首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a major determinant of biocontrol activity of plant-beneficial Pseudomonas fluorescens CHA0 against root diseases caused by fungal pathogens. The DAPG biosynthetic locus harbors the phlG gene, the function of which has not been elucidated thus far. The phlG gene is located upstream of the phlACBD biosynthetic operon, between the phlF and phlH genes which encode pathway-specific regulators. In this study, we assigned a function to PhlG as a hydrolase specifically degrades DAPG to equimolar amounts of mildly toxic monoacetylphloroglucinol (MAPG) and acetate. DAPG added to cultures of a DAPG-negative DeltaphlA mutant of strain CHA0 was completely degraded, and MAPG was temporarily accumulated. In contrast, DAPG was not degraded in cultures of a DeltaphlA DeltaphlG double mutant. To confirm the enzymatic nature of PhlG in vitro, the protein was histidine tagged, overexpressed in Escherichia coli, and purified by affinity chromatography. Purified PhlG had a molecular mass of about 40 kDa and catalyzed the degradation of DAPG to MAPG. The enzyme had a kcat of 33 s(-1) and a Km of 140 microM at 30 degrees C and pH 7. The PhlG enzyme did not degrade other compounds with structures similar to DAPG, such as MAPG and triacetylphloroglucinol, suggesting strict substrate specificity. Interestingly, PhlG activity was strongly reduced by pyoluteorin, a further antifungal compound produced by the bacterium. Expression of phlG was not influenced by the substrate DAPG or the degradation product MAPG but was subject to positive control by the GacS/GacA two-component system and to negative control by the pathway-specific regulators PhlF and PhlH.  相似文献   

2.
The potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a major determinant of biocontrol activity of plant-beneficial Pseudomonas fluorescens CHA0 against root diseases caused by fungal pathogens. The DAPG biosynthetic locus harbors the phlG gene, the function of which has not been elucidated thus far. The phlG gene is located upstream of the phlACBD biosynthetic operon, between the phlF and phlH genes which encode pathway-specific regulators. In this study, we assigned a function to PhlG as a hydrolase specifically degrades DAPG to equimolar amounts of mildly toxic monoacetylphloroglucinol (MAPG) and acetate. DAPG added to cultures of a DAPG-negative ΔphlA mutant of strain CHA0 was completely degraded, and MAPG was temporarily accumulated. In contrast, DAPG was not degraded in cultures of a ΔphlA ΔphlG double mutant. To confirm the enzymatic nature of PhlG in vitro, the protein was histidine tagged, overexpressed in Escherichia coli, and purified by affinity chromatography. Purified PhlG had a molecular mass of about 40 kDa and catalyzed the degradation of DAPG to MAPG. The enzyme had a kcat of 33 s−1 and a Km of 140 μM at 30°C and pH 7. The PhlG enzyme did not degrade other compounds with structures similar to DAPG, such as MAPG and triacetylphloroglucinol, suggesting strict substrate specificity. Interestingly, PhlG activity was strongly reduced by pyoluteorin, a further antifungal compound produced by the bacterium. Expression of phlG was not influenced by the substrate DAPG or the degradation product MAPG but was subject to positive control by the GacS/GacA two-component system and to negative control by the pathway-specific regulators PhlF and PhlH.  相似文献   

3.
The activity of polygalacturonase (PG, E.C 3.2.1.15) during ripening in climacteric fruits has been positively correlated with softening of the fruit tissue and differential expression of its gene is suspected to be regulated by the plant hormone ethylene. We have cloned four partial cDNAs, MAPG1 (acc. no. AF311881), MAPG2 (acc. no. AF311882), MAPG3 (acc. no. AF542382) and MAPG4 (acc. no. AY603341) for PG genes and studied their differential expression during ripening in banana. MAPG3 and MAPG4 are believed to be ripening related and regulated by ethylene whereas MAPG2 is associated more with senescence. MAPG1 shows constitutive expression and is not significantly expressed in fruit tissue. The genomic clone MAGPG (acc. No. AY603340) includes the complete MAPG3 gene, which consists of four exons and three introns. The structure of the gene has more similarity to tomato abscission PG rather than tomato fruit PG. It is concluded that softening during ripening in banana fruit results from the concerted action of at least four PG genes, which are differentially expressed during ripening.  相似文献   

4.
An esterase hydrolyzing phthalate esters has been purified from Micrococcus sp. YGJ1. The enzyme, a monomeric protein (Mr = 56 kDa) with a pI of 4.0, hydrolyzes various aliphatic and aromatic carboxylesters. The medium chain (C3-C4) esters are the most preferred substrates. The enzyme is inhibited by HgCl2 and p-chloromercuribenzoate but not by phenylmethylsulfonyl fluoride.  相似文献   

5.
An esterase that specifically hydrolyzes medium-chain (C(3)-C(5)) monoalkyl phthalates was purified from phthalate-grown Micrococcus sp. YGJ1. The enzyme activity was split into two fractions by hydrophobic chromatography on Phenyl Sepharose, and the enzymes were purified to homogeneity from each fraction. The purified enzymes showed similar properties with respect to molecular mass (60 kDa), subunit molecular mass (27 kDa), N-terminal amino acid sequence, optimal pH (about 7.5), temperature-dependence, substrate specificity, and inhibitor susceptibility. The enzymes showed no activity toward various dialkyl phthalates or aliphatic carboxyl esters. 2-Mercaptoethanol effectively protected the enzymes from spontaneous inactivation. Diethylpyrocarbonate, p-chloromercuribenzoate, Hg(2+), and Cu(2+) strongly inhibited the enzymes, while phenylmethylsulfonyl fluoride produced weak inhibition, and various metal chelating reagents were ineffective. These findings show that the enzymes bear a close resemblance to the putative phthalate ester hydrolase (PehA) of Arthrobacter keyseri 12B.  相似文献   

6.
An esterase hydrolyzing phthalate esters has been purified from Micrococcus sp. YGJ1. The enzyme, a monomeric protein (Mr=56 kDa) with a pI of 4.0, hydrolyzes various aliphatic and aromatic carboxylesters. The medium chain (C3-C4) esters are the most preferred substrates. The enzyme is inhibited by HgCl2 and p-chloromercuribenzoate but not by phenylmethyl-sulfonyl fluoride.  相似文献   

7.
8.
A polygalacturonase (PG) isozyme was isolated from Penicillium solitum-decayed Anjou pear fruit and purified to homogeneity with a multistep process. Both gel filtration and cation exchange chromatography revealed a single PG activity peak, and analysis of the purified protein showed a single band with a molecular mass of 43 kDa, which is of fungal origin. The purified enzyme was active from pH 3.5-6, with an optimum at pH 4.5. PG activity was detectable 0-70 C with 50 C maximum. The purified isozyme was inhibited by the divalent cations Ca(2+), Mg(2+), Mn(2+) and Fe(2+) and analysis of enzymatic hydrolysis products revealed polygalacturonic acid monomers and oligomers. The purified enzyme has an isoelectric point of 5.3 and is not associated with a glycosylated protein. The PG isozyme macerated fruit tissue plugs in vitro and produced ~1.2-fold more soluble polyuronides from pear than from apple tissue, which further substantiates the role of PG in postharvest decay. Data from this study show for the first time that the purified PG produced in decayed Anjou pear by P. solitum, a weakly virulent fungus, is different from that PG produced by the same fungus in decayed apple.  相似文献   

9.
为大量获取低成本的TEM-116超广谱β-内酰胺酶,并分析其降解环境中β-内酰胺类抗生素残留物的可行性,本研究在Escherichia coli BL21(DE3)菌株中表达了重组TEM-116超广谱β-内酰胺酶,经亲和层析纯化、柱复性与分子筛层析纯化,得到了高纯度的目的蛋白,对其理化性质进行了分析。结果表明,重组TEM-116超广谱β-内酰胺酶的分子量、比活性分别为30kDa和476IU/mg,与天然酶性质相近。重组酶在体内外对多种青霉素、头孢菌素类药物均具有较高降解效率:10IU酶可清除1L发酵液中7000mg的青霉素G;320IU酶可清除1L尿液中各200mg的青霉素G、氨苄青霉素和头孢唑林混合抗生素;1.0~2.5IU的酶可在4℃~37℃温度范围内清除1L牛奶中80U的青霉素G;2.0×104~2.3×104IU/(kg·bw)的酶能够清除小鼠体内8.0×104~9.1×104μg/(kg·bw)的青霉素G。  相似文献   

10.
ABSTACT: The objective of this work was to isolate the polygalacturonase genes of Galactomyces citri-aurantii IJ-1 harvested from rotten citrus peels and to heterologously express these genes in Pichia pastoris. Two polygalacturonase (PG) genes from G. citri-aurantii IJ-1 were obtained and tentatively named PG1 and PG2. The genes were cloned into pPICZαC, and expressed in Pichia pastoris strain GS115 with a native signal peptide or the α-factor secretion signal peptide of Saccharomyces cerevisiae. All of the recombinant proteins were successfully secreted into the culture media and confirmed as a single band with a molecular weight of 35 to 38 kDa by SDS-PAGE. The specific enzyme activities of recombinant PG1 and PG2 purified by His-tag affinity resin were 4,749 and 6,719 U/mg, respectively, with an optimal pH and temperature of pH 4.0 and 50°C. The Michaelis-Menten kinetic constants for PG1 and PG2, K (m), were confirmed to be 0.94 and 0.84 mM, respectively. In the presence of Mn(2+), the activity of PG1 and PG2 were increased to 160.8 and 146.4% of normal levels, respectively. In contrast, Cu(2+) and Fe(3+) acted as strong inhibitors to the PGs.  相似文献   

11.
The antibiotics pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) contribute to the biological control of soilborne plant diseases by some strains of Pseudomonas fluorescens, including Pf-5. These secondary metabolites also have signalling functions with each compound reported to induce its own production and repress the other's production. The first step in DAPG biosynthesis is production of phloroglucinol (PG) by PhlD. In this study, we show that PG is required at nanomolar concentrations for pyoluteorin production in Pf-5. At higher concentrations, PG is responsible for the inhibition of pyoluteorin production previously attributed to DAPG. DAPG had no effect on pyoluteorin production, and monoacetylphloroglucinol showed both stimulatory and inhibitory activities but at concentrations 100-fold greater than the levels of PG required for similar effects. We also demonstrate that PG regulates pyoluteorin production in P. aeruginosa and that a phlD gene adjacent to the pyoluteorin biosynthetic gene cluster in P. aeruginosa strain LESB58 can restore pyoluteorin biosynthesis to a ΔphlD mutant of Pf-5. Bioinformatic analyses show that the dual role of PhlD in the biosynthesis of DAPG and the regulation of pyoluteorin production could have arisen within the pseudomonads during the assembly of these biosynthetic gene clusters from genes and gene subclusters of diverse origins.  相似文献   

12.
Yersinia enterocolitica, an invasive foodborne human pathogen, degrades polypectate by producing two depolymerizing enzymes, pectate lyase (PL) and polygalacturonase (PG). The gene encoding the PG activity, designated pehY, was located in a 3-kb genomic fragment of Y. enterocolitica ATCC 49397. The complete nucleotide sequence of this 3-kb fragment was determined and an open reading frame consisting of 1803 bp was predicted to encode a PG protein with an estimated M(r) of 66 kDa and pI of 6.3. The amino acid sequence of prePG showed 59 and 43% identity to that of the exopolygalacturonase (exoPG) of Erwinia chrysanthemi and Ralstonia solanacearum, respectively. The Y. enterocolitica PG overproduced in Escherichia coli was purified to near homogeneity using perfusion cation exchange chromatography. Analysis of the PG depolymerization products by high performance anion-exchange chromatography and pulsed amperometric detection (HPAEC-PAD) revealed the exolytic nature of this enzyme. The Y. enterocolitica PL overproduced in E. coli was also partially purified and the M(r) and pI were estimated to be 55 kDa and 5.2, respectively. HPAEC-PAD analysis of the PL depolymerization products indicated the endolytic nature of this enzyme. Southern hybridization analyses revealed that pehY and pel genes of Y. enterocolitica are possibly encoded in the chromosome rather than in the plasmid. Purified exopolygalacturonase (over 10 activity units) was unable to macerate plant tissues.  相似文献   

13.
A novel phosphatidylglycerol-selective phospholipase A2 from macrophages   总被引:1,自引:0,他引:1  
Shinozaki K  Waite M 《Biochemistry》1999,38(6):1669-1675
In our recent studies on the synthesis of bis(monoacylglycero)phosphate (BMP), we postulated that the first step involved a PLA2 that cleaved the 2-acyl group from phosphatidylglycerol (PG). In the present study, a novel lysosomal PLA2 was partially purified and characterized from RAW 264.7, macrophage like cells. Cells were homogenized and delipidated, and the PLA2 activity in the soluble fraction was purified by Sephacryl S100 and DEAE Sephacel. Further purification was performed using Con-A Sepharose, Phenyl Sepharose, DEAE Sephacel, and Superdex 75 FPLC. The enzyme at this stage of purification showed a dominant band around 45 kDa plus several minor bands on SDS-PAGE. The molecular mass determined by Superdex 75 column FPLC was about 45 kDa. The highly purified fraction hydrolyzed at the sn-1 position, implying that this PLA2 also has some intrinsic PLA1 activity. This enzyme preferentially hydrolyzed PG, has an acidic pH optima, and does not require divalent metal ions. Comparison using PG with various acyl chains on the sn-2 position showed that oleate and linoleate were preferred relative to arachidonate. MAFP, a known cytosolic PLA2 inhibitor, strongly inhibited this PLA2 activity. MJ33, AACOCF3, DENP, and Amiodarone also gave moderate inhibition. The characteristics of this enzyme showed this to be a new type of PLA, and the overwhelming preference for PG as substrate suggests its physiological role is in the biosynthesis of BMP.  相似文献   

14.
Gene phlG encoding 2,4-diacetylphloroglucinol hydrolase was cloned from Pseudomonas sp. YGJ3 and expressed in Escherichia coli. Recombinant PhlG was purified homogeneously. It required 2-mercaptoethanol for stability. Km for 2,4-diacetylphloroglucinol and kcat were determined to be 24 μM and 5.8 s(-1) respectively. CoCl2 specifically and significantly activated PhlG.  相似文献   

15.
2-Carboxybenzaldehyde dehydrogenase from the phenanthrene-degrading bacterium Nocardioides sp. strain KP7 was purified and characterized. The purified enzyme had a molecular mass of 53 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 205 kDa by gel filtration chromatography. Thus, the homotetramer of the 53-kDa subunit constituted an active enzyme. The apparent Km and kcat values of this enzyme for 2-carboxybenzaldehyde were 100 microM and 39 s(-1), respectively, and those for NAD+ were 83 microM and 32 s(-1), respectively. The structural gene for this enzyme was cloned and sequenced. The length of the gene was 1,455 bp. The nucleotide sequence of the 10,279 bp of DNA around the gene for 2-carboxybenzaldehyde dehydrogenase was also determined, and seven open reading frames were found in this DNA region. These were the genes for 1-hydroxy-2-naphthoate dioxygenase (phdI) and trans-2'-carboxybenzalpyruvate aldolase (phdJ), orf1, the gene for 2-carboxybenzaldehyde dehydrogenase (phdK), orf2/orf3, and orf4. The amino acid sequence of the orf1 product was similar to that of the aromatic hydrocarbon transporter gene (pcaK) in Pseudomonas putida PRS2000. The amino acid sequence of the orf4 product revealed a similarity to cytochrome P-450 proteins. The region between phdK and orf4 encoded orf2 and orf3 on different strands. The amino acid sequences of the orf2 and orf3 products exhibited no significant similarity to the reported sequences in protein databases.  相似文献   

16.
The phytopathogenic fungus Botrytis cinerea produces a set of polygalacturonases (PGs) which are involved in the enzymatic degradation of pectin during plant tissue infection. Two polygalacturonases secreted by B. cinerea in seven-day-old liquid culture were purified to apparent homogeneity by chromatography. PG I was an exopolygalacturonase of molecular weight 65 kDa and pI 8.0 and PG II was an endopolygalacturonase of 52 kDa and pI 7.8. Enzymatic activity of PG I and PG II was partially inhibited by 1 mM CaCl2, probably by calcium chelation of polygalacturonic acid, the substrate of the enzyme.  相似文献   

17.
DNA polymerase epsilon was purified to near homogeneity from human placenta. The enzyme has one subunit (170 kDa, sedimentation coefficient 8.2S), intrinsic 3'-5'-exonuclease activity, it is independent on PCNA and high processivity on poly(dA)-oligo(dT) template-primer without PCNA. It was shown, that the enzyme incorporates 3'-amino-2',3'-dideoxythymidine 5'-triphosphate in DNA, after that synthesis is stopped. Simultaneously DNA polymerase alpha was purified.  相似文献   

18.
The antifungal compound 2,4-diacetylphloroglucinol (DAPG) is produced in the rhizosphere of wheat by pseudomonad populations responsible for the natural biological control phenomenon known as “take-all decline.” Studies were conducted to elucidate the impact of DAPG and its co-product 2,4,6-trihydroxyacetophenone (THA) on the production of Pseudomonas fluorescens for biological control. Increasing DAPG from 0.1 g/l to 0.5 g/l and THA from 0.05 g/l to 0.5 g/l significantly inhibited the growth and lowered the yield of viable bacteria in liquid cultures. On further examination of these metabolites applied in seed coatings, levels of DAPG and THA exceeding 0.05 mg/g seed significantly reduced wheat germination percentages. The three-way interaction of DAPG, THA, and culture medium ingredients was significant, and greatest seed germination loss (40–50%) was observed when 0.5 mg DAPG and 0.25 mg THA were combined in a coating of 0.5 ml culture medium per gram of seed. Based on the results of Biolog GN microplate, flask, and fermentor screens of C sources, proline was found to optimize the viable cell yields of the P. fluorescens strains tested. The combination of proline with glucose and urea as C and N sources in growth media could be optimized to minimize DAPG production and maximize the vitality of P. fluorescens Q8R1-96 and Q69c-80:miniTn5:phl20 (DAPG over-producer). In production cultures, the proline supply rate offers a potentially useful means to optimize the biological control agent yield and quality.  相似文献   

19.
20.
The polyketide metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) is produced by many strains of fluorescent Pseudomonas spp. with biocontrol activity against soilborne fungal plant pathogens. Genes required for 2,4-DAPG synthesis by P. fluorescens Q2-87 are encoded by a 6.5-kb fragment of genomic DNA that can transfer production of 2,4-DAPG to 2,4-DAPG-nonproducing recipient Pseudomonas strains. In this study the nucleotide sequence was determined for the 6.5-kb fragment and flanking regions of genomic DNA from strain Q2-87. Six open reading frames were identified, four of which (phlACBD) comprise an operon that includes a set of three genes (phlACB) conserved between eubacteria and archaebacteria and a gene (phlD) encoding a polyketide synthase with homology to chalcone and stilbene synthases from plants. The biosynthetic operon is flanked on either side by phlE and phlF, which code respectively for putative efflux and regulatory (repressor) proteins. Expression in Escherichia coli of phlA, phlC, phlB, and phlD, individually or in combination, identified a novel polyketide biosynthetic pathway in which PhlD is responsible for the production of monoacetylphloroglucinol (MAPG). PhlA, PhlC, and PhlB are necessary to convert MAPG to 2,4-DAPG, and they also may function in the synthesis of MAPG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号