首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A piwi homolog is required for the regulation of stem cells, formation and maintenance of germline stem cells, and gametogenesis in many metazoans. Planarians can change their reproductive mode seasonally, both asexually and sexually, and develop and maintain germ cells and sexual organs. They have many pluripotent stem cells (neoblasts) that can differentiate into both somatic and germline stem cells. Thus, we searched for a piwi subfamily in the planarian Dugesia ryukyuensis. Four piwi homologs, identified as Drpiwi-1, -2, -3, and -4, were expressed in sexually reproductive worms. We then selectively destroyed the neoblasts by irradiating the worms with X-rays. In such worms, Drpiwi-1, -2, and -3 were not expressed at all, whereas Drpiwi-4 was expressed to the same degree as that in non-irradiated controls, indicating that Drpiwi-1, -2, and -3, but not Drpiwi-4, are expressed in neoblasts. During the regeneration process, Drpiwi-2(RNAi) and -3(RNAi) worms failed to regenerate after ablation, but Drpiwi-1 and -4(RNAi) worms regenerated. During the sexualizing process, Drpiwi-1(RNAi) worms failed to develop ovaries and testes, but somatic sexual organs were unaffected. Germ cell development was normal in Drpiwi-4(RNAi) worms. Therefore, Drpiwi-2 and -3 may be related to the regulation of neoblasts important for maintaining homeostasis, and Drpiwi-1 is essential for the development of germ cells but not somatic sexual organs. DrPiwi-1 is localized in the cytoplasm of stem cells and germline cells and may be involved in regulating some gene expression. We suggest that planarian Piwi controls germline formation via RNA silencing mechanisms.  相似文献   

2.
The planarian's remarkable regenerative ability is thought to be supported by the stem cells (neoblasts) found throughout its body. Here we report the identification of a subpopulation of neoblasts, which was revealed by the expression of the nanos-related gene of the planarian Dugesia japonica, termed Djnos. Djnos-expressing cells in the asexual planarian were distributed to the prospective ovary or testes forming region in the sexual planarian. During sexualization, Djnos-expressing cells produce germ cells, suggesting that in the asexual state these cells were kept as germline stem cells for the oogonia and spermatogonia. Interestingly, the germline stem cells were indistinguishable from the neoblasts by morphology and X-ray sensitivity and did not seem to contribute to the regeneration at all. Germline stem cells initially appear in the growing infant planarian, suggesting that germline stem cells are separated from somatic stem cells in the planarian. Thus, planarian neoblasts can be classified into two groups; somatic stem cells for regeneration and tissue renewal, and germline stem cells for production of germ cells during sexualization. However, Djnos-positive cells appeared in the newly formed trunk region from the head piece, suggesting that somatic stem cells can convert to germline stem cells.  相似文献   

3.
Asexual worms of an exclusively fissiparous strain (the OH strain) of the planarian Dugesia ryukyuensis keep developing hermaphroditic reproductive organs and eventually undergo sexual reproduction instead of asexual reproduction, namely fission, if they are fed with sexually mature worms of an exclusively oviparous planarian, Bdellocephala brunnea, suggesting that the sexually mature worms has a sexualizing substance(s). The fully sexualized worms no longer need the feeding on sexual worms to maintain the sexuality. Here, we demonstrate that the sexualized worms produce enough of their own sexualizing substance similar to that contained in B. brunnea. In case of surgical ablation of the sexualized worms, the fragments with sexual organs regenerate to become sexual, while those without sexual organs, namely head fragments, regenerate to return to the asexual state. The asexual regenerants from the sexualized worms are also fully sexualized by being fed with B. brunnea. Additionally, it was reported that head region in sexually mature worms lacks the putative sexualizing substance necessary for complete sexualization (Sakurai, 1981). These results suggest that the fragments without sexual organ lack enough of an amount of the putative sexualizing substance and the sexuality is maintained by the sexualizing substance contained in the sexualized worms.  相似文献   

4.
The planarian Dugesia ryukyuensis reproduces both asexually (fissiparous) and sexually (oviparous) and can switch from the asexual mode to the sexual mode. By feeding with mature Bdellocephala brunnea oviparous worms, the fissiparous worms, which do not possess sexual organs, can be converted to fully sexualized worms in a process termed sexualization. As sexualization proceeds, the sexual organs are formed uniformly and five stages (stages 15) of the process have been identified histologically. In order to clarify the sexualization process, we attempted to isolate the genes expressed specifically at stage 5 by the differential display method. We isolated five genes expressed in the testis and two genes expressed in the yolk gland, which is an organ specific to sexualized worms. By BLAST search, one of the testis-specific genes was coded as testis-specific alpha-tubulin and two yolk gland-specific genes are similar to ribose-phosphate pyrophosphokinase I and F-box/SPRY-domain protein 1. Drs1, Drs2 and Drs3 were expressed in spermatocytes and spermatids from the early stage of spermatogenesis and Drs4 and Drs5 were expressed in spermatogonia, spermatocytes and spermatids. These genes are useful markers for elucidating the sexualization process.  相似文献   

5.
We have investigated sexualization of asexual worms in the planarian Dugesia ryukyuensis. During sexualization there is a point from which an animal cannot return to the asexual state (point-of-no-return). To isolate the genes related to the point-of-no-return, we performed differential screening and isolated one novel gene that was expressed specifically in yolk glands of the worms after the point-of-no-return and named it Dryg. It encoded 655 amino acids with a predicted molecular mass of 79 kDa. We performed a series of experiments using Dryg as a molecular marker in the yolk gland. At first, we monitored how the yolk gland was formed during sexualization. The expression in sexualizing worms at stage 3 is limited to a single type of cell that has characteristics of neoblasts, the totipotent somatic cells; however, the expression is observed in the yolk gland in sexualized worms. Furthermore, we monitored yolk glands for expression during regeneration. The original yolk glands seem to disappear after ablation, then new yolk glands appeared along the ventral nerve cords. Because this expression pattern looks like that of sexualizing worms at stage 3, we speculate that yolk gland cells may differentiate from neoblasts during regeneration as observed during sexualization.  相似文献   

6.
Many metazoans convert the reproductive modes presumably depending upon the environmental conditions and/or the phase of life cycle, but the mechanisms underlying the switching from asexual to sexual reproduction, and vice versa, remain unknown. We established an experimental system, using an integrative biology approach, to analyze the mechanism in the planarian, Dugesia ryukyuensis (Kobayashi et al., 1999). Worms of exclusively asexual clone (OH strain) of the species gradually develop ovaries, testes and other sexual organs, then copulate and eventually lay cocoons filled with fertilized eggs, if they are fed with sexually mature worms of Bdellocephala brunnea (an exclusively oviparous species). This suggests the existence of a sexualizing substance(s) in sexually mature worms. Random inbreeding of experimentally sexualized worms (acquired sexuals) produces an F1 population of spontaneous sexuals (innate sexuals) and asexuals in a ratio of approximately 2:1. All regenerants from various portions of innate sexuals become sexuals. In the case of acquired sexuals, head fragments without sexual organs regenerated into asexuals though regenerants from other portions became sexuals. Thus, we conclude that neoblasts, the totipotent stem cells in the planarians, of acquired sexuals remain "asexual" and the worms require external supply of a sexualizing substance for the differentiation of sexual organs and gametes. On the other hand, some, if not all, neoblasts in innate sexuals are somehow "sexual" and do not require external supply of a sexualizing substance for the eventual differentiation of themselves and/or other neoblasts into sexual organs and gametes. It is also shown that sexuality in acquired sexuals is maintained by the putative sexualizing substance(s) of their own. The sexualization is closely coupled with cessation of fission, and the worms seem to have an unknown way of controlling the karyotype. Our integrative approach integrates multiple fields of study, including classic breeding, regeneration, and genetics experiments, as well as karyotyping, and biochemical and molecular biological analyses; none of which would have revealed much about the intricate mechanisms that regulate sex and fission in these animals.  相似文献   

7.
Asexual individuals in a fissiparous clone of the planarian Dugesia ryukyuensis develop hermaphroditic sexual organs and eventually undergo sexual reproduction instead of asexual reproduction if they are fed with the adults of Bdellocephala brunnea, an oviparous planaria. The experimental sexualization means that the adults of B. brunnea contain a putative sexualizing substance(s), which is the first candidate for the chemical(s) responsible for switching from asexual to sexual reproduction in metazoans. In the present study, the feeding experiment over two consecutive years revealed that the experimental sexualization has seasonal changes. In summer, the asexual individuals were not fully sexualized, though they developed a pair of ovaries. The developing ovaries degenerate if the feeding is stopped. On the contrary, in winter, they developed all the sexual organs. The sexual organs keep developing even if the feeding is stopped after a certain critical point named the point-of-no-return. It was demonstrated that the extreme difference of the sexualization was attributed to the seasonal change of the quality and/or quantity of the sexualizing substance contained in B. brunnea, as well as the minor change of the susceptibility to the sexualizing substance in the asexual individuals. On the other hand, the histological research of B. brunnea revealed that the degree of the maturation of the sexual organs varied extremely through a year. Taking these results into account, we suggest that the production of the sexualizing substance has no direct relation to any particular mature sexual organs.  相似文献   

8.
Asexual worms of fissiparous strain of the planarian Dugesia ryukyuensis switch from asexual to sexual reproduction, if they are fed with sexually mature worms of Bdellocephala brunnea. This suggests that the sexually mature worms have a sexualizing substance(s) that induces the sexuality in the asexual worms. Here, we found by analysis of the sexualization that the cessation of the fission, namely their asexual reproduction, occurs immediately after the acquisition of sexuality. This result suggests that the downstream mechanisms induced by the putative sexualizing substance in B. brunnea become responsible for the cessation of fission. We also found that the decapitation triggers fission in the worms even after the acquisition of sexuality if they are not sexually mature, while the fully sexualized worms never fission even though they are decapitated. This result suggests that the cessation of fission takes place via at least two steps: (1) the mechanisms associated with the cephalic system; (2) other mechanisms independent of cephalic control.  相似文献   

9.
10.
Sexually reproducing animals segregate their germline from their soma. In addition to gamete-producing gonads, planarian and parasitic flatworm reproduction relies on yolk cell–generating accessory reproductive organs (vitellaria) supporting development of yolkless oocytes. Despite the importance of vitellaria for flatworm reproduction (and parasite transmission), little is known about this unique evolutionary innovation. Here, we examine reproductive system development in the planarian Schmidtea mediterranea, in which pluripotent stem cells generate both somatic and germ cell lineages. We show that a homolog of the pluripotency factor Klf4 is expressed in primordial germ cells (PGCs), presumptive germline stem cells (GSCs), and yolk cell progenitors. Knockdown of this klf4-like (klf4l) gene results in animals that fail to specify or maintain germ cells; surprisingly, they also fail to maintain yolk cells. We find that yolk cells display germ cell–like attributes and that vitellaria are structurally analogous to gonads. In addition to identifying a new proliferative cell population in planarians (yolk cell progenitors) and defining its niche, our work provides evidence supporting the hypothesis that flatworm germ cells and yolk cells share a common evolutionary origin.  相似文献   

11.
Members of the nanos gene family are evolutionarily conserved regulators of germ cell development. In several organisms, Nanos protein expression is restricted to the primordial germ cells (PGCs) during early embryogenesis. Here, we investigate the regulation of the Caenorhabditis elegans nanos homolog nos-2. We find that the nos-2 RNA is translationally repressed. In the adult germline, translation of the nos-2 RNA is inhibited in growing oocytes, and this inhibition depends on a short stem loop in the nos-2 3'UTR. In embryos, nos-2 translation is repressed in early blastomeres, and this inhibition depends on a second region in the nos-2 3'UTR. nos-2 RNA is also degraded in somatic blastomeres by a process that is independent of translational repression and requires the CCCH finger proteins MEX-5 and MEX-6. Finally, the germ plasm component POS-1 activates nos-2 translation in the PGCs. A combination of translational repression, RNA degradation, and activation by germ plasm has also been implicated in the regulation of nanos homologs in Drosophila and zebrafish, suggesting the existence of conserved mechanisms to restrict Nanos expression to the germline.  相似文献   

12.
Although regeneration studies are useful for understanding how organs renew, little information is available about regeneration of reproductive organs and germ cells. We here describe the behavior of germ-cell precursors during regeneration of the oligochaete annelid worm Enchytraeus japonensis, which has the remarkable feature of undergoing asexual (by fission) and sexual reproduction . We first found that the gonad can regenerate from any body fragment yielded by fission during asexual reproduction. We then examined behavior of germ-cell lineage during this regenerative process, by using a homolog of the Piwi gene (Ej-piwi) as a marker. We found that in asexually growing animals, specialized cells expressing Ej-piwi are distributed widely in the body as single cells. These cells seem to serve as a reservoir of germ-cell precursors because during asexual propagation these cells migrate into the regenerating tissue, where they ultimately settle in the prospective gonads, and give rise to germ cells upon sexualization. These cells are distinct from the neoblasts, thought to be stem cells in other animals. This is the first report to directly show that the germ and somatic lineages are segregated in asexually growing animals and behave differently during regeneration.  相似文献   

13.
The planarian Dugesia ryukyuensis reproduces both asexually and sexually, and can switch from one mode of reproduction to the other. We recently developed a method for experimentally switching reproduction of the planarian from the asexual to the sexual mode. We constructed a cDNA library from sexualized D. ryukyuensis and sequenced and analyzed 8,988 expressed sequence tags (ESTs). The ESTs were analyzed and grouped into 3,077 non-redundant sequences, leaving 1,929 singletons that formed the basis of unigene sets. Fifty-six percent of the cDNAs analyzed shared similarity (E-value<1E -20) with sequences deposited in NCBI. Highly redundant sequences encoded granulin and actin, which are expressed in the whole body, and other redundant sequences encoded a Vasa-like protein, which is known to be a component of germ-line cells and is expressed in the ovary, and Y-protein, which is expressed in the testis. The sexualized planarian expressed sequence tag database (http://planaria.bio.keio.ac.jp/planaria/) is an open-access, online resource providing access to sequence, classification, clustering, and annotation data. This database should constitute a powerful tool for analyzing sexualization in planarians.  相似文献   

14.
Planarians are comprised of populations with different reproductive strategies: exclusively innately asexual (AS), exclusively innately sexual (InS), and seasonally switching. AS worms can be sexualized experimentally by feeding them with minced InS worms, and the resultant worms are characterized as acquired sexual (AqS). Differences between InS and AqS worms are expected to provide important clues to the poorly understood mechanism underlying the regulation of their reproductive mode. Morphological differences were found between InS and AqS worm ovaries, and we showed that the pluripotent stem cells (neoblasts) from InS worms, but not those of AqS worms, have the capacity to initiate the sexual state autonomously via neoblast fraction transplantation. To compare their reproductive mode and ovarian morphology regulation, InS donor neoblast fractions were transplanted into non-lethally X-ray-irradiated AS recipients. All transplants showed stable chimerism and reproduced sexually, suggesting that InS worm neoblasts can initiate sexual state autonomously, even when coexisting with AS worm neoblasts. The chimeras formed extraordinarily large and supernumerary ovaries equivalent to AqS worms, which were not seen in InS worms, suggesting that regulation of ovarian morphology in AS worm-derived cells in response to endogenous sexualizing stimulation distinctly differs from that of InS worms.  相似文献   

15.
16.
Homologues of Drosophila germ cell determinant genes such as vasa, nanos and tudor have recently been implicated in development of the male germline in mice. In the present study, the mouse gene encoding Tudor domain containing protein 5 (TDRD5) was isolated from a 12.5-13.5 days post coitum (dpc) male-enriched subtracted cDNA library. Whole-mount in situ hybridization analysis of Tdrd5 expression in the mouse embryonic gonad indicated that this gene is upregulated in the developing testis from 12.5 dpc, with expression levels remaining higher in testis than ovary throughout embryogenesis. Expression of Tdrd5 was absent in testes isolated from We/We embryos, which lack germ cells. In situ hybridization (ISH) on cryosectioned 13.5 dpc testes suggests that expression of Tdrd5, like that of Oct4, is restricted to germ cells. Northern hybridization analysis of expression in adult tissues indicated that Tdrd5 is expressed in the testis only, implying that expression of this gene is restricted to the male germline throughout development to adulthood.  相似文献   

17.
Published and original data indicating evolutionary conservation of the morphofunctional organization of reserve stem cells providing for asexual and sexual reproduction of invertebrates are reviewed. Stem cells were studied in representatives of five animal types: archeocytes in sponge Oscarella malakhovi (Porifera), large interstitial cells in colonial hydroid Obelia longissima (Cnidaria), neoblasts in an asexual race of planarian Girardia tigrina (Platyhelmintes), stem cells in colonial rhizocephalans Peltogasterella gracilis, Polyascus polygenea, and Thylacoplethus isaevae (Arthropoda), and colonial ascidian Botryllus tuberatus (Chordata). Stem cells in animals of such diverse taxa feature the presence of germinal granules, are positive for proliferating cell nuclear antigen, demonstrate alkaline phosphatase activity (a marker of embryonic stem cells and primary germ cells in vertebrates), and rhizocephalan stem cells express the vasa-like gene (such genes are expressed in germline cells of different metazoans). The self-renewing pool of stem cells is the cellular basis of the reproductive strategy including sexual and asexual reproduction.  相似文献   

18.
涡虫由于具有极强的再生能力而成为发育生物学及再生生物学研究的模式生物。此外,其在有性生殖方面所表现出来的独特性也备受人们关注。目前,涡虫生殖生物学研究领域主要围绕两个热点问题开展工作:1.无性生殖向有性生殖转化的诱因及机制的探讨;2.生殖相关基因的克隆、表达及功能分析。有关生殖转化机制方面的研究主要集中在涡虫的性化相关事件以及性化物质的本质探索;截至目前已克隆并对其表达和功能进行探讨的涡虫生殖相关基因主要有DjPTK1、vasa-like 基因、DeY1、Drygnanos相关基因以及Drpiwi-1等。此外,本文也对有关涡虫生殖生物学方面存在的问题及未来该领域的发展趋势进行了总结和展望。  相似文献   

19.
C Garvin  R Holdeman  S Strome 《Genetics》1998,148(1):167-185
Mutations in mes-2, mes-3, mes-4, and mes-6 result in maternal-effect sterility: hermaphrodite offspring of mes/mes mothers are sterile because of underproliferation and death of the germ cells, as well as an absence of gametes. Mutant germ cells do not undergo programmed cell death, but instead undergo a necrotic-type death, and their general poor health apparently prevents surviving germ cells from forming gametes. Male offspring of mes mothers display a significantly less severe germline phenotype than their hermaphrodite siblings, and males are often fertile. This differential response of hermaphrodite and male offspring to the absence of mes+ product is a result of their different X chromosome compositions; regardless of their sexual phenotype, XX worms display a more severe germline phenotype than XO worms, and XXX worms display the most severe phenotype. The sensitivity of the mutant phenotype to chromosome dosage, along with the similarity of two MES proteins to chromatin-associated regulators of gene expression in Drosophila, suggest that the essential role of the mes genes is in control of gene expression in the germline. An additional, nonessential role of the mes genes in the soma is suggested by the surprising finding that mutations in the mes genes, like mutations in dosage compensation genes, feminize animals whose male sexual identity is somewhat ambiguous. We hypothesize that the mes genes encode maternally supplied regulators of chromatin structure and gene expression in the germline and perhaps in somatic cells of the early embryo, and that at least some of their targets are on the X chromosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号