首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Cephalopods generally are thought to have only static iridophores, but this report provides qualitative and quantitative evidence for active control of certain iridescent cells in the dermis of the squidLolliguncula brevis. In vivo observations indicate the expression of iridescence to be linked to agonistic or reproductive behavior. The neuromodulator acetylcholine (ACh) induced dramatic optical changes in active iridophores in vitro, whereas ACh had little effect on passive iridophores elsewhere in the mantle skin. Bath application of physiological concentrations of ACh (10-7M to 10-6M) to excised dermal skin layers transformed the active iridophores from a non-reflective diffuse blue to brightly iridescent colors, and this reaction was reversible and repeatable. The speed of change to iridescent in vitro corresponded well to the speed of changes in the living animal. Pharmacological results indicate the presence of muscarinic receptors in this system and that Ca++ is a mediator for the observed changes. Although ACh is present in physiological quantities in the dermal iridophore layer, it is possible that ACh release is not controlled directly by the nervous system because electrophysiological stimulation of major nerves in the periphery resulted in no iridescence inL. brevis; nor did silver staining or transmission electron microscopy reveal neuronal elements in the iridophore layer. Thus, active iridophores may be controlled by ACh acting as a hormone.  相似文献   

2.
3.
《Cell》2021,184(21):5286-5288
  相似文献   

4.
5.
6.
7.
A long-lasting birefringence change (the delayed response) was found to be produced in a tetanically stimulated squid giant axon. The change was independent of the concurrent membrane potential change, summated on repetitive stimulation, and always had a sign representing a decrease in resting birefringence. The axon was placed between a polarizer and an analyzer with their polarizing axes crossed, making an angle of 45° with the longitudinal direction of the axon. The light beam that passed through the axon and the other optical elements was received by a photodiode. The change in light intensity evoked by repetitive stimulation was composed of brief initial responses, which took place in response to individual stimuli, and a delayed response, which developed gradually and lasted for several hundred msec. It was necessary to differentiate the effect of birefringence change from that of turbidity change. Formulas were derived on the assumption that the optical properties of the axon could be represented by a model of a uniaxial crystal that was not only birefringent but also dichroic, its extinction coefficients and the angle of retardation being changed independently on excitation. Calculations with them yielded the resting retardation, which agreed well with those obtained by the Sénarmont's method, and the change in birefringence, which agreed well with the other calculated value derived from experiments using a quarter-wave plate. The results of the calculation confirmed the existence of the long-lasting birefringence change in the tetanically stimulated axon.  相似文献   

8.
Ontogenetic color changes in fully turgid flowers are widespread throughout the angiosperms, and in many cases are known to provide signals for pollinators. A broad survey of flowering plants demonstrates that such color changes appear in at least 77 diverse families. Color-changing taxa occur commonly within what are considered derived lineages, and only rarely in early or primitive groups. The pattern of distribution of floral color change across orders, families, genera, and species demonstrates that the occurrence of the phenomenon within a group is not simply a result of phylogenetic history. Color changes can affect the whole flower or they can be localized, affecting at least nine floral parts or regions. The scale of color change (localized or whole-flower) is broadly correlated with the type of pollinator that characteristically visits the plant. Color changes can come about through seven distinct physiological mechanisms, involving anthocyanins, carotenoids, and betalains. Color changes due to appearance of anthocyanin are the most common, occurring in 68 families. Floral color change has clearly evolved independently many times, most likely in response to selection by visually oriented pollinators, and reflects a widespread functional convergence within the angiosperms.  相似文献   

9.
Hydrobiologia - In many haplochromine cichlids, body coloration is an important communication cue during social interactions. In some cichlids, individuals can change color, but we have little...  相似文献   

10.
Generational change in skin color variation among Habbani Yemeni Jews   总被引:1,自引:0,他引:1  
The Habbani Yemeni Jews were a religious isolate in Yemen for centuries. Since a bottleneck in the late eighteenth century the population, composed of six partrilineages, has steadily grown. Isonymy analysis of Habbani genealogies reveals a significant increase in lineage endogamy by the early twentieth century, suggesting that microdifferentiation of Habbani population genetic structure along the patrilineages was occurring. We examine reflectance data from a "parental" generation of 159 individuals studied by Hulse in the 1960s and reflectance data from an "offspring" generation of 243 individuals studied by Towne in the 1980s. A greater amount of interlineage skin color differences is found in the offspring generation than in the parental generation. This finding is consistent with what is known of the evolution of Habbani population genetic structure.  相似文献   

11.
影响麦长管蚜体色变化的主导因素   总被引:1,自引:0,他引:1  
研究麦长管蚜Macrosiphum avenae(Fabricius)体色变化生态主导因素,田间红色麦长管蚜种群对不同抗蚜性寄主的反应和自然条件下,不同体色麦长管蚜的生殖力以及后代种群体色变化情况。结果显示:在实验温度范围内,麦长管蚜种群中红体色蚜虫所占比例随温度升高而增加,在28,29,30,31℃时,红体色蚜虫所占比例分别为6.66%,38.30%,70.60%和65.24%。麦长管蚜体色变化过程中,温度起到重要的作用,而与光周期和寄主营养的关系甚微。红体色麦长管蚜在不同抗蚜性的品种上其种群消长情况存在差异。田间红绿体色麦长管蚜经2代观测,平均蚜量比值分别为9.96和15.85,生殖力差异不显著。在小麦抽穗期到乳熟期红体色麦长管蚜个体比例随着田间条件的改变逐代升高(分别由第1代的17.55%和14.70%增至第2代的29.80%和42.2%)。  相似文献   

12.
Summary The skin of the lizard, Anolis carolinensis, changes rapidly from bright green to a dark brown color in response to melanophore stimulating hormone (MSH). Chromatophores responsible for color changes of the skin are xanthophores which lie just beneath the basal lamina containing pterinosomes and carotenoid vesicles. Iridophores lying immediately below the xanthophores contain regularly arranged rows of reflecting platelets. Melanophores containing melanosomes are present immediately below the iridophores. The ultrastructural features of these chromatophores and their pigmentary organelles are described. The color of Anolis skin is determined by the position of the melanosomes within the melanophores which is regulated by MSH and other hormones such as norepinephrine. Skins are green when melanosomes are located in a perinuclear position within melanophores. In response to MSH, they migrate into the terminal processes of the melanophores which overlie the xanthophores above, thus effectively preventing light penetration to the iridophores below, resulting in skins becoming brown. The structural and functional characteristics of Anolis chromatophores are compared to the dermal chromatophore unit of the frog.This study was supported in part by GB-8347 from the National Science Foundation.Contribution No. 244, Department of Biology, Wayne State University.The authors are indebted to Dr. Joseph T. Bagnara for his encouragement during the study and to Dr. Wayne Ferris for his advice and the use of his electron microscope laboratory.  相似文献   

13.
Summary Reflecting chromatophores in the dermis of the skin of a freshwater goby, Odontobutis obscura, are of an iridophore type. These chromatophores contain numerous reflecting platelets, which are similar to those in iridophores of other fish and amphibian species. It was found that these iridophores are motile, i.e., these cells respond to certain stimuli with translocation of the platelets within the cells. K+ ions induced dispersion of the platelets in excised scale preparations, but not in excised scales from chemically denervated fish. Norepinephrine and melatonin also induced dispersion of the platelets. Alpha-MSH was effective in aggregating these organelles into the centrospheres of the cells. The conclusions reached are: (1) iridophores of O. obscura are motile; (2) the movement of the iridophores is under nervous and hormonal control.  相似文献   

14.
Effects of cyclic nucleotides on motile iridophores were examined in the blue damselfish, Chrysiptera cyanea. All of the cyclic nucleotides tested, i.e. cAMP, 2',3'-cAMP and cGMP, accelerated the clearing response of the cells even at concentrations of 10(-5) or 10(-4) M. The action of these nucleotides was effectively antagonized by methylxanthines. These results suggest that the effect of cyclic nucleotides on damselfish iridophores is mediated by adenosine receptors in a similar fashion to the action of adenosine.  相似文献   

15.
Classical light microscopic studies on pigmentation of Fundulus heteroclitus (killifish) indicated that there are three groups of light reflecting cells; one group on the surface of scales reflects white light, while two other deeper groups (the melaniridophores and the stratum argenteum) are iridescent. The results presented here show that: (1) The scale leucophores reflect white light by a Tyndall light-scattering mechanism, by virtue of the presence of randomly oriented organelles of “novel” morphology. (2) The iridophores of the melaniridophores contain stacks of irregularly-spaced, large reflecting platelets which function as an imperfect multiple thin layer interference system. (3) The stratum argenteum consists of a continuous layer(s) of iridophores with reflecting platelets which are so regularly packed as to approach an ideal multiple thin layer interference system. (4) In all three types of light reflecting cells, the dimensions and packing (orientation) of the reflecting organelles satisfactorily account for the chromogenic properties of the cells, including colors as viewed under transmitted, reflected, or polarized light. (5) The spacial relationships between these light reflecting cells and adjoining melanophores are different for each type of light reflecting cell. Furthermore, we propose to replace the term reflecting platelet with refractosome.  相似文献   

16.
A long-lasting birefringence change (the delayed response) was found to be produced in a tetanically stimulated squid giant axon. The change was independent of the concurrent membrane potential change, summated on repetitive stimulation, and always had a sign representing a decrease in resting birefringence. The axons was placed between a polarizer and an analyzer with their polarizing axes crossed, making an angle of 45 degrees with the longitudinal direction of the axon. The light beam that passed through the axon and the other optical elements was received by a photodiode. The change in light intensity evoked by repetitive stimulation was composed of brief initial responses, which took place in response to individual stimuli, and a delayed response, which developed gradually and lasted for several hundred msec. It was necessary to differentiate the effect of birefringence change from that of turbidity change. Formulas were derived on the assumption that the optical properties of the axon could be represented by a model of a uniaxial crystal that was not only birefringent but also dichroic, its extinction coefficients and the angle of retardation being changed independently on excitation. Calculations with them yielded the resting retardation, which agreed well with those obtained by the Senarmont's method, and the change in birefringence, which agreed well with the other calculated value derived from experiments using a quarter-wave plate. The results of the calculation confirmed the existence of the long-lasting birefringence change in the tetanically stimulated axon.  相似文献   

17.
Pure or genuine malvin was isolated fromFuchsia petals for the first time and characterized as the malvin anhydro-base. The conditions for the co-pigmentation were examinedin vitro with regard to anthocyanin, co-pigment and pH, and the co-pigmentation occurred as the result of interaction between anthocyanin and co-pigment without any participation of metallic elements. The blue-violet color of youngFuchsia petals appeared at pH 4.8 in the 1∶0.6 molar ratio of anthocyanin to co-pigments. The color change from blue-violet in young petals to purple-red in old ones was caused by co-pigmentation and the pH change from 4.8 to 4.2. The decrease of pH in the old petals was due to the increase of organic acids such as aspartic, malic and tartaric acids.  相似文献   

18.
19.
Organelles transported along microtubules are normally moved to precise locations within cells. For example, synaptic vesiceles are transported to the neruronal synapse, the Golgi apparatus is generally found in a perinuclear location, and the membranes of the endoplasmic reticulum are actively extended to the cell periphery. The correct positioning of these organelles depends on microtubules and microtubule motors. Melanophores provide an extreme example of organized organelle transport. These cells are specialized to transport pigment granules, which are coordinately moved towards or away from the cell center, and result in the cell appearing alternately light or dark. Melanophores have proved to be an ideal system for studying the mechanisms by which the cell controls the direction of its organelle transport. Pigment granule dispersion (the movement away from the cell center) requires protein phosphorylation, while pigment aggregation (the movement towards the cell center) requires protein dephosphorylation. The target of this phosphorylation and dephosphorylation event is a protein that interacts with the microtubule motor protein, kinesin. Thus, the direction of organelle transport along microtubules may be regulated by controlling the activity of a microtubule motor.  相似文献   

20.
Experiments with skin pieces revealed that the sympathetic nervous system controls the activity of the light-sensitive iridophores in the stripes of the neon tetra. The spectral peak reflected from the cells was shifted toward longer wavelengths as a result of a direct interaction between norepinephrine and alpha-adrenoceptors present on the cell membrane. Adenosine accelerated the recovery from the effects of the amine. Such regulation seems to operate when fish are in an excited state or under stress. Since alpha-melanophore-stimulating hormone (alpha-MSH), melanin-concentrating hormone (MCH) and melatonin caused the responses only at high concentrations, it is possible that these peptides and amine do not affect the properties of the light-reflecting cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号