首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flagellated protozoan Giardia duodenalis is a parasite of the upper part of the small intestine of mammals, including humans, and an interesting biological model. Giardia harbors a single 14-3-3 isoform, a multifunctional protein family, that is modified at the C terminus by polyglycylation, an unusual post-translational modification consisting of the covalent addition of one or multiple glycines on the γ-carboxyl groups of specific glutamic acids. Polyglycylation affects the intracellular localization of g14-3-3, as the shortening of the polyglycine chain is correlated with a partial relocalization of 14-3-3 inside the nuclei during encystation. In this work we demonstrate that the gTTLL3, a member of the tubulin tyrosine ligase-like family, is the enzyme responsible for the 14-3-3 polyglycylation. We also identify two metallopeptidases of the M20 family, here termed gDIP1 (giardial dipeptidase 1) and gDIP2, as enzymes able to shorten the g14-3-3 polyglycine tail both in vivo and in vitro. Finally, we show that the ectopic expression of gDIP2 alters the g14-3-3 localization and strongly hampers the cyst formation. In conclusion, we have identified a polyglycylase and two deglycylases that act in concert to modulate the stage-dependent glycylation status of the multifunctional regulatory g14-3-3 protein in G. duodenalis.  相似文献   

2.
3.
14-3-3s are a family of phosphoserine/phosphothreonine binding proteins directly affecting many protein functions by regulating enzyme activity, intracellular localisation or mediating protein-protein interaction. The single 14-3-3 (g14-3-3) of the flagellated parasite Giardia duodenalis is phosphorylated at residue threonine 214 (T214) and polyglycylated at the extreme C-terminus in a stage-specific manner. To define the role of each post-translational modification, Giardia transgenic lines expressing a N-terminally FLAG-tagged g14-3-3, or the single point mutant T214A, or the E246A and the E247A mutants of the putative polyglycylation sites, were generated in this study. By affinity chromatography and MALDI-MS analysis, Glu246 was identified as the only site of polyglycylation. The absence of a polyglycine chain results in the nuclear localisation of the protein at any parasite life-stage, suggesting a role for polyglycylation in 14-3-3 nucleo/cytoplasm shuttling. Moreover, cyst formation was strongly induced in parasites expressing the E246A mutant and delayed in those harbouring the T214A mutant. Finally, in vitro overlay assays with a GST_T214E mutant indicated that phosphorylation can alter in vitro the binding properties of 14-3-3. The present data suggest that g14-3-3 post-translational modifications act in combination to affect encystation efficiency in Giardia.  相似文献   

4.
Of the 7 genetic assemblages of the parasite Giardia duodenalis only 2 (A and B) are known to cause infections in humans. These assemblages have been characterized in detail at the genomic level but few studies have examined differences in the proteins expressed. Employing one and two-dimensional PAGE we have identified an assemblage A-specific protein of human infective G. duodenalis; alpha 2 giardin. The protein difference was evident using both electrophoretic techniques. Alpha 2 giardin is known to be a structural protein and associates with the caudal flagella and the plasma membrane; however, its exact function is unknown. Although several proteins unique to assemblage B were also observed, we were unable to identify these proteins due to a lack of genomic data available for assemblage B isolates. Together, these proteins represent distinct phenotypic differences between the human infective assemblages of G. duodenalis and support the need to revise the taxonomy of this parasite.  相似文献   

5.
6.
Giardia duodenalis is a common intestinal parasite in most parts of the world. In Canada it is associated with both endemic and epidemic infections that are often transmitted by the waterborne route. Although G. duodenalis strains have been isolated from several animals, the role of other mammals in human infection is unclear. We have isolated and cultured G. duodenalis trophozoites from domestic and wild animals in Alberta and compared them with a human isolate by protein gel electrophoresis and immunoblot analysis. All strains examined share a similar polypeptide profile and important protein antigens. Prominent antigens of 62, 52, 38, and 31 kilodaltons are conserved. The 52- and 31-kilodalton proteins are the major surface-exposed trophozoite components. The high degree of antigenic sharing among strains from different hosts suggests that there may be a wide range of potential reservoirs for G. duodenalis infections.  相似文献   

7.
Shin R  Jez JM  Basra A  Zhang B  Schachtman DP 《FEBS letters》2011,585(1):143-147
14-3-3 Proteins regulate many cellular processes by binding to phosphorylated proteins. Previous findings suggest a connection between three 14-3-3 isoforms and plant nutrient signaling. To better understand how these 14-3-3s regulate metabolism in response to changes in plant nutrient status, putative new targets involved in nitrogen (N) and sulfur (S) metabolisms have been identified. The interactions between these 14-3-3s and multiple proteins involved in N and S metabolism and altered activity of the target proteins were confirmed in planta. Using a combination of methods, this work elucidates how 14-3-3s function as modulators of plant N and S metabolic pathways.  相似文献   

8.
Parasites are increasingly recognized for their profound influences on individual, population and ecosystem health. We provide the first report of gastrointestinal parasites in gray wolves from the central and north coasts of British Columbia, Canada. Across 60 000 km(2), wolf feces were collected from 34 packs in 2005-2008. At a smaller spatial scale (3300 km(2)), 8 packs were sampled in spring and autumn. Parasite eggs, larvae, and cysts were identified using standard flotation techniques and morphology. A subset of samples was analysed by PCR and sequencing to identify tapeworm eggs (n=9) and Giardia cysts (n=14). We detected ≥14 parasite taxa in 1558 fecal samples. Sarcocystis sporocysts occurred most frequently in feces (43·7%), followed by taeniid eggs (23·9%), Diphyllobothrium eggs (9·1%), Giardia cysts (6·8%), Toxocara canis eggs (2·1%), and Cryptosporidium oocysts (1·7%). Other parasites occurred in ≤1% of feces. Genetic analyses revealed Echinococcus canadensis strains G8 and G10, Taenia ovis krabbei, Diphyllobothrium nehonkaiense, and Giardia duodenalis assemblages A and B. Parasite prevalence differed between seasons and island/mainland sites. Patterns in parasite prevalence reflect seasonal and spatial resource use by wolves and wolf-salmon associations. These data provide a unique, extensive and solid baseline for monitoring parasite community structure in relation to environmental change.  相似文献   

9.
14-3-3 proteins affect the cell surface expression of several unrelated cargo membrane proteins, e.g., MHC II invariant chain, the two-pore potassium channels KCNK3 and KCNK9, and a number of different reporter proteins exposing Arg-based endoplasmic reticulum localization signals in mammalian and yeast cells. These multimeric membrane proteins have a common feature in that they all expose coatomer protein complex I (COPI)- and 14-3-3-binding motifs. 14-3-3 binding depends on phosphorylation of the membrane protein in some and on multimerization of the membrane protein in other cases. Evidence from mutant proteins that are unable to interact with either COPI or 14-3-3 and from yeast cells with an altered 14-3-3 content suggests that 14-3-3 proteins affect forward transport in the secretory pathway. Mechanistically, this could be explained by clamping, masking, or scaffolding. In the clamping mechanism, 14-3-3 binding alters the conformation of the signal-exposing tail of the membrane protein, whereas masking or scaffolding would abolish or allow the interaction of the membrane protein with other proteins or complexes. Interaction partners identified as putative 14-3-3 binding partners in affinity purification approaches constitute a pool of candidate proteins for downstream effectors, such as coat components, coat recruitment GTPases, Rab GTPases, GTPase-activating proteins (GAPs), guanine-nucleotide exchange factors (GEFs) and motor proteins.  相似文献   

10.
We previously identified a gene encoding a CAP (adenylyl cyclase-associated protein) homologue from the edible Basidiomycete Lentinus edodes. To further discover the cellular functions of the CAP protein, we searched for CAP-interacting proteins using a yeast two-hybrid system. Among the candidates thus obtained, many clones encoded the C-terminal half of an L. edodes 14-3-3 homologue (designated cip3). Southern blot analysis indicated that L. edodes contains only one 14-3-3 gene. Overexpression of the L. edodes 14-3-3 protein in the fission yeast Schizosaccharomyces pombe rad24 null cells complemented the loss of endogenous 14-3-3 protein functions in cell morphology and UV sensitivity, suggesting functional conservation of 14-3-3 proteins between L. edodes and S. pombe. The interaction between L. edodes CAP and 14-3-3 protein was restricted to the N-terminal domain of CAP and was confirmed by in vitro co-precipitation. Results from both the two-hybrid system and in vivo co-precipitation experiments showed the conservation of this interaction in S. pombe. The observation that a 14-3-3 protein interacts with the N-terminal portion of CAP but not with full-length CAP in L. edodes and S. pombe suggests that the C-terminal region of CAP may have a negative effect on the interaction between CAP and 14-3-3 proteins, and 14-3-3 proteins may play a role in regulation of CAP function.  相似文献   

11.
1. Intact trophozoites of Giardia duodenalis (clone P1C10) took up and metabolised L-[U14C-] aspartate to 14CO2 at rates of 10.27 +/- 0.76 and 27.6 +/- 2.07 ng hr-1 10(-6) cells in a simple maintenance medium (MM) and in a complex bile supplemented (BIS-33) medium respectively. 2. Intact trophozoite of G. duodenalis (clone P1C10) also took up and metabolised L-[U14C-] alanine to 14CO2 at rates of 20.6 +/- 1.1 and 91.4 +/- 17.5 ng hr-1 10(-6) cells in the simple (MM) and complex (BIS-33) medium respectively. 3. trophozoite sonicates contained significant levels of aspartate-2-oxoglutarate transaminase (AST; EC 2.6.1.1) and alanine-2-oxoglutarate transaminase (ALT; EC 2.6.2.2.). Specific activities (at 23 degrees C) were 95.1 +/- 11.3 and 87.3 +/- 9.8 nmol (min)-1 (mg protein)-1 respectively. 4. These observations suggest that Giardia has the capacity to utilise aspartate and alanine and possibly other amino acids as alternative sources of energy. 5. The extrusion or uptake of alanine by Giardia trophozoites may be dictated by the intracellular redox-status of the protozoan parasite or components in the external mileu.  相似文献   

12.
The receptor for parathyroid hormone (PTH) and PTH-related protein (PTHrP) regulates calcium homeostasis, bone remodeling and skeletal development. 14-3-3 proteins bind to signaling proteins and act as molecular scaffolds and regulators of subcellular localization. We show that the parathyroid hormone receptor (PTHR) interacts with 14-3-3 and the proteins colocalize within the cell. 14-3-3 interacts with the C-terminal tail of the receptor containing a consensus 14-3-3 binding motif, but additional binding sites are also used. Protein kinase-A treatment of the receptor and especially the C-terminal tail reduces 14-3-3 binding. The expressed C-terminal tail is primarily localized in the nucleus, supporting the function of a putative nuclear localization signal that could be involved in the previously described nuclear localization of PTHR. The observed interaction between PTHR and the 14-3-3 protein implies that 14-3-3 could contribute to regulation of PTHR signaling.  相似文献   

13.
The malaria parasite invades the terminally differentiated erythrocytes, where it grows and multiplies surrounded by a parasitophorous vacuole. Plasmodium blood stages translocate newly synthesized proteins outside the parasitophorous vacuole and direct them to various erythrocyte compartments, including the cytoskeleton and the plasma membrane. Here, we show that the remodeling of the host cell directed by the parasite also includes the recruitment of dematin, an actin-binding protein of the erythrocyte membrane skeleton and its repositioning to the parasite. Internalized dematin was found associated with Plasmodium 14-3-3, which belongs to a family of conserved multitask molecules. We also show that, in vitro, the dematin-14-3-3 interaction is strictly dependent on phosphorylation of dematin at Ser(124) and Ser(333), belonging to two 14-3-3 putative binding motifs. This study is the first report showing that a component of the erythrocyte spectrin-based membrane skeleton is recruited by the malaria parasite following erythrocyte infection.  相似文献   

14.
Gao Y  Jiang M  Yang T  Ni J  Chen J 《Cell research》2006,16(6):539-547
hPFTAIRE1 (PFTK1), a Cdc2-related protein kinase, is highly expressed in human brain. It exhibits cytoplasmic distribution in Hela cells, although it contains two nuclear localization signals (NLSs) in its N-terminus. To search for its substrates and regulatory components, we screened a two-hybrid library by using the full-length hPFTAIRE1 as a bait. Four 14-3-3 isoforms (β,ε,η,τ) were identified interacting with the hPFTAIRE1. We found a putative 14-3-3 binding consensus motif(RHSSPSS) in the hPFTAIRE 1, which overlapped with its second NLS. Deletion of the RHSSPSS motif or substitution of Ser^119 gwithAla in the conserved binding motif abolished the specific interaction between the hPFTAIRE 1 and the 14-3 -3 proteins. The mutant S 120A hPFTAIRE1 also showed a weak interaction to the 14-3-3 proteins. The results suggested that the Ser^119 is crucial for the interaction between hPFTAIREI and the 14-3-3 proteins. All the hPFTAIRE1 mutants distributed in cytoplasm of Hela cells and human neuroblastoma cells (SH-SY5Y) when fused to the C-terminus of a green fluorescent protein (GFP), indicating that binding with the 14-3-3 proteins does not contribute to the subcellular localization of the hPFTAIRE1, although the binding may be involved in its signaling regulation.  相似文献   

15.
Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins for the α-subunit of heterotrimeric G proteins. The function of certain RGS proteins is negatively regulated by 14-3-3 proteins, a family of highly conserved regulatory molecules expressed in all eukaryotes. In this study, we provide a structural mechanism for 14-3-3-dependent inhibition of RGS3-Gα interaction. We have used small angle x-ray scattering, hydrogen/deuterium exchange kinetics, and Förster resonance energy transfer measurements to determine the low-resolution solution structure of the 14-3-3ζ·RGS3 complex. The structure shows the RGS domain of RGS3 bound to the 14-3-3ζ dimer in an as-yet-unrecognized manner interacting with less conserved regions on the outer surface of the 14-3-3 dimer outside its central channel. Our results suggest that the 14-3-3 protein binding affects the structure of the Gα interaction portion of RGS3 as well as sterically blocks the interaction between the RGS domain and the Gα subunit of heterotrimeric G proteins.  相似文献   

16.
The Fin1 protein of the yeast Saccharomyces cerevisiae forms filaments between the spindle pole bodies of dividing cells. In the two-hybrid system it binds to 14-3-3 proteins, which are highly conserved proteins involved in many cellular processes and which are capable of binding to more than 120 different proteins. Here, we describe the interaction of the Fin1 protein with the 14-3-3 proteins Bmh1p and Bmh2p in more detail. Purified Fin1p interacts with recombinant yeast 14-3-3 proteins. This interaction is strongly reduced after dephosphorylation of Fin1p. Surface plasmon resonance analysis showed that Fin1p has a higher affinity for Bmh2p than for Bmh1p (K(D) 289 versus 585 nm). Sequences in both the central and C-terminal part of Fin1p are required for the interaction with Bmh2p in the two-hybrid system. In yeast strains lacking 14-3-3 proteins Fin1 filament formation was observed, indicating that the 14-3-3 proteins are not required for this process. Fin1 also interacts with itself in the two-hybrid system. For this interaction sequences at the C terminus, containing one of two putative coiled-coil regions, are sufficient. Fin1p-Fin1p interactions were demonstrated in vivo by fluorescent resonance energy transfer between cyan fluorescent protein-labeled Fin1p and yellow fluorescent protein-labeled Fin1p.  相似文献   

17.
18.
19.
We have identified a new homologue of protein phosphatase type 1 from Plasmodium falciparum, designated PfPP1, which shows 83-87% sequence identity with yeast and mammalian PP1s at the amino acid level. The PfPP1 sequence is strikingly different from all other P. falciparum Ser/Thr phosphatases cloned so far. The deduced 304 amino acid sequence revealed the signature sequence of Ser/Thr phosphatase LRGNHE, and two putative protein kinase C and five putative casein kinase II phosphorylation sites. Calyculin A, a potent inhibitor of Ser/Thr phosphatase 1 and 2A showed hyperphosphorylation of a 51kDa protein among other parasite proteins. Okadaic acid on the other hand, was without any effect suggesting that PP1 activity might predominate over PP2A activity in intra-erythrocytic P. falciparum. Complementation studies showed that PfPP1 could rescue low glycogen phenotype of Saccharomyces cerevisiae glc7 (PP1) mutant, strongly suggesting functional interaction of PfPP1 and yeast proteins involved in glycogen metabolism.  相似文献   

20.
Regulators of G protein signaling (RGS) constitute a family of proteins with a conserved RGS domain of approximately 120 amino acids that accelerate the intrinsic GTP hydrolysis of activated Galpha(i) and Galpha(q) subunits. The phosphorylation-dependent interaction of 14-3-3 proteins with a subset of RGS proteins inhibits their GTPase-accelerating activity in vitro. The inhibitory interaction between 14-3-3 and RGS7 requires phosphorylation of serine 434 of RGS7. We now show that phosphorylation of serine 434 is dynamically regulated by TNF-alpha. Cellular stimulation by TNF-alpha transiently decreased the phosphorylation of serine 434 of RGS7, abrogating the inhibitory interaction with 14-3-3. We examined the effect of 14-3-3 on RGS-mediated deactivation kinetics of G protein-coupled inwardly rectifying K(+) channels (GIRKs) in Xenopus oocytes. 14-3-3 inhibited the function of wild-type RGS7, but not that of either RSG7(P436R) or RGS4, two proteins that do not bind 14-3-3. Our findings are the first evidence that extracellular signals can modulate the activity of RGS proteins by regulating their interaction with 14-3-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号