首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent study has linked the butyrylcholinesterase (BChE) K-variant and the apolipoprotein epsilon4 isoform to late-onset Alzheimer's disease. These findings have been controversial and have led us to examine the differences between wild-type and K-variant BChE in enzyme activity, protein stability, and quaternary structure. J-variant BChE (E497V/A539T) was also studied because it is associated with the K-variant mutation. The K-variant mutation (A539T) is located in the C-terminal tetramerization domain. Wild-type, K-variant, and J-variant BChE were expressed in Chinese hamster ovary cells and purified. The purified enzymes had similar binding affinity (Km) values and catalytic rates for butyrylthiocholine and benzoylcholine. In pulse-chase studies the K-variant, J-variant, and wildtype BChE were degraded rapidly within the cell, with a half-time of approximately 1.5 h. Less than 5% of the intracellular BChE was exported. The C-terminal peptide containing the K-variant mutation interacted with itself as strongly as did the wild-type peptide in the yeast two-hybrid system. Both K-variant and wild-type BChE assembled into tetramers in the presence of poly-L-proline or the proline-rich attachment domain of the collagen tail. The native K-variant BChE in serum showed the same proportion of tetramers as the native serum wild-type BChE. We conclude that the K-variant BChE is similar to wild-type BChE in enzyme activity, protein turnover, and tetramer formation.  相似文献   

2.
Insulin-degrading enzyme (IDE) is involved in the clearance of many bioactive peptide substrates, including insulin and amyloid-β, peptides vital to the development of diabetes and Alzheimer's disease, respectively. IDE can also rapidly degrade hormones that are held together by intramolecular disulfide bond(s) without their reduction. Furthermore, IDE exhibits a remarkable ability to preferentially degrade structurally similar peptides such as the selective degradation of insulin-like growth factor (IGF)-II and transforming growth factor-α (TGF-α) over IGF-I and epidermal growth factor, respectively. Here, we used high-accuracy mass spectrometry to identify the cleavage sites of human IGF-II, TGF-α, amylin, reduced amylin, and amyloid-β by human IDE. We also determined the structures of human IDE-IGF-II and IDE-TGF-α at 2.3 Å and IDE-amylin at 2.9 Å. We found that IDE cleaves its substrates at multiple sites in a biased stochastic manner. Furthermore, the presence of a disulfide bond in amylin allows IDE to cut at an additional site in the middle of the peptide (amino acids 18-19). Our amylin-bound IDE structure offers insight into how the structural constraint from a disulfide bond in amylin can alter IDE cleavage sites. Together with NMR structures of amylin and the IGF and epidermal growth factor families, our work also reveals the structural basis of how the high dipole moment of substrates complements the charge distribution of the IDE catalytic chamber for the substrate selectivity. In addition, we show how the ability of substrates to properly anchor their N-terminus to the exosite of IDE and undergo a conformational switch upon binding to the catalytic chamber of IDE can also contribute to the selective degradation of structurally related growth factors.  相似文献   

3.
D Müller  C Schulze  H Baumeister  F Buck  D Richter 《Biochemistry》1992,31(45):11138-11143
The degradation of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) by insulin-degrading enzyme (IDE) has been investigated. As revealed by high-performance liquid chromatography, all three peptides are sequentially cleaved at a limited number of sites, the latter of which were identified by mass spectrometric analyses. The studies revealed that ANP is preferred as substrate over BNP and CNP. ANP degradation is rapidly initiated by hydrolysis at the Ser25-Phe26 bond. Three additional cleavage sites were identified in ANP after prolonged incubation with IDE; in contrast, three and two bonds were hydrolyzed in BNP and CNP, respectively. Analysis of the nine cleavage sites shows a preference for basic or hydrophobic amino acid residues on the carboxyl side of a cleaved peptide bond. In contrast to most of the peptide fragments generated by IDE activity, the initial ANP cleavage product, F-R-Y, is rapidly degraded further by cleavage of the R-Y bond. Cross-linking studies with 125I-ANP in the presence of sulfhydryl-modifying agent indicate that IDE activity is inhibited at the level of initial substrate binding whereas metal-ion chelating agents only prevent hydrolysis. On the basis of its structural and enzymatic properties, IDE exhibits striking similarity to a number of recently-described endopeptidases.  相似文献   

4.
The rate of the insulin-degrading enzyme (IDE)-catalyzed hydrolysis of the fluorogenic substrate 2-aminobenzoyl-GGFLRKHGQ-ethylenediamine-2,4-dinitrophenyl is increased 2-7-fold by other peptide substrates but not by peptide non-substrates. This increased rate is attributed to a decrease in Km with little effect on Vmax. An approximately 2.5-fold increase in the rate of amyloid beta peptide hydrolysis is produced by dynorphin B-9. However, with insulin as substrate, dynorphin B-9 is inhibitory. Immunoprecipitation of differentially tagged IDE and gel filtration analysis were used to show that IDE exists as a mixture of dimers and tetramers. The equilibrium between dimer and tetramer is concentration-dependent, with the dimer the more active form. Bradykinin shifted the equilibrium toward dimer. Activation of substrate hydrolysis is not seen with a mixed dimer of IDE containing one active subunit and one subunit that is catalytically inactive and deficient in substrate binding. On the other hand, a mixed dimer containing one active subunit and one subunit that is catalytically inactive but binds substrate with normal affinity is activated by peptides. These findings suggest that peptides bind to one subunit of IDE and induce a conformational change that shifts the equilibrium to the more active dimer as well as activates the adjacent subunit. The selective activation of IDE toward amyloid beta peptide relative to insulin suggests the potential for development of compounds that increase IDE activity toward amyloid beta peptide as a therapeutic intervention for the treatment of Alzheimer's disease.  相似文献   

5.
The secretion of proteins that lack a signal sequence to the extracellular milieu is regulated by their transition through the unconventional secretory pathway. IDE (insulin-degrading enzyme) is one of the major proteases of amyloid beta peptide (Aβ), a presumed causative molecule in Alzheimer disease (AD) pathogenesis. IDE acts in the extracellular space despite having no signal sequence, but the underlying mechanism of IDE secretion extracellularly is still unknown. In this study, we found that IDE levels were reduced in the cerebrospinal fluid (CSF) of patients with AD and in pathology-bearing AD-model mice. Since astrocytes are the main cell types for IDE secretion, astrocytes were treated with Aβ. Aβ increased the IDE levels in a time- and concentration-dependent manner. Moreover, IDE secretion was associated with an autophagy-based unconventional secretory pathway, and depended on the activity of RAB8A and GORASP (Golgi reassembly stacking protein). Finally, mice with global haploinsufficiency of an essential autophagy gene, showed decreased IDE levels in the CSF in response to an intracerebroventricular (i.c.v.) injection of Aβ. These results indicate that IDE is secreted from astrocytes through an autophagy-based unconventional secretory pathway in AD conditions, and that the regulation of autophagy is a potential therapeutic target in addressing Aβ pathology.  相似文献   

6.
Applying a new four-step isolation procedure, we have purified butyrylcholinesterase (BChE) from chicken serum to homogeneity with more than 250 U/mg specific activity. The serum enzyme was used for producing monoclonal antibodies. These BChE-specific also recognize BChE from brain, and thus enabled us to isolate the enzymes from embryonic and adult brain that occur only in minute amounts. More than 50% of the brain BChE is membrane-bound. The catalytic and inhibition properties of brain BChE are similar to those of serum BChE. However on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the serum enzyme is represented by a double-band of 79/82 kDa, whereas the brain enzyme has a size of 74 kDa. Limited digestion of the serum and brain preparations by V8-protease leads to similar peptide patterns. Enzymatic deglycosylation shows that their core proteins consist of 59-kDa subunits and that the different molecular weights are due to different glycosylation patterns. The differently sized glycosylation parts of brain and serum BChE may indicate that they subserve different functions. Furthermore, the membrane-bound brain BChE can be solubilized by Pronase or protease K, but not by phosphatidylinositol-specific phospholipase C.  相似文献   

7.
Hyun J  Hashimoto C 《Fly》2011,5(1):53-57
Insulin-degrading enzyme (IDE) degrades insulin and other peptides, including the Aβ peptide of Alzheimer's disease. However, the mechanism by which IDE acts on its substrates in vivo is unclear, and its role in pathogenesis of type 2 diabetes and Alzheimer's disease is controversial. Here, we show that in Drosophila knocking down IDE in insulin-producing cells (IPCs) of the brain results in increased body weight and fecundity, decreased circulating sugar levels, and reduced lifespan. Moreover, knocking down and over-expressing IDE in IPCs have opposite physiological effects. As mis-regulated insulin signaling in peripheral tissues is known to cause similar phenotypes, our data suggest a role for Drosophila IDE in determining the level of insulin-like peptides made by IPCs that systemically activate insulin signaling.  相似文献   

8.
阿尔兹海默病(AD)是以脑中β淀粉样蛋白(Aβ)累积和神经纤维缠绕(NFTs)为主要病理特征的神经退行性疾病,而胰岛素降解酶(IDE)是人体内最主要的Aβ降解酶之一。因此,IDE在AD进程中的作用受到了研究人员的广泛关注。大多数研究显示,AD的病理进程伴随着脑中IDE编码基因的表达和IDE活性的下降。IDE敲除动物也能够表现出AD样表型,同时已有研究尝试靶向于IDE进行AD的治疗。本文通过总结IDE在AD患者和AD模型动物脑中表达情况的变化,以及IDE敲除动物的表型,对近期IDE在AD发生中作用的研究进行了总结。  相似文献   

9.
Alzheimer’s disease (AD) is the most common form of dementia. Inhibition of BChE might be a useful therapeutic target for AD. A new series of Carbazole-Benzyl Pyridine derivatives were designed synthesized and evaluated as butyrylcholinesterase (BChE) inhibitors. In vitro assay revealed that all of the derivatives had selective and potent anti- BChE activities. 3-((9H-Carbazol-9-yl)methyl)-1-(4-chlorobenzyl)pyridin-1-ium chloride (compound 8f) had the most potent anti-BChE activity (IC50 value?=?0.073?μM), the highest BChE selectivity and mixed-type inhibition. Docking study revealed that 8f interacted with the peripheral site, the choline binding site, catalytic site and the acyl pocket of BChE. Physicochemical properties were accurate to Lipinski's rule. In addition, compound 8f demonstrated neuroprotective activity at 10?µM. This compound could also inhibit AChE-induced and self-induced Aβ peptide aggregation at concentration of 100?µM and 10?µM respectively. The in-vivo study showed that compound 8f in 10?mg/kg increased the time spent in target quadrant in the probe day and decreased mean training period scape latency in rats. All results suggest that new sets of potent selective inhibitors of BChE have a therapeutic potential for the treatment of AD.  相似文献   

10.
BChE (butyrylcholinesterase) protects the cholinergic nervous system from organophosphorus nerve agents by scavenging these toxins. Recombinant human BChE produced from transgenic goat to treat nerve agent intoxication is currently under development. The therapeutic potential of BChE relies on its ability to stay in the circulation for a prolonged period, which in turn depends on maintaining tetrameric quaternary configuration. Native human plasma BChE consists of 98% tetramers and has a half-life (t((1/2))) of 11-14 days. BChE in the neuromuscular junctions and the central nervous system is anchored to membranes through interactions with ColQ (AChE-associated collagen tail protein) and PRiMA (proline-rich membrane anchor) proteins containing proline-rich domains. BChE prepared in cell culture is primarily monomeric, unless expressed in the presence of proline-rich peptides. We hypothesized that a poly-proline peptide is an intrinsic component of soluble plasma BChE tetramers, just as it is for membrane-bound BChE. We found that a series of proline-rich peptides was released from denatured human and horse plasma BChE. Eight peptides, with masses from 2072 to 2878 Da, were purified by HPLC and sequenced by electrospray ionization tandem MS and Edman degradation. All peptides derived from the same proline-rich core sequence PSPPLPPPPPPPPPPPPPPPPPPPPLP (mass 2663 Da) but varied in length at their N- and C-termini. The source of these peptides was identified through database searching as RAPH1 [Ras-associated and PH domains (pleckstrin homology domains)-containing protein 1; lamellipodin, gi:82581557]. A proline-rich peptide of 17 amino acids derived from lamellipodin drove the assembly of human BChE secreted from CHO (Chinese-hamster ovary) cells into tetramers. We propose that the proline-rich peptides organize the 4 subunits of BChE into a 340 kDa tetramer, by interacting with the C-terminal BChE tetramerization domain.  相似文献   

11.
Insulin degrading enzyme (IDE) is known to play a pivotal role on amyloidogenic peptide degradation but little is known about the changes in the proteolytic activity of the enzyme upon modification of external factors. Particularly, although it has been reported that altered ubiquitin concentration and/or hyperinsulinaemia increase the risk of developing Alzheimer's disease (AD), the molecular mechanism involved is unclear. In this work, we study the role that ubiquitin plays on IDE capability of binding and degrading insulin molecules and the obtained results indicate that ubiquitin has an allosteric role for IDE and high ubiquitin levels impair IDE activity.  相似文献   

12.
Lethal Toxin Neutralizing Factor (LTNF) obtained from Opossum serum (Didephis virginiana) is known to exhibit toxin-neutralizing activity for envenomation caused by animals, plants and bacteria. Small synthetic peptide- LT10 (10mer) derived from N-terminal fraction of LTNF exhibit similar anti-lethal and anti-allergic property. In our in silico study, we identified Insulin Degrading Enzyme (IDE) as a potential target of LT10 peptide followed by molecular docking and molecular dynamic (MD) simulation studies which revealed relatively stable interaction of LT10 peptide with IDE. Moreover, their detailed interaction analyses dictate IDE-inhibitory interactions of LT10 peptide. This prediction ofLT10 peptide as a novel putative IDE-inhibitor suggests its possible role in anti-diabetic treatment since IDE- inhibitors are known to assist treatment of Diabetes mellitus by enhancing insulin signalling. Furthermore, series of structure based peptidomimetics were designed from LT10 peptide and screened for their inhibitory interactions which ultimately led to a small set of peptidomimetic inhibitors of IDE. These peptidomimetic thus might provide a new class of IDE-inhibitors, those derived from LT10 peptide.  相似文献   

13.
Natriuretic peptides (NPs) are cyclic vasoactive peptide hormones with high therapeutic potential. Three distinct NPs (ANP, BNP, and CNP) can selectively activate natriuretic peptide receptors, NPR-A and NPR-B, raising the cyclic GMP (cGMP) levels. Insulin-degrading enzyme (IDE) was found to rapidly cleave ANP, but the functional consequences of such cleavages in the cellular environment and the molecular mechanism of recognition and cleavage remain unknown. Here, we show that reducing expression levels of IDE profoundly alters the response of NPR-A and NPR-B to the stimulation of ANP, BNP, and CNP in cultured cells. IDE rapidly cleaves ANP and CNP, thus inactivating their ability to raise intracellular cGMP. Conversely, reduced IDE expression enhances the stimulation of NPR-A and NPR-B by ANP and CNP, respectively. Instead of proteolytic inactivation, IDE cleavage can lead to hyperactivation of BNP toward NPR-A. Conversely, decreasing IDE expression reduces BNP-mediated signaling. Additionally, the cleavages of ANP and BNP by IDE render them active with NPR-B and a reduction of IDE expression diminishes the ability of ANP and BNP to stimulate NPR-B. Our kinetic and crystallographic analyses offer the molecular basis for the selective degradation of NPs and their variants by IDE. Furthermore, our studies reveal how IDE utilizes its catalytic chamber and exosite to engulf and bind up to two NPs leading to biased stochastic, non-sequential cleavages and the ability of IDE to switch its substrate selectivity. Thus, the evolutionarily conserved IDE may play a key role in modulating and reshaping the strength and duration of NP-mediated signaling.  相似文献   

14.
Li Q  Krogmann T  Ali MA  Tang WJ  Cohen JI 《Journal of virology》2007,81(16):8525-8532
Varicella-zoster virus (VZV) glycoprotein E (gE) is required for VZV infection. Although gE is well conserved among alphaherpesviruses, the amino terminus of VZV gE is unique. Previously, we showed that gE interacts with insulin-degrading enzyme (IDE) and facilitates VZV infection and cell-to-cell spread of the virus. Here we define the region of VZV gE required to bind IDE. Deletion of amino acids 32 to 71 of gE, located immediately after the predicted signal peptide, resulted in loss of the ability of gE to bind IDE. A synthetic peptide corresponding to amino acids 24 to 50 of gE blocked its interaction with IDE in a concentration-dependent manner. However, a chimeric gE in which amino acids 1 to 71 of VZV gE were fused to amino acids 30 to 545 of herpes simplex virus type 2 gE did not show an increased level of binding to IDE compared with that of full-length HSV gE. Thus, amino acids 24 to 71 of gE are required for IDE binding, and the secondary structure of gE is critical for the interaction. VZV gE also forms a heterodimer with glycoprotein gI. Deletion of amino acids 163 to 208 of gE severely reduced its ability to form a complex with gI. The amino portion of IDE, as well an IDE mutant in the catalytic domain of the protein, bound to gE. Therefore, distinct motifs of VZV gE are important for binding to IDE or to gI.  相似文献   

15.
To enhance our understanding of the potential therapeutic utility of insulin-degrading enzyme (IDE) in Alzheimer's disease (AD), we studied in vitro IDE-mediated degradation of different amyloid-beta (Aβ) peptide aggregation states. Our findings show that IDE activity is driven by the dynamic equilibrium between Aβ monomers and higher ordered aggregates. We identify Met35–Val36 as a novel IDE cleavage site in the Aβ sequence and show that Aβ fragments resulting from IDE cleavage form non-toxic amorphous aggregates. These findings need to be taken into account in therapeutic strategies designed to increase Aβ clearance in AD patients by modulating IDE activity.  相似文献   

16.
Amyloid beta (Aβ) proteins are produced from amyloid precursor protein cleaved by β- and γ-secretases, and are the main components of senile plaques pathologically found in Alzheimer's disease (AD) patient brains. Therefore, the relationship between AD and Aβs has been well studied for both therapeutic and diagnostic purposes. Several enzymes have been reported to degrade Aβs in vivo, with neprilysin (NEP) and insulysin (insulin-degrading enzyme, IDE) being the most prominent. In this article, we describe the mass spectrometric characterization of peptide fragments generated using NEP and IDE, and clarify the differences in digestion specificities between these two enzymes for non-aggregated Aβ40, aggregated Aβ40, and Aβ40 peptide fragments, including Aβ16. Our results allowed identification of all the peptide fragments from non-aggregated Aβ40: NEP, 23 peptide fragments consisting of 2–11 amino-acid residues, 17 cleavage sites; IDE, 23 peptide fragments consisting of 6–33 amino-acid residues, 15 cleavage sites. Also, we confirmed that IDE can digest only whole Aβ40, whereas NEP can digest both Aβ40 and partial structures such as Aβ16 and peptide fragments generated by the digestion of Aβ40 by IDE. Furthermore, we confirmed that IDE and NEP are unable to digest aggregated Aβ40.  相似文献   

17.
Insulin-like peptide 3 (INSL3) is an insulin superfamily peptide hormone, primarily expressed in the testes and playing a key role in the fetus testes descent and suppression of male germ cell apoptosis. Insulin-degrading enzyme (IDE) is a zinc-metalloprotease, responsible for in vivo degradation of insulin, Aβ, and other peptide hormones. IDE has high expression level in the testes, implying it might be involved in INSL3 turnover in vivo. In present work, we studied in vitro degradation of INSL3 by IDE. Recombinant human IDE degraded human INSL3, but its degradation rate for INSL3 is more than a magnitude lower than that for insulin. However, IDE bound INSL3 and insulin with almost same affinity. IDE cleaved the peptide bond between B26R and B27W of INSL3, and released a pentapeptide, WSTEA, from the C-terminal of B-chain. Our present work suggested that IDE might play a role in INSL3 degradation in vivo.  相似文献   

18.
Cholinesterases are a family of enzymes that catalyze the hydrolysis of neurotransmitter acetylcholine. There are two types of cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which differ in their distribution in the body. Currently, cholinesterase inhibitors (ChEI) represent the treatment of choice for Alzheimer's disease (AD). In this paper, we report the synthesis and inhibitory effect on both enzymes of four new peptides structurally related to P1‐Hp‐1971 (amphibian skin peptide found in our previous work. Sequence: TKPTLLGLPLGAGPAAGPGKR‐NH2). The bioassay data and cytotoxicity test show that some of the compounds possess a significant AChE and BChE inhibition and no toxic effect. The present work demonstrates that diminution of the size of the original peptide could potentially result in new compounds with significant cholinesterase inhibition activity, although it appears that there is an optimal size for the sequence. We also conducted an exhaustive molecular modeling study to better understand the mechanism of action of these compounds by combining docking techniques with molecular dynamics simulations on BChE. This is the first report about amphibian peptides and the second one of natural peptides with ChE inhibitory activity. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Alzheimer's disease (AD) is hallmarked by amyloid‐β (Aβ) peptides accumulation and aggregation in extracellular plaques, preceded by intracellular accumulation. We examined whether intracellular Aβ can be cleared by cytosolic peptidases and whether this capacity is affected during progression of sporadic AD (sAD) in humans and in the commonly used APPswePS1dE9 and 3xTg‐AD mouse models. A quenched Aβ peptide that becomes fluorescent upon degradation was used to screen for Aβ‐degrading cytoplasmic peptidases cleaving the aggregation‐prone KLVFF region of the peptide. In addition, this quenched peptide was used to analyze Aβ‐degrading capacity in the hippocampus of sAD patients with different Braak stages as well as APPswePS1dE9 and 3xTg‐AD mice. Insulin‐degrading enzyme (IDE) was found to be the main peptidase that degrades cytoplasmic, monomeric Aβ. Oligomerization of Aβ prevents its clearance by IDE. Intriguingly, the Aβ‐degrading capacity decreases already during the earliest Braak stages of sAD, and this decline correlates with IDE protein levels, but not with mRNA levels. This suggests that decreased IDE levels could contribute to early sAD. In contrast to the human data, the commonly used APPswePS1dE9 and 3xTg‐AD mouse models do not show altered Aβ degradation and IDE levels with AD progression, raising doubts whether mouse models that overproduce Aβ peptides are representative for human sAD.  相似文献   

20.

Background

Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the Aβ peptide associated with Alzheimer''s disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP.

Principal Findings

The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant) with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. In addition, changes in the dimer interface suggest a basis for communication between subunits.

Conclusions/Significance

Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号