that simultaneous engagement of multiple N-WASP molecules can enhance its ability to interact with the actin nucleating Arp2/3 complex. These findings define the minimal set of bacterial effectors required for pedestal formation and the elements within those effectors that contribute to actin assembly via N-WASP-Arp2/3-mediated signaling pathways.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC) causes diarrhoeal disease worldwide. Pathogen adherence to host cells induces reorganization of the actin cytoskeleton into 'pedestal-like' pseudopods beneath the extracellular bacteria. This requires two bacterial virulence factors that mimic a ligand-receptor interaction. EPEC delivers its own receptor, the translocated intimin receptor (Tir), into the target cell plasma membrane, which is phosphorylated on interaction with the bacterial surface protein intimin. Tir phosphorylated on Tyr 474 (ref. 4) binds the cellular adaptor Nck, triggering actin polymerization. Nevertheless, despite its critical role, the mechanism of Tir Tyr 474 phosphorylation remains unknown. Here, by artificially uncoupling Tir delivery and activity, we show that Tir phosphorylation and Nck-dependent pedestal formation require the Src-family kinase (SFK) c-Fyn. SFK inhibitors prevent Tyr 474 phosphorylation, and cells lacking c-fyn are resistant to pedestal formation. c-Fyn exclusively phosphorylates clustered Tir in vitro, and kinase knockdown suppresses Tir phosphorylation and pedestal formation in cultured cells. These results identify the transient interaction with host c-Fyn as a pivotal link between bacterial Tir and the cellular Nck-WASP-Arp2/3 cascade, illuminating a tractable experimental system in which to dissect tyrosine kinase signalling.  相似文献   

9.
Enteropathogenic Escherichia coli (EPEC) subverts actin dynamics in eukaryotic cells by injecting effector proteins via a type III secretion system. First, WxxxE effector Map triggers transient formation of filopodia. Then, following recovery from the filopodial signals, EPEC triggers robust actin polymerization via a signalling complex comprising Tir and the adaptor proteins Nck. In this paper we show that Map triggers filopodia formation by activating Cdc42; expression of dominant-negative Cdc42 or knock-down of Cdc42 by siRNA impaired filopodia formation. In addition, Map binds PDZ1 of NHERF1. We show that Map–NHERF1 interaction is needed for filopodia stabilization in a process involving ezrin and the RhoA/ROCK cascade; expression of dominant-negative ezrin and RhoA or siRNA knock-down of RhoA lead to rapid elimination of filopodia. Moreover, we show that formation of the Tir-Nck signalling complex leads to filopodia withdrawal. Recovery from the filopodial signals requires phosphorylation of a Tir tyrosine (Y474) residue and actin polymerization pathway as both infection of cells with EPEC expressing TirY474S or infection of Nck knockout cells with wild-type EPEC resulted in persistence of filopodia. These results show that EPEC effectors modulate actin dynamics by temporal subverting the Rho GTPases and other actin polymerization pathways for the benefit of the adherent pathogen.  相似文献   

10.
Enteropathogenic Escherichia coli (EPEC) is a bacterial pathogen that causes infantile diarrhea worldwide. EPEC injects a bacterial protein, translocated intimin receptor (Tir), into the host-cell plasma membrane where it acts as a receptor for the bacterial outer membrane protein, intimin. The interaction of Tir and intimin triggers a marked rearrangement of the host actin cytoskeleton into pedestals beneath adherent bacteria. On delivery into host cells, EPEC Tir is phosphorylated on tyrosine 474 of the intracellular carboxy-terminal domain, an event that is required for pedestal formation. Despite its essential role, the function of Tir tyrosine phosphorylation has not yet been elucidated. Here we show that tyrosine 474 of Tir directly binds the host-cell adaptor protein Nck, and that Nck is required for the recruitment of both neural Wiskott-Aldrich-syndrome protein (N-WASP) and the actin-related protein (Arp)2/3 complex to the EPEC pedestal, directly linking Tir to the cytoskeleton. Cells with null alleles of both mammalian Nck genes are resistant to the effects of EPEC on the actin cytoskeleton. These results implicate Nck adaptors as host-cell determinants of EPEC virulence.  相似文献   

11.
Attaching and effacing (A/E) lesions and actin polymerization, the hallmark of enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium (CR) infections, are dependent on the effector Tir. Phosphorylation of TirEPEC/CR Y474/1 leads to recruitment of Nck and neural Wiskott–Aldrich syndrome protein (N‐WASP) and strong actin polymerization in cultured cells. TirEPEC/CR also contains an Asn‐Pro‐Tyr (NPY454/1) motif, which triggers weak actin polymerization. In EHEC the NPY458 actin polymerization pathway is amplified by TccP/EspFU, which is recruited to Tir via IRSp53 and/or insulin receptor tyrosine kinase substrate (IRTKS). Here we used C. rodentium to investigate the different Tir signalling pathways in vivo. Following infection with wild‐type C. rodentium IRTKS, but not IRSp53, was recruited to the bacterial attachment sites. Similar results were seen after infection of human ileal explants with EHEC. Mutating Y471 or Y451 in TirCR abolished recruitment of Nck and IRTKS respectively, but did not affect recruitment of N‐WASP or A/E lesion formation. This suggests that despite their crucial role in actin polymerization in cultured cells the Tir:Nck and Tir:IRTKS pathways are not essential for N‐WASP recruitment or A/E lesion formation in vivo. Importantly, wild‐type C. rodentium out‐competed the tir tyrosine mutants during mixed infections. These results uncouple the Tir:Nck and Tir:IRTKS pathways from A/E lesion formation in vivo but assign them an important in vivo role.  相似文献   

12.
Enteropathogenic Escherichia coli (EPEC) mimic a ligand–receptor interaction to induce 'pedestal-like' pseudopodia on mammalian cells, providing a tractable system to study tyrosine kinase signalling to the actin cytoskeleton. EPEC delivers its own receptor (Tir), which is engaged by a bacterial surface ligand (intimin). When Tir delivery and activity are uncoupled, intimin-induced Tir clustering stimulates TirY474 phosphorylation by the Src-family kinase (SFK) c-Fyn, triggering actin polymerization and pedestal formation. How c-Fyn specifically targets Tir and is regulated remains unknown. We show that clustering transfers Tir into cholesterol-rich detergent-resistant microdomains (DRMs), a signal prompting transient c-Fyn accumulation at bacterial adhesion sites. Co-clustering of TirY474 and c-Fyn in DRMs rapidly stimulates robust kinase activation both by induced c-FynY531 dephosphorylation to unlock the inactive state and by reciprocal c-FynY417 autophosphorylation to promote activity. After signal induction, c-Fyn dissipates and the resting state restored by Csk-dependent phosphorylation of c-FynY531. These data illustrate a sophisticated mechanism evolved by a pathogen effector to reversibly regulate SFKs, and resolve early interactions at a model receptor initiating tyrosine kinase signalling.  相似文献   

13.
Enteropathogenic Escherichia coli (EPEC) translocates effector proteins into mammalian cells to promote reorganization of the cytoskeleton into filamentous actin pedestals. One effector, Tir, is a transmembrane receptor for the bacterial surface adhesin intimin, and intimin binding by the extracellular domain of Tir is required for actin assembly. The cytoplasmic NH2 terminus of Tir interacts with focal adhesion proteins, and its tyrosine-phosphorylated COOH terminus binds Nck, a host adaptor protein critical for pedestal formation. To define the minimal requirements for EPEC-mediated actin assembly, Tir derivatives were expressed in mammalian cells in the absence of all other EPEC components. Replacement of the NH2 terminus of Tir with a viral membrane-targeting sequence promoted efficient surface expression of a COOH-terminal Tir fragment. Artificial clustering of this fusion protein revealed that the COOH terminus of Tir, by itself, is sufficient to initiate a complete signaling cascade leading to pedestal formation. Consistent with this finding, clustering of Nck by a 12-residue Tir phosphopeptide triggered actin tail formation in Xenopus egg extracts.  相似文献   

14.
Enteropathogenic Escherichia coli (EPEC) binding to human intestinal cells triggers the formation of disease-associated actin rich structures called pedestals. The latter process requires the delivery, via a Type 3 secretion system, of the translocated Intimin receptor (Tir) protein into the host plasma membrane where binding of a host kinase-modified form to the bacterial surface protein Intimin triggers pedestal formation. Tir-Intimin interaction recruits the Nck adaptor to a Tir tyrosine phosphorylated residue where it activates neural Wiskott-Aldrich syndrome protein (N-WASP); initiating the major pathway to actin polymerization mediated by the actin-related protein (Arp) 2/3 complex. Previous studies with Nck-deficient mouse embryonic fibroblasts (MEFs) identified a key role for Nck in pedestal formation, presumed to reflect a lack of N-WASP activation. Here, we show the defect relates to reduced amounts of Tir within Nck-deficient cells. Indeed, Tir delivery and, thus, pedestal formation defects were much greater for MEFs than HeLa (human epithelial) cells. Crucially, the levels of two other effectors (EspB/EspF) within Nck-deficient MEFs were not reduced unlike that of Map (Mitochondrial associated protein) which, like Tir, requires CesT chaperone function for efficient delivery. Interestingly, drugs blocking various host protein degradation pathways failed to increase Tir cellular levels unlike an inhibitor of deacetylase activity (Trichostatin A; TSA). Treatments with TSA resulted in significant recovery of Tir levels, potentiation of actin polymerization and improvement in bacterial attachment to cells. Our findings have important implications for the current model of Tir-mediated actin polymerization and opens new lines of research in this area.  相似文献   

15.
Enteropathogenic Escherichia coli (EPEC) binding to human intestinal cells triggers the formation of disease-associated actin rich structures called pedestals. The latter process requires the delivery, via a Type 3 secretion system, of the translocated Intimin receptor (Tir) protein into the host plasma membrane where binding of a host kinase-modified form to the bacterial surface protein Intimin triggers pedestal formation. Tir-Intimin interaction recruits the Nck adaptor to a Tir tyrosine phosphorylated residue where it activates neural Wiskott-Aldrich syndrome protein (N-WASP); initiating the major pathway to actin polymerization mediated by the actin-related protein (Arp) 2/3 complex. Previous studies with Nck-deficient mouse embryonic fibroblasts (MEFs) identified a key role for Nck in pedestal formation, presumed to reflect a lack of N-WASP activation. Here, we show the defect relates to reduced amounts of Tir within Nck-deficient cells. Indeed, Tir delivery and, thus, pedestal formation defects were much greater for MEFs than HeLa (human epithelial) cells. Crucially, the levels of two other effectors (EspB/EspF) within Nck-deficient MEFs were not reduced unlike that of Map (Mitochondrial associated protein) which, like Tir, requires CesT chaperone function for efficient delivery. Interestingly, drugs blocking various host protein degradation pathways failed to increase Tir cellular levels unlike an inhibitor of deacetylase activity (Trichostatin A; TSA). Treatments with TSA resulted in significant recovery of Tir levels, potentiation of actin polymerization and improvement in bacterial attachment to cells. Our findings have important implications for the current model of Tir-mediated actin polymerization and opens new lines of research in this area.  相似文献   

16.
Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization.  相似文献   

17.
Summary Tir of enteropathogenic Escherichia coli (EPEC) or enterohemorrahgic E. coil (EHEC) is translocated by a type III secretion system to the host cell membranes where it serves as a receptor for the binding of a second bacterial membrane protein. In response to the binding, EPEC Tir is phosphorylated at Tyr474, and this phosphorylation is necessary for the signaling of pedestal formation. Tir of EHEC has no equivalent phosphorylation site but it is similarly needed for cytoskeleton rearrangement. How these two Tir molecules achieve their function by apparently different mechanisms is not completely clear. To examine their intrinsic differences, the two Tirs were expressed in HeLa cells and compared. Actin in complexes could be pelleted down from the lysate of cells expressing EHEC Tir but not EPEC Tir. By immunostaining, neither Tir molecule was found in phosphorylated state. In the cytoplasm, EHEC Tir was frequently found in fibrous structures whereas EPEC Tir was observed completely in a diffusive form. The determinant critical for the EHEC Tir fibrous formation was mapped to the C-terminal region of the molecule that deviates from the EPEC counterpart. This region may play a role in taking an alternative route different from Tyr474 phosphorylation to transduce signals.  相似文献   

18.
Subversion of host cell actin microfilaments is the hallmark of enterohaemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli infections. Both pathogens translocate the trans-membrane receptor protein-translocated intimin receptor (Tir), which links the extracellular bacterium to the cell cytoskeleton. While both converge on neural Wiskott-Aldrich syndrome protein (N-WASP), Tir-mediated actin accretion by EPEC and EHEC differ in that Tir(EPEC) requires both tyrosine phosphorylation and the host adaptor protein Nck, whereas Tir(EHEC) is not phosphorylated and utilizes an unidentified linker. Here we report the identification of Tir-cytoskeleton coupling protein (TccP), a novel EHEC effector that displays an Nck-like coupling activity following translocation into host cells. A tccP mutant did not affect Tir translocation and focusing but failed to recruit alpha-actinin, Arp3, N-WASP and actin to the site of bacterial adhesion. When expressed in EPEC, bacterial-derived TccP restored actin polymerization activity following infection of an Nck-deficient cell line. TccP has a similar biological activity on infected human intestinal explants ex vivo. Purified TccP activates N-WASP stimulating, in the presence of Arp2/3, actin polymerization in vitro. These results show that EHEC translocates both its own receptor (Tir) and an Nck-like protein (TccP) to facilitate actin polymerization.  相似文献   

19.
Enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) induce drastic reorganization of the microfilament cytoskeleton. EHEC and EPEC translocate Tir (translocated intimin receptor) which, once inserted into the host plasma membrane, binds the bacterial outer membrane adhesin intimin. Tir(EPEC) then becomes tyrosine phosphorylated facilitating the recruitment and site-specific binding of the eukaryotic adaptor Nck, which in turn binds and activates the Wiskott-Aldrich syndrome protein (N-WASP), leading to actin-related protein 2/3 (Arp2/3) complex-mediated actin polymerization. In contrast, Tir(EHEC) has no Nck binding site; instead, EHEC utilizes the translocated effector TccP (Tir-cytoskeleton coupling protein) to bind and activate N-WASP. Here we report a novel class of EPEC that translocates both TccP and Tir(EPEC)-like effector molecules. Consistent with these characteristics, we show that both the Tir-Nck and Tir:TccP actin remodelling pathways function simultaneously during infection, making this a novel and versatile EPEC category.  相似文献   

20.
Tir, the translocated intimin receptor of enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) and Citrobacter rodentium, is translocated into the host cell by a filamentous type III secretion system. Epithelial cell culture has demonstrated that Tir tyrosine phosphorylation is necessary for attaching effacing (A/E) lesion formation by EPEC and C. rodentium, but is not required by EHEC O157:H7. Recent in vivo work on C. rodentium has reported that Tir translocation, but not its phosphorylation, is necessary for colonization of the mouse colon. In this study we investigated the involvement of Tir and its tyrosine phosphorylation in EPEC and EHEC human intestinal colonization, N-WASP accumulation and F-actin recruitment using in vitro organ culture (IVOC). We showed that both EPEC and EHEC Tir are translocated into human intestinal epithelium during IVOC and that Tir is necessary for ex vivo intestinal colonization by both EPEC and EHEC. EPEC, but not EHEC, Tir is tyrosine phosphorylated but Tir phosphorylation-deficient mutants still colonize intestinal explants. While EPEC Tir recruits the host adaptor protein Nck to initiate N-WASP-Arp2/3-mediated actin polymerization, Tir derivatives deficient in tyrosine phosphorylation recruit N-WASP independently of Nck indicating the presence of a tyrosine phosphorylation-independent mechanism of A/E lesion formation and actin recruitment ex vivo by EPEC in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号