首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
磷酸甘油酸变位酶(phosphoglycerate mutase,PGM)是糖代谢过程中的关键酶,催化3-磷酸甘油酸和2-磷酸甘油酸之间的相互转换。根据催化反应中对辅因子2,3-二磷酸甘油酸的依赖关系分为两种类型:辅因子依赖型PGM(dPGM)和辅因子非依赖型PGM(iPGM)。本文对PGM的分类、结构及功能进行了详细介绍。  相似文献   

2.
The structure of Escherichia coli cofactor-dependent phosphoglycerate mutase (dPGM), complexed with the potent inhibitor vanadate, has been determined to a resolution of 1.30 A (R-factor 0.159; R-free 0.213). The inhibitor is present in the active site, principally as divanadate, but with evidence of additional vanadate moieties at either end, and representing a different binding mode to that observed in the structural homologue prostatic acid phosphatase. The analysis reveals the enzyme-ligand interactions involved in inhibition of the mutase activity by vanadate and identifies a water molecule, observed in the native E.coli dPGM structure which, once activated by vanadate, may dephosphorylate the active protein. Rather than reflecting the active conformation previously observed for E.coli dPGM, the inhibited protein's conformation resembles that of the inactive dephosphorylated Saccharomyces cerevisiae dPGM. The provision of a high-resolution structure of both active and inactive forms of dPGM from a single organism, in conjunction with computational modelling of substrate molecules in the active site provides insight into the binding of substrates and the specific interactions necessary for three different activities, mutase, synthase and phosphatase, within a single active site. The sequence similarity of E.coli and human dPGMs allows us to correlate structure with clinical pathology.  相似文献   

3.
Using the crystallographic structure of yeast monophosphoglycerate mutase (MPGM) as a framework we constructed a three-dimensional model of the homologous human erythrocyte bisphosphoglycerate mutase (BPGM). The modeling procedure consisted of substituting 117 amino acid residues and positioning 19 C-terminal residues (unresolved in the X-ray structure) by empirical methods, followed by energy minimization. Among several differences in the active site region the most significant appears to be the replacement of Ser11 in MPGM by Gly in BPGM. The C-terminal segment, which contains mainly basic amino acids, lines the cavity of the active site. The seven amino acid residues, which have been shown to be essential for the three catalytic functions of the human BPGM, interact with the amino acids in the protein core, near the active site. In addition, a cluster of several positively charged residues, particularly arginines, has been identified at the entrance of the active site; this cluster may serve as a secondary binding site for polyanionic substrates or cofactors, as required by a two-binding-site model of the catalytic activities. This model is in agreement with recent studies of an inactive BPGM variant substituent at an Arg position situated in this positively charged cluster. The position of Cys20 in the model constructed suggests that this residue is responsible for inactivation of the enzyme by sulfhydryl reagents. Subunit interfaces have also been constructed for BPGM by analogy with MPGM and suggest that, in addition to the known dimerization of BPGM, tetramerization may occur under certain conditions.  相似文献   

4.
The availability of complete genome sequences has highlighted the problems of functional annotation of the many gene products that have only limited sequence similarity with proteins of known function. The predicted protein encoded by open reading frame Rv3214 from the Mycobacterium tuberculosis H37Rv genome was originally annotated as EntD through sequence similarity with the Escherichia coli EntD, a 4'-phosphopantetheinyl transferase implicated in siderophore biosynthesis. An alternative annotation, based on slightly higher sequence identity, grouped Rv3214 with proteins of the cofactor-dependent phosphoglycerate mutase (dPGM) family. The crystal structure of this protein has been solved by single-wavelength anomalous dispersion methods and refined at 2.07-Angstroms resolution (R = 0.229; R(free) = 0.245). The protein is dimeric, with a monomer fold corresponding to the classical dPGM alpha/beta structure, albeit with some variations. Closer comparisons of structure and sequence indicate that it most closely corresponds with a broad-spectrum phosphatase subfamily within the dPGM superfamily. This functional annotation has been confirmed by biochemical assays which show negligible mutase activity but acid phosphatase activity with a pH optimum of 5.4 and suggests that Rv3214 may be important for mycobacterial phosphate metabolism in vivo. Despite its weak sequence similarity with the 4'-phosphopantetheinyl transferases (EntD homologues), there is little evidence to support this function.  相似文献   

5.
The active conformation of the dimeric cofactor-dependent phosphoglycerate mutase (dPGM) from Escherichia coli has been elucidated by crystallographic methods to a resolution of 1.25 A (R-factor 0.121; R-free 0.168). The active site residue His(10), central in the catalytic mechanism of dPGM, is present as a phosphohistidine with occupancy of 0.28. The structural changes on histidine phosphorylation highlight various features that are significant in the catalytic mechanism. The C-terminal 10-residue tail, which is not observed in previous dPGM structures, is well ordered and interacts with residues implicated in substrate binding; the displacement of a loop adjacent to the active histidine brings previously overlooked residues into positions where they may directly influence catalysis. E. coli dPGM, like the mammalian dPGMs, is a dimer, whereas previous structural work has concentrated on monomeric and tetrameric yeast forms. We can now analyze the sequence differences that cause this variation of quaternary structure.  相似文献   

6.
Summary A 1.1-kb cDNA clone for human 2,3-bisphospho-glycerate mutase (BPGM) (EC2.7.5.4) was used to map the structural gene to metaphase chromosomes. In situ hybridization experiments localized the human BPGM gene to chromosome 7 and, more precisely, to region 7q34→7q22.  相似文献   

7.
The glycolytic enzyme phosphoglycerate mutase exists in two evolutionarily unrelated forms. Vertebrates have only the 2,3-bisphosphoglycerate-dependent enzyme (dPGM), whilst higher plants have only the cofactor-independent enzyme (iPGM). Certain eubacteria possess genes encoding both enzymes, and their respective metabolic roles and activities are unclear. We have over-expressed, purified and characterised the two PGMs of Escherichia coli. Both are expressed at high levels, but dPGM has a 10-fold higher specific activity than iPGM. Differential inhibition by vanadate was observed. The presence of an integral manganese ion in iPGM was confirmed by EPR spectroscopy.  相似文献   

8.
S Liu  M J Gresser  A S Tracey 《Biochemistry》1992,31(10):2677-2685
The formation of complexes of vanadate with 2-phosphoglycerate and 3-phosphoglycerate have been studied using 51V nuclear magnetic resonance spectroscopy. Signals attributed to two 2,3-diphosphoglycerate analogues, 2-vanadio-3-phosphoglycerate and 2-phospho-3-vanadioglycerate, were detected but were not fully resolved from signals of inorganic vanadate and the anhydride formed between vanadate and the phosphate ester moieties of the individual phosphoglycerates. Equilibrium constants for formation of the two 2,3-bisphosphate analogues were estimated as 2.5 M-1 for 2-vanadio-3-phosphoglycerate and 0.2 M-1 for 2-phospho-3-vanadioglycerate. The results of the binding study are fully consistent with non-cooperativity in the binding of vanadiophosphoglycerate to the two active sites of phosphoglycerate mutase (PGM). 2-Vanadio-3-phosphoglycerate was found to bind to the dephospho form of phosphoglycerate mutase with a dissociation constant of about 1 x 10(-11) M at pH 7 and 7 x 10(-11) M at pH 8. Three signals attributed to histidine residues were observed in the 1H NMR spectrum of phosphoglycerate mutase. Two of these signals and also an additional signal, tentatively attributed to a tryptophan, underwent a chemical shift change when the vanadiophosphoglycerate complex was bound to the enzyme. The results obtained here are in accord with these vanadate-phosphoglycerate complexes being much more potent inhibitors of phosphoglycerate mutase than either monomeric or dimeric vanadate. The dissociation constant of 10(-11) M for 2-vanadio-3-phosphoglycerate is about 4 orders of magnitude smaller than the Km for PGM, a result in accordance with the vanadiophosphoglycerates being transition state analogues for the phosphorylation of PGM by 2,3-diphosphoglycerate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Phosphoglycerate mutase catalyzes the interconversion between 2-phosphoglycerate and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. They exist in two unrelated forms, that is either cofactor (2,3-diphosphoglycerate) dependent or cofactor-independent. These two enzymes have no similarity in amino acid sequence, tertiary structure, and in catalytic mechanism. Wuchereria bancrofti (WB) contains the cofactor-independent form, whereas other organisms can possess the dependent form or both. Since, independent phosphoglycerate mutase (iPGM) is an essential gene for the survival of nematodes, and it has no sequence or structural similarity to the cofactor-dependent phosphoglycerate mutase found in mammals, it represents an attractive drug target for the filarial nematodes. In this current study, a putative cofactor-iPGM gene was identified in the protein sequence of the WB. In the absence of crystal structure, a three-dimensional structure was determined using the homology modeling approximation, and the most stable protein conformation was identified through the molecular dynamics simulation studies, using GROMACS 4.5. Further, the functional or characteristic residues were identified through the sequence analysis, potential inhibitors were short-listed and validated, and potential inhibitors were ranked using the cheminformatics and molecular dynamics simulations studies, Prime MM-GBSA approach, respectively.  相似文献   

10.
An increase in bisphosphoglycerate mutase (BPGM) and a decrease in pyruvate kinase (PK), i.e. a decrease in PK/BPGM ratio, was observed in red cell populations from anemic rats containing 95% down to 3% reticulocytes in blood. Such a ratio has been used to study the fractionation of recticulocytes, according to their degree of maturation, after counter-current distribution of those cell populations in dextrahpoly (ethylene glycol) two-phase systems. When applying this procedure to the fractionation according to age of erythrocytes from normal rats, the decrease of PK with cellular age was observed without a significant variation in BPGM activity.  相似文献   

11.
Rigden DJ 《FEBS letters》2003,536(1-3):77-84
The cofactor-dependent phosphoglycerate mutase (dPGM) superfamily contains, besides mutases, a variety of phosphatases, both broadly and narrowly substrate-specific. Distant dPGM homologues, conspicuously abundant in microbial genomes, represent a challenge for functional annotation based on sequence comparison alone. Here we carry out sequence analysis and molecular modelling of two families of bacterial dPGM homologues, one the SixA phosphoprotein phosphatases, the other containing various proteins of no known molecular function. The models show how SixA proteins have adapted to phosphoprotein substrate and suggest that the second family may also encode phosphoprotein phosphatases. Unexpected variation in catalytic and substrate-binding residues is observed in the models.  相似文献   

12.
Phosphoglycerate mutases (PGM) catalyze the reversible conversion of 3-phosphoglycerate and 2-phosphoglycerate as part of glycolysis and gluconeogenesis. Two structural and mechanistically unrelated types of PGMs are known, a cofactor (2,3-bisphosphoglycerate)-dependent (dPGM) and a cofactor-independent enzyme (iPGM). Here, we report the characterization of the first archaeal cofactor-dependent PGM from Thermoplasma acidophilum, which is encoded by ORF TA1347. This ORF was cloned and expressed in Escherichia coli and the recombinant protein was characterized as functional dPGM. The enzyme constitutes a 46 kDa homodimeric protein. Enzyme activity required 2,3-bisphosphoglycerate as cofactor and was inhibited by vanadate, a specific inhibitor of dPGMs in bacteria and eukarya; inhibition could be partially relieved by EDTA. Histidine 23 of the archaeal dPGM of T. acidophilum, which corresponds to active site histidine in dPGMs from bacteria and eukarya, was exchanged for alanine by site directed mutagenesis. The H23A mutant was catalytically inactive supporting the essential role of H23 in catalysis of the archaeal dPGM. Further, an archaeal cofactor-independent PGM encoded by ORF AF1751 from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus was characterized after expression in E. coli. The monomeric 46 kDa protein showed cofactor-independent PGM activity and was stimulated by Mn2+ and exhibited high thermostability up to 70°C. A comprehensive phylogenetic analysis of both types of archaeal phosphoglycerate mutases is also presented.  相似文献   

13.
R Rosa  I Audit  J Rosa 《Biochimie》1975,57(9):1059-1063
Electrophoresis of 3-phosphoglycerate mutase from erythrocytes of man and several animal species has been performed on cellulose acetate strips. In most cases the electrophoretic pattern of this enzymatic activity shows three bands. 2,3-diphosphoglycerate phosphatase and diphosphoglycerate mutase from erythrocytes of the same species have been revealed after migration during the same electrophoresis. We found that the band of 2,3-diphosphoglycerate phosphatase and the band of diphosphoglycerate mutase activities migrate at the same level as one of the bands corresponding to 3-phosphoglycerate mutase. Here, we discuss the possible existence of a single molecule carrying three enzymatic activities.  相似文献   

14.
Phosphoglycerate mutase (PGM) and enolase are consecutive enzymes in the glycolytic pathway. We used molecular dynamics simulation to examine the interaction of human B‐type PGM (dPGM‐B) and neuron‐specific enolase (NSE). Specifically, we studied the interactions of 31 orientations of these enzymes by means of the effective energy function implicit solvation method. Interactions between active regions of the enzymes occurred preferentially, although the strongest interactions appeared to be between the back side of NSE and the active regions of dPGM‐B. Cleavage of 2PG from dPGM‐B was investigated, and the Ser14–Leu30 loop of dPGM‐B is suggested as a cleavage site and, likely, another entrance site of a ligand. Substrate channeling between the enzymes was observed when NSE with its active regions Leu11–Asn16, Arg49–Lys59, and Gly155–Ala158 covered the Ser14–Leu30 loop of dPGM‐B. Analyses of the results make us believe that the channeling between PGM and enolase “benefits” from weak interaction. The probability of formation of channeling favorable complex is estimated to be up to 5%, while functional interaction between NSE and dPGM‐B might be as high as 20%. NSE and dPGM‐B functional interaction seems not to be isotype specific. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
16.
Three-dimensional structure of rat acid phosphatase.   总被引:3,自引:2,他引:1       下载免费PDF全文
G Schneider  Y Lindqvist    P Vihko 《The EMBO journal》1993,12(7):2609-2615
The crystal structure of recombinant rat prostatic acid phosphatase was determined to 3 A resolution with protein crystallographic methods. The enzyme subunit is built up of two domains, an alpha/beta domain consisting of a seven-stranded mixed beta-sheet with helices on both sides of the sheet and a smaller alpha domain. Two disulfide bridges between residues 129-340 and 315-319 were found. Electron density at two of the glycosylation sites for parts of the carbohydrate moieties was observed. The dimer of acid phosphatase is formed through two-fold interactions of edge strand 3 from one subunit with strand 3 from the second subunit, thus extending the beta-sheet from seven to 14 strands. Other subunit-subunit interactions involve conserved residues from loops between helices and beta-strands. The fold of the alpha/beta domain is similar to the fold observed in phosphoglycerate mutase. The active site is at the carboxy end of the parallel strands of the alpha/beta domain. There is a strong residual electron density at the phosphate binding site which probably represents a bound chloride ion. Biochemical properties and results from site-directed mutagenesis experiments of acid phosphatase are correlated to the three-dimensional structure.  相似文献   

17.
The structure of the complex between the 2, 3-diphosphoglycerate-independent phosphoglycerate mutase (iPGM) from Bacillus stearothermophilus and its 3-phosphoglycerate substrate has recently been solved, and analysis of this structure allowed formulation of a mechanism for iPGM catalysis. In order to obtain further evidence for this mechanism, we have solved the structure of this iPGM complexed with 2-phosphoglycerate and two Mn(2+) ions at 1. 7-A resolution. The structure consists of two different domains connected by two loops and interacting through a network of hydrogen bonds. This structure is consistent with the proposed mechanism for iPGM catalysis, with the two main steps in catalysis being a phosphatase reaction removing the phosphate from 2- or 3-phosphoglycerate, generating an enzyme-bound phosphoserine intermediate, followed by a phosphotransferase reaction as the phosphate is transferred from the enzyme back to the glycerate moiety. The structure also allowed the assignment of the function of the two domains of the enzyme, one of which participates in the phosphatase reaction and formation of the phosphoserine enzyme intermediate, with the other involved in the phosphotransferase reaction regenerating phosphoglycerate. Significant structural similarity has also been found between the active site of the iPGM domain catalyzing the phosphatase reaction and Escherichia coli alkaline phosphatase.  相似文献   

18.
BACKGROUND: Glutamate mutase (Glm) equilibrates (S)-glutamate with (2S,3S)-3-methylaspartate. Catalysis proceeds with the homolytic cleavage of the organometallic bond of the cofactor to yield a 5'-desoxyadenosyl radical. This radical then abstracts a hydrogen atom from the protein-bound substrate to initiate the rearrangement reaction. Glm from Clostridium cochlearium is a heterotetrameric molecule consisting of two sigma and two epsilon polypeptide chains. RESULTS: We have determined the crystal structures of inactive recombinant Glm reconstituted with either cyanocobalamin or methylcobalamin. The molecule shows close similarity to the structure of methylmalonyl CoA mutase (MCM), despite poor sequence similarity between its catalytic epsilon subunit and the corresponding TIM-barrel domain of MCM. Each of the two independent B12 cofactor molecules is associated with a substrate-binding site, which was found to be occupied by a (2S,3S)-tartrate ion. A 1:1 mixture of cofactors with cobalt in oxidation states II and III was observed in both crystal structures of inactive Glm. CONCLUSIONS: The long axial cobalt-nitrogen bond first observed in the structure of MCM appears to result from a contribution of the species without upper ligand. The tight binding of the tartrate ion conforms to the requirements of tight control of the reactive intermediates and suggests how the enzyme might use the substrate-binding energy to initiate cleavage of the cobalt-carbon bond. The cofactor does not appear to have a participating role during the radical rearrangement reaction.  相似文献   

19.
Crystal structure of human bisphosphoglycerate mutase   总被引:3,自引:0,他引:3  
Bisphosphoglycerate mutase is a trifunctional enzyme of which the main function is to synthesize 2,3-bisphosphoglycerate, the allosteric effector of hemoglobin. The gene coding for bisphosphoglycerate mutase from the human cDNA library was cloned and expressed in Escherichia coli. The protein crystals were obtained and diffract to 2.5 A and produced the first crystal structure of bisphosphoglycerate mutase. The model was refined to a crystallographic R-factor of 0.200 and R(free) of 0.266 with excellent stereochemistry. The enzyme remains a dimer in the crystal. The overall structure of the enzyme resembles that of the cofactor-dependent phosphoglycerate mutase except the regions of 13-21, 98-117, 127-151, and the C-terminal tail. The conformational changes in the backbone and the side chains of some residues reveal the structural basis for the different activities between phosphoglycerate mutase and bisphosphoglycerate mutase. The bisphosphoglycerate mutase-specific residue Gly-14 may cause the most important conformational changes, which makes the side chain of Glu-13 orient toward the active site. The positions of Glu-13 and Phe-22 prevent 2,3-bisphosphoglycerate from binding in the way proposed previously. In addition, the side chain of Glu-13 would affect the Glu-89 protonation ability responsible for the low mutase activity. Other structural variations, which could be connected with functional differences, are also discussed.  相似文献   

20.
Qamra R  Prakash P  Aruna B  Hasnain SE  Mande SC 《Biochemistry》2006,45(23):6997-7005
Chorismate mutase catalyzes the first committed step toward the biosynthesis of the aromatic amino acids, phenylalanine and tyrosine. While this biosynthetic pathway exists exclusively in the cell cytoplasm, the Mycobacterium tuberculosis enzyme has been shown to be secreted into the extracellular medium. The secretory nature of the enzyme and its existence in M. tuberculosis as a duplicated gene are suggestive of its role in host-pathogen interactions. We report here the crystal structure of homodimeric chorismate mutase (Rv1885c) from M. tuberculosis determined at 2.15 A resolution. The structure suggests possible gene duplication within each subunit of the dimer (residues 35-119 and 130-199) and reveals an interesting proline-rich region on the protein surface (residues 119-130), which might act as a recognition site for protein-protein interactions. The structure also offers an explanation for its regulation by small ligands, such as tryptophan, a feature previously unknown in the prototypical Escherichia coli chorismate mutase. The tryptophan ligand is found to be sandwiched between the two monomers in a dimer contacting residues 66-68. The active site in the "gene-duplicated" monomer is occupied by a sulfate ion and is located in the first half of the polypeptide, unlike in the Saccharomyces cerevisiae (yeast) enzyme, where it is located in the later half. We hypothesize that the M. tuberculosis chorismate mutase might have a role to play in host-pathogen interactions, making it an important target for designing inhibitor molecules against the deadly pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号