首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retrospective and perspective of rice breeding in China   总被引:1,自引:0,他引:1  
Breeding is the art and science of selecting and changing crop traits for the benefit of human beings. For several decades, tremendous efforts have been made by Chinese scientists in rice breeding in improving grain yield, nutrition quality, and environmental performance, achieving substantial progress for global food security. Several generations of crop breeding technologies have been developed, for example, selection of better performance in the field among variants (conventional breeding), application of molecular markers for precise selection (molecular marker assisted breeding), and development of molecular design (molecular breeding by rational design). In this review, we briefly summarize the advances in conventional breeding, functional genomics for genes and networks in rice that regulate important agronomic traits, and molecular breeding in China with focuses on high yield, good quality, stress tolerance, and high nutrient-use efficiency. These findings have paved a new avenue for rational design of crops to develop ideal varieties with super performance and productivity.  相似文献   

2.
Zhu Yun Deng  Chun Yan Gong  Tai Wang 《Proteomics》2013,13(12-13):1784-1800
Rice is an important cereal crop and has become a model monocot for research into crop biology. Rice seeds currently feed more than half of the world's population and the demand for rice seeds is rapidly increasing because of the fast‐growing world population. However, the molecular mechanisms underlying rice seed development is incompletely understood. Genetic and molecular studies have developed our understanding of substantial proteins related to rice seed development. Recent advancements in proteomics have revolutionized the research on seed development at the single gene or protein level. Proteomic studies in rice seeds have provided the molecular explanation for cellular and metabolic events as well as environmental stress responses that occur during embryo and endosperm development. They have also led to the new identification of a large number of proteins associated with regulating seed development such as those involved in stress tolerance and RNA metabolism. In the future, proteomics, combined with genetic, cytological, and molecular tools, will help to elucidate the molecular pathways underlying seed development control and help in the development of valuable and potential strategies for improving yield, quality, and stress tolerance in rice and other cereals. Here, we reviewed recent progress in understanding the mechanisms of seed development in rice with the use of proteomics.  相似文献   

3.
Although Arabidopsis is well established as the premiere model species in plant biology, rice (Oryza sativa) is moving up fast as the second-best model organism. In addition to the availability of large sets of genetic, molecular, and genomic resources, two features make rice attractive as a model species: it represents the taxonomically distinct monocots and is a crop species. Plant structural genomics was pioneered on a genome-scale in Arabidopsis and the lessons learned from these efforts were not lost on rice. Indeed, the sequence and annotation of the rice genome has been greatly accelerated by method improvements made in Arabidopsis. For example, the value of full-length cDNA clones and deep expressed sequence tag resources, obtained in Arabidopsis primarily after release of the complete genome, has been recognized by the rice genomics community. For rice >250,000 expressed sequence tags and 28,000 full-length cDNA sequences are available prior to the completion of the genome sequence. With respect to tools for Arabidopsis functional genomics, deep sequence-tagged lines, inexpensive spotted oligonucleotide arrays, and a near-complete whole genome Affymetrix array are publicly available. The development of similar functional genomics resources for rice is in progress that for the most part has been more streamlined based on lessons learned from Arabidopsis. Genomic resource development has been essential to set the stage for hypothesis-driven research, and Arabidopsis continues to provide paradigms for testing in rice to assess function across taxonomic divisions and in a crop species.  相似文献   

4.
Process-based crop simulation models require employment of new knowledge for continuous improvement. To simulate growth and development of different genotypes of a given crop, most models use empirical relationships or parameters defined as genetic coefficients to represent the various cultivar characteristics. Such a loose introduction of different cultivar characteristics can result in bias within a simulation, which could potentially integrate to a high simulation error at the end of the growing season when final yield at maturity is predicted. Recent advances in genetics and biomolecular analysis provide important opportunities for incorporating genetic information into process-based models to improve the accuracy of the simulation of growth and development and ultimately the final yield. This improvement is especially important for complex applications of models. For instance, the effect of the climate change on the crop growth processes in the context of natural climatic and soil variability and a large range of crop management options (e.g., N management) make it difficult to predict the potential impact of the climate change on the crop production. Quantification of the interaction of the environmental variables with the management factors requires fine tuning of the crop models to consider differences among different genotypes. In this paper we present this concept by reviewing the available knowledge of major genes and quantitative trait loci (QTLs) for important traits of rice for improvement of rice growth modelling and further requirements. It is our aim to review the assumption of the adequacy of the available knowledge of rice genes and QTL information to be introduced into the models. Although the rice genome sequence has been completed, the development of gene-based rice models still requires additional information than is currently unavailable. We conclude that a multidiscipline research project would be able to introduce this concept for practical applications.  相似文献   

5.
6.
7.
Splicing and alternative splicing in rice and humans   总被引:1,自引:0,他引:1  
Rice is a monocot gramineous crop, and one of the most important staple foods. Rice is considered a model species for most gramineous crops. Extensive research on rice has provided critical guidance for other crops, such as maize and wheat. In recent years, climate change and exacerbated soil degradation have resulted in a variety of abiotic stresses, such as greenhouse effects, lower temperatures, drought, floods, soil salinization and heavy metal pollution. As such, there is an extremely high demand for additional research, in order to address these negative factors. Studies have shown that the alternative splicing of many genes in rice is affected by stress conditions, suggesting that manipulation of the alternative splicing of specific genes may be an effective approach for rice to adapt to abiotic stress. With the advancement of microarrays, and more recently, next generation sequencing technology, several studies have shown that more than half of the genes in the rice genome undergo alternative splicing. This mini-review summarizes the latest progress in the research of splicing and alternative splicing in rice, compared to splicing in humans. Furthermore, we discuss how additional studies may change the landscape of investigation of rice functional genomics and genetically improved rice. [BMB Reports 2013; 46(9): 439-447]  相似文献   

8.
Plants experience low phosphorus (P) and high iron (Fe) levels in acidic lowland soils that lead to reduced crop productivity. A better understanding of the relationship between these two stresses at molecular and physiological level will lead to development of suitable strategies to increase crop productivity in such poor soils. Tolerance for most abiotic stresses including P deficiency and Fe toxicity is a quantitative trait in rice. Recent studies in the areas of physiology, genetics, and overall metabolic pathways in response to P deficiency of rice plants have improved our understanding of low P tolerance. Phosphorous uptake and P use efficiency are the two key traits for improving P deficiency tolerance. In the case of Fe toxicity tolerance, QTLs have been reported but the identity and role played by underlying genes is just emerging. Details pertaining to Fe deficiency tolerance in rice are well worked out including genes involved in Fe sensing and uptake. But, how rice copes with Fe toxicity is not clearly understood. This review focuses on the progress made in understanding these key environmental stresses. Finally, an opinion on the key genes which can be targeted for this stress is provided.  相似文献   

9.
The high-quality rice genome sequence is serving as a reference for comparative genome analysis in crop plants, especially cereals. However, early comparisons with bread wheat showed complex patterns of conserved synteny (gene content) and colinearity (gene order). Here, we show the presence of ancient duplicated segments in the progenitor of wheat, which were first identified in the rice genome. We also show that single-copy (SC) rice genes, those representing unique matches with wheat expressed sequence tag (EST) unigene contigs in the whole rice genome, show more than twice the proportion of genes mapping to syntenic wheat chromosome as compared to the multicopy (MC) or duplicated rice genes. While 58.7% of the 1,244 mapped SC rice genes were located in single syntenic wheat chromosome groups, the remaining 41.3% were distributed randomly to the other six non-syntenic wheat groups. This could only be explained by a background dispersal of genes in the genome through transposition or other unknown mechanism. The breakdown of rice–wheat synteny due to such transpositions was much greater near the wheat centromeres. Furthermore, the SC rice genes revealed a conserved primordial gene order that gives clues to the origin of rice and wheat chromosomes from a common ancestor through polyploidy, aneuploidy, centromeric fusions, and translocations. Apart from the bin-mapped wheat EST contigs, we also compared 56,298 predicted rice genes with 39,813 wheat EST contigs assembled from 409,765 EST sequences and identified 7,241 SC rice gene homologs of wheat. Based on the conserved colinearity of 1,063 mapped SC rice genes across the bins of individual wheat chromosomes, we predicted the wheat bin location of 6,178 unmapped SC rice gene homologs and validated the location of 213 of these in the telomeric bins of 21 wheat chromosomes with 35.4% initial success. This opens up the possibility of directed mapping of a large number of conserved SC rice gene homologs in wheat. Overall, only 46.4% of these SC genes code for proteins with known functional domains; the remaining 53.6% have unknown function, and hence, represent an important, but yet, under explored category of genes. Electronic supplementary material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

10.
Rice proteomics: recent developments and analysis of nuclear proteins   总被引:5,自引:0,他引:5  
Khan MM  Komatsu S 《Phytochemistry》2004,65(12):1671-1681
Rice is the most important cereal crop in Asia, and is considered as a model cereal plant for genetic and molecular studies. An immense progress has been made in rice genome sequence analysis during the last decade. This prompted the researcher to identify the functions, modifications, and regulations of every encoded protein. Proteome analysis provides information to predict the translation and relative concentration of gene products, including the extent of modification, none of which can be accurately predicted from the nucleic acid sequence alone. During the last couple of years, considerable researches were conducted to analyze rice proteome, and only recently a remarkable progress has been made to systematically analyze and characterize the functional role of various tissues and organelles in rice. In this review, the rice proteomic research has been compiled and also presented a comprehensive analysis of rice nuclear proteins. In rice nucleus, 549 proteins were resolved using 2D-PAGE. Among them, 257 proteins were systematically analyzed by Edman sequencing and mass spectrometry and identified 190 proteins following database searching (http://gene64.dna.affrc.go.jp/RPD/main.html). The identified proteins were sorted into different functional categories. In these data, the proteins involved in signaling and gene regulations dominated others, reflecting the role of nucleus in gene expression and regulation.  相似文献   

11.
The functional elucidation of plant cell wall biosynthesis (CWB) related genes is important for understanding various stress tolerance responses as well as enhancing biomass in plants. Despite their significant role in physiology and growth of the plant, the function of a limited number of CWB related genes have been identified. Major obstacles such as functional redundancy and limited functional information pose challenges in the characterization of CWB genes. Here, a genome-wide analysis of CWB genes using meta-expression data revealed their roles in stress tolerance and developmental processes. The identification of coexpressed CWB genes suggests functional modules for plant cell wall biosynthesis associated with specific tissue types, biotic stress, abiotic stress, and hormone responses. More interestingly, we identified that glycosyl hydrolases are specialized for root and pollen development, glycosyltransferases for ubiquitous function and leaf development, and carbohydrate esterases for pollen development. A T-DNA insertional mutant of OsCESA9 showing internode preferred expression revealed severe dwarfism and a co-expression network analysis of OsCESA9 in oscesa9 mutant suggest downstream pathways for secondary cell wall biosynthesis and DNA repair processes. Data from our studies will facilitate functional genomic studies of CWB genes in rice and contribute to the enhancement of biomass and yield in crop plants.  相似文献   

12.
Rice (Oryza sativa L.), the major staple food crop of the world, faces a severe threat from widespread drought. The development of drought-tolerant rice varieties is considered a feasible option to counteract drought stress. The screening of rice germplasm under drought and its characterization at the morphological, genetic, and molecular levels revealed the existence of genetic variation for drought tolerance within the rice gene pool. The improvements made in managed drought screening and selection for grain yield under drought have significantly contributed to progress in drought breeding programs. The availability of rice genome sequence information, genome-wide molecular markers, and low-cost genotyping platforms now makes it possible to routinely apply marker-assisted breeding approaches to improve grain yield under drought. Grain yield QTLs with a large and consistent effect under drought have been indentified and successfully pyramided in popular rice mega-varieties. Various rice functional genomics resources, databases, tools, and recent advances in “-omics” are facilitating the characterization of genes and pathways involved in drought tolerance, providing the basis for candidate gene identification and allele mining. The transgenic approach is successful in generating drought tolerance in rice under controlled conditions, but field-level testing is necessary. Genomics-assisted drought breeding approaches hold great promise, but a well-planned integration with standardized phenotyping is highly essential to exploit their full potential.  相似文献   

13.
Rice is the most important food crop in tropical and subtropical regions of the world. Yield enhancement to increase rice production is one of the essential strategies to meet the demand for food of the growing population. Both abiotic and biotic features limit adversely the productivity of rice growing areas. Conventional breeding has been an effective means for developing high yielding varieties, however; it is associated with its own limitations. It is envisaged that recent trends in biotechnology can contribute to the agronomic improvement of rice in terms of yield and nutritional quality as a supplement to traditional breeding methods. Genetic transformation of rice has demonstrated numerous important opportunities resulting in the genetic improvement of existing elite rice varieties and production of new plant types. Significant advances have been made in the genetic engineering of rice since the first transgenic rice plant production in the late 1980s. Several gene transfer protocols have been employed successfully for the introduction of foreign genes to rice. In more than 60 rice cultivars belonging to indica, japonica, javanica, and elite African cultivars, the protocol has been standardized for transgenic rice production. Selection and use of appropriate promoters, selectable markers, and reporter genes has been helpful for development of efficient protocols for transgenic rice in a number of rice cultivars. The present review is an attempt to assess the current state of development in transgenic rice for the transfer of agronomically useful genes, emphasizing the application and future prospects of transgenic rice production for the genetic improvement of this food crop.  相似文献   

14.
15.
Crop productivity on acid soil is restricted by multiple abiotic stress factors. Aluminum (Al) tolerance seems to be a key to productivity on soil with a pH below 5.0, but other factors such as Mn toxicity and the deficiency of P, Ca and Mg also play a role. The development of Al-tolerant genotypes of rice is an urgent necessity for improving crop productivity in developing countries. Inhibition of root growth is a primary and early symptom of Al toxicity. The present study was conducted to identify genetic factors controlling the aluminum tolerance of rice. Several parameters related to Al tolerance, most importantly the relative root growth under Al stress versus non-stress conditions, were scored in 188 F3 selfed families from a cross between an Al-tolerant Vietnamese local variety, Chiembau, and an Al-susceptible improved variety, Omon269–65. The two varieties are both Oryza sativa ssp. indica, but showed a relatively high level of DNA polymorphism, permitting the assembly of an RFLP map consisting of 164 loci spanning 1,715.8 cM, and covering most of the rice genome. A total of nine different genomic regions on eight chromosomes have been implicated in the genetic control of root and shoot growth under aluminum stress. By far the greatest effects on aluminum tolerance were associated with the region near WG110 on chromosome 1. This region does not seem to correspond to most of the genes that have been mapped for aluminum tolerance in other species, nor do they correspond closely to one another. Most results, both from physiological studies and from molecular mapping studies, tend to suggest that aluminum tolerance is a complex multi-genic trait. The identification of DNA markers (such as WG110) that are diagnostic for aluminum tolerance in particular gene pools provides an important starting point for transferring and pyramiding genes that may contribute to the sustainable improvement of crop productivity in aluminum-rich soils. The isolation of genes responsible for aluminum tolerance is likely to be necessary to gain a comprehensive understanding of this complex trait. Received: 29 March 2000 / Accepted: 16 August 2000  相似文献   

16.
Rice functional genomics is a scientific approach that seeks to identify and define the function of rice genes, and uncover when and how genes work together to produce phenotypic traits. Rapid progress in rice genome sequencing has facilitated research in rice functional genomics in China. The Ministry of Science and Technology of China has funded two major rice functional genomics research programmes for building up the infrastructures of the functional genomics study such as developing rice functional genomics tools and resources. The programmes were also aimed at cloning and functional analyses of a number of genes controlling important agronomic traits from rice. National and international collaborations on rice functional genomics study are accelerating rice gene discovery and application.  相似文献   

17.
18.
The proper use of a marker gene in a transformation process is critical for the production of transgenic plants. However, consumer concerns and regulatory requirements raise an objection to the presence of exogenous DNA in transgenic plants, especially antibiotic-resistant genes and promoters derived from viruses. One approach to overcome this problem is the elimination of marker genes from the plant genome by using several site-specific recombination systems. We propose an alternative method to solve this problem using a marker gene exclusively derived from the host plant DNA. We cloned a genomic DNA fragment containing regulatory and coding sequences of acetolactate synthase (ALS) gene from rice, and mutagenized the ALS gene into a herbicide-resistant form. After transfer of this construct to the rice genome, transgenic plants were efficiently selected with a herbicide, bispyribac-sodium salt, which inhibits the activity of wild type ALS. We also analyzed the regulatory feature of the rice ALS gene promoter with the gusA reporter gene and revealed that GUS expression was observed constitutively in aerial parts of rice seedlings and root tips. The marker system consisted exclusively of host plant DNA and enabled efficient selection in a monocot crop plant, rice. The selection system can potentially be applied to generate transgenic plants of other crop species and can be expected to be publicly acceptable.  相似文献   

19.
褐飞虱Nilaparvata lugens Stal是危害水稻Oryza sativa L.的毁灭性害虫。种植抗虫水稻品种可以控制褐飞虱危害,技术手段绿色、经济且可持续。但是,褐飞虱致害性变异速度快且程度高,常导致抗虫水稻品种使用年限缩短。目前,针对褐飞虱致害性个体表型及分子标记、产生原因与机制、功能基因研究等已开展了大量研究。本文围绕褐飞虱致害性变异产生的遗传基础、分子标记、变异的主动机制和被动机制等方面进行综述,并对该领域未来方向进行展望。为更好地利用抗虫品种控制虫害,做好害虫的致害性监测及制定防治策略提供参考。  相似文献   

20.
水稻丝氨酸蛋白酶S8基因家族在水稻的生长发育过程中起着重要的调控作用。本研究利用公共数据库资源,分析水稻中丝氨酸蛋白酶S8基因家族,在水稻12条染色体上找到46个该类基因。通过其结构分析发现,每个基因的内含子数目从0到10各不相同,但氨基酸序列是非常保守的,都有催化活性位点和底物结合位点。系统进化树分析显示,这46个基因分为3个亚家族,S8-1亚家族最大。该家族基因的进化主要是通过基因重复复制的方式进行,其表达模式发生了变化,并且多个基因在穗部具有表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号