首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxoplasma gondii is an intracellular protozoan parasite capable of causing devastating infections in immunocompromised and immunologically immature individuals. In this report, we demonstrate the relative independence of T. gondii from its host cell for aminoglycerophospholipid synthesis. The parasite can acquire the lipid precursors serine, ethanolamine, and choline from its environment and use them for the synthesis of its major lipids, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), respectively. Dimethylethanolamine (Etn(Me)(2)), a choline analog, dramatically interfered with the PtdCho metabolism of T. gondii and caused a marked inhibition of its growth within human foreskin fibroblasts. In tissue culture medium supplemented with 2 mm Etn(Me)(2), the parasite-induced lysis of the host cells was dramatically attenuated, and the production of parasites was inhibited by more than 99%. The disruption of parasite growth was paralleled by structural abnormalities in its membranes. In contrast, no negative effect on host cell growth and morphology was observed. The data also reveal that the Etn(Me)(2)-supplemented parasite had a time-dependent decrease in its PtdCho content and an equivalent increase in phosphatidyldimethylethanolamine, whereas other major lipids, PtdSer, PtdEtn, and PtdIns, remained largely unchanged. Relative to host cells, the parasites incorporated more than 7 times as much Etn(Me)(2) into their phospholipid. These findings reveal that Etn(Me)(2) selectively alters parasite lipid metabolism and demonstrate how selective inhibition of PtdCho synthesis is a powerful approach to arresting parasite growth.  相似文献   

2.
The intracellular protozoan Toxoplasma gondii lacks a de novo mechanism for cholesterol synthesis and therefore must scavenge this essential lipid from the host environment. In this study, we demonstrated that T. gondii diverts cholesterol from low-density lipoproteins for cholesteryl ester synthesis and storage in lipid bodies. We identified and characterized two isoforms of acyl-CoA:cholesterol acyltransferase (ACAT)-related enzymes, designated TgACAT1alpha and TgACAT1beta in T. gondii. Both proteins are coexpressed in the parasite, localized to the endoplasmic reticulum and participate in cholesteryl ester synthesis. In contrast to mammalian ACAT, TgACAT1alpha and TgACAT1beta preferentially incorporate palmitate into cholesteryl esters and present a broad sterol substrate affinity. Mammalian ACAT-deficient cells transfected with either TgACAT1alpha or TgACAT1beta are restored in their capability of cholesterol esterification. TgACAT1alpha produces steryl esters and forms lipid bodies after transformation in a Saccharomyces cerevisiae mutant strain lacking neutral lipids. In addition to their role as ACAT substrates, host fatty acids and low-density lipoproteins directly serve as Toxoplasma ACAT activators by stimulating cholesteryl ester synthesis and lipid droplet biogenesis. Free fatty acids significantly increase TgACAT1alpha mRNA levels. Selected cholesterol esterification inhibitors impair parasite growth by rapid disruption of plasma membrane. Altogether, these studies indicate that host lipids govern neutral lipid synthesis in Toxoplasma and that interference with mechanisms of host lipid storage is detrimental to parasite survival in mammalian cells.  相似文献   

3.
4.
Eukaryotic cells control the levels of their major membrane lipid, phosphatidylcholine (PtdCho), by balancing synthesis with degradation via deacylation to glycerophosphocholine (GroPCho). Here we present evidence that in both yeast and mammalian cells this deacylation is catalyzed by neuropathy target esterase (NTE), a protein originally identified by its reaction with organophosphates, which cause nerve axon degeneration. YML059c, a Saccharomyces cerevisiae protein with sequence homology to NTE, had similar catalytic properties to the mammalian enzyme in assays of microsome preparations and, like NTE, was localized to the endoplasmic reticulum. Yeast lacking YML059c were viable under all conditions examined but, unlike the wild-type strain, did not convert PtdCho to GroPCho. Despite the absence of the deacylation pathway, the net rate of [(14)C]choline incorporation into PtdCho in YML059c-null yeast was not greater than that in the wild type; this was because, in the null strain diminished net uptake of extracellular choline and decreased formation of the rate-limiting intermediate, CDP-choline, resulted in a reduced rate of PtdCho synthesis. In [(14)C]choline labeling experiments with cultured mammalian cell lines, production of [(14)C]GroPCho was enhanced by overexpression of catalytically active NTE and was diminished by reduction of endogenous NTE activity mediated either by RNA interference or organophosphate treatment. We conclude that NTE and its homologues play a central role in membrane lipid homeostasis.  相似文献   

5.
As an actively dividing organism, the intracellular parasite Toxoplasma gondii must adjust the size and composition of its membranes in order to accommodate changes due to housekeeping activities, to commit division and in fine to produce new viable progenies. Lipid inventory of T. gondii reveals that the biological membranes of this parasite are composed of a complex mixture of neutral and polar lipids. After examination of the origin of T. gondii membrane lipids, three categories of lipids can be described: (i) lipids scavenged by T. gondii from the host cell; (ii) lipids synthesized in large amounts by the parasite, independently from its host cell; and (iii) lipids produced de novo by the parasite, but whose synthesis does not come close to satisfying the entire parasite's needs. These latter must be adeptly acquired from the host environment. To this end, T. gondii diverts a large variety of lipid precursors from host cytoplasm and efficiently manufacture them into complex lipids. This rather remarkable reliance on host lipid resources for parasite survival opens new avenues to restrict parasite growth. Indeed, parasite starvation can be induced upon deprivation from essential host lipids. Lipid analogues with anti-proliferative properties are voraciously taken up by the parasites, which results in parasite membrane defects, and ultimately death.  相似文献   

6.
7.
8.
9.
Toxoplasma gondii is an obligate intracellular parasite capable of causing fatal infections in immunocompromised individuals and neonates. Examination of the phosphatidylserine (PtdSer) metabolism of T. gondii reveals that the parasite secretes a soluble form of PtdSer decarboxylase (TgPSD1), which preferentially decarboxylates liposomal PtdSer with an apparent K(m) of 67 μM. The specific enzyme activity increases by 3-fold during the replication of T. gondii, and soluble phosphatidylserine decarboxylase (PSD) accounts for ~20% of the total PSD, prior to the parasite egress from the host cells. Extracellular T. gondii secreted ~20% of its total PSD activity at 37 °C, and the intracellular Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) inhibited the process by 50%. Cycloheximide, brefeldin A, ionic composition of the medium, and exogenous PtdSer did not modulate the enzyme secretion, which suggests a constitutive discharge of a presynthesized pool of PSD in axenic T. gondii. TgPSD1 consists of 968 amino acids with a 26-amino acid hydrophobic peptide at the N terminus and no predicted membrane domains. Parasites overexpressing TgPSD1-HA secreted 10-fold more activity compared with the parental strain. Exposure of apoptotic Jurkat cells to transgenic parasites demonstrated interfacial catalysis by secreted TgPSD1 that reduced host cell surface exposure of PtdSer. Immunolocalization experiments revealed that TgPSD1 resides in the dense granules of T. gondii and is also found in the parasitophorous vacuole of replicating parasites. Together, these findings demonstrate novel features of the parasite enzyme because a secreted, soluble, and interfacially active form of PSD has not been previously described for any organism.  相似文献   

10.
Toxoplasma gondii: the biochemical basis of resistance to emimycin   总被引:1,自引:0,他引:1  
Emimycin was a potent and selective inhibitor of the growth and nucleic acid synthesis of Toxoplasma gondii in human fibroblasts. An emimycin-resistant mutant of T. gondii lost the pyrimidine salvage enzyme uracil phosphoribosyltransferase, the same enzyme absent in parasites resistant to fluorodeoxyuridine. The mutant resistant to emimycin was completely cross-resistant to fluorodeoxyuridine. Emimycin was as good a substrate as uracil for the uracil phosphoribosyltransferase of T. gondii. [3H]Emimycin supplied in the medium of cultures with actively growing intracellular parasites was converted to emimycin riboside-5'-phosphate in the soluble pool of T. gondii. All other emimycin analogs of uracil-containing nucleotides were also formed but little emimycin riboside diphosphate-N-acetylhexosamine was found. [3H]Emimycin was not converted to analogs of the cytidine nucleotides. When intracellular T. gondii were treated with a concentration of [3H]emimycin that partially inhibited parasite RNA synthesis, much less [3H]emimycin was incorporated into RNA than would be predicted by the amount of intracellular [3H]emimycin riboside triphosphate.  相似文献   

11.
We have shown that 12-O-tetradecanoylphorbol 13-acetate (TPA) increases protein kinase C (PKC)-mediated choline transport, incorporation of choline into phosphatidylcholine (PtdCho) and PtdCho degradation by phospholipase D (PLD) in C3H10T1/2 Cl 8 cells. Dual prelabeling experiment using [3H]/[14C]choline indicated that intracellular choline generated from the PLD reaction was not directly recycled to PtdCho synthesis within the cell, and that a large fraction of the choline was transported out of the TPA-treated cells. In contrast, medium derived choline was preferably channeled to PtdCho synthesis. These results indicate that in TPA-treated cells, the choline derived from the PKC-mediated increased PLD activity and the choline newly taken up by the cell behave as two distinctly different metabolic pools.  相似文献   

12.
Standard microarrays measure mRNA abundance, not mRNA synthesis, and therefore cannot identify the mechanisms that regulate gene expression. We have developed a method to overcome this limitation by using the salvage enzyme uracil phosphoribosyltransferase (UPRT) from the protozoan Toxoplasma gondii. T. gondii UPRT has been well characterized because of its application in monitoring parasite growth: mammals lack this enzyme activity and thus only the parasite incorporates (3)H-uracil into its nucleic acids. In this study we used RNA labeling by UPRT to determine the roles of mRNA synthesis and decay in the control of gene expression during T. gondii asexual development. We also used this approach to specifically label parasite RNA during a mouse infection and to incorporate thio-substituted uridines into the RNA of human cells engineered to express T. gondii UPRT, indicating that engineered UPRT expression will allow cell-specific analysis of gene expression in organisms other than T. gondii.  相似文献   

13.
The C3H/10T1/2 Cl8 HAbetaC2-1 cells used in this study express a peptide with a sequence shown to bind receptor for activated C-kinase (RACK1) and inhibit cPKC-mediated cell functions. Phorbol myristoyl acetate (PMA) strongly stimulated phosphatidylcholine (PtdCho)-specific phospholipase D (PLD) activity in the C3H/10T1/2 Cl8 parental cell line, but not in Cl8 HAbetaC2-1 cells, indicating that full PLD activity in PMA-treated Cl8 cells is dependent on a functional interaction of alpha/betaPKC with RACK1. In contrast, the PMA-stimulated uptake of choline and its subsequent incorporation into PtdCho, were not inhibited in Cl8 HAbetaC2-1 cells as compared to Cl8 cells, indicating a RACK1-independent but PKC-mediated process. Increased incorporation of labelled choline into PtdCho upon PMA treatment was not associated with changes of either CDP-choline: 1,2-diacylglycerol cholinephosphotransferase activity or the CTP:phosphocholine cytidylyltransferase distribution between cytosol and membrane fractions in Cl8 and Cl8 HAbetaC2-1 cells. The major effect of PMA on the PtdCho synthesis in C3H/10T1/2 fibroblasts was to increase the cellular uptake of choline. As a supporting experiment, we inhibited PMA-stimulated PtdH formation by PLD, and also putatively PtdH-derived DAG, in Cl8 cells with 1-butanol. Butanol did not influence the incorporation of [(14)C]choline into PtdCho. The present study shows: (1) PMA-stimulated PLD activity is dependent on a functional interaction between alpha/betaPKC and RACK1 in C3H/10T1/2 Cl8 fibroblasts; and (2) inhibition of PLD activity and PtdH formation did not reduce the cellular uptake and incorporation of labelled choline into PtdCho, indicating that these processes are not directly regulated by PtdCho-PLD activity in PMA-treated C3H/10T1/2 Cl8 fibroblasts.  相似文献   

14.
Phosphatidylcholine (PtdCho) is the most abundant phospholipid in mammalian cell membranes and is essential for cell viability. The levels of this lipid must be tightly controlled to maintain homeostasis. Therefore, changes in the rate of PtdCho synthesis are generally balanced by changes in PtdCho catabolism and vice versa. It is commonly accepted that the rate of PtdCho synthesis is regulated by CTP:phosphocholine cytidylyltransferase (CT). However, it is not certain if PtdCho mass is regulated by specific catabolic enzyme(s). Our goal is to determine if PtdCho homeostasis is regulated by a phospholipase A2 (PLA2). To this end, we have prepared Chinese hamster ovary (CHO) cell lines that overexpress CT. CT activity is 7–10-fold higher in the transfected cells than in parental CHO cells. This increase in CT activity is associated with increases in both PtdCho synthesis and PtdCho catabolism. Glycerophosphocholine is the PtdCho catabolite that accumulates in the transfected cells, which suggests that PtdCho turnover is mediated by a phospholipase A2 (PLA2). Indeed, higher levels of calcium-independent PLA2 activity are measured in the cytosols of the CHO cells that overexpress CT, compared to parental CHO cells. The elevated calcium-independent PLA2 activity is associated with increases in the expression of the 80-kDa calcium-independent PLA2 (iPLA2). Together, these data suggest that the 80-kDa iPLA2 may be modulated in response to changes in PtdCho levels and therefore is involved in the regulation of PtdCho homeostasis in CHO cells.  相似文献   

15.
Characterization of a mutant of Toxoplasma gondii resistant to aphidicolin   总被引:1,自引:0,他引:1  
Aphidicolin, a mycotoxin that inhibits eucaryotic DNA polymerase alpha, blocked the growth of Toxoplasma gondii in confluent cultured human fibroblasts. Aphidicolin immediately inhibited DNA synthesis by T. gondii while it had a delayed and less dramatic effect on RNA synthesis. A mutant of T. gondii resistant to aphidicolin was isolated with the aid of mutagenesis by ethylnitrosourea. Parasite growth measured three days after drug treatment and parasite DNA synthesis measured immediately after drug treatment were, respectively, five- and four-fold more resistant to aphidicolin in the mutant as compared with the wild type parasite. The mutant had a three-fold greater capacity than the wild type to incorporate uracil into its deoxycytidine triphosphate pool. This increased deoxycytidine triphosphate pool is the probable explanation for the mutant's resistance because this deoxynucleotide is known, in mammalian cells, to reverse the inhibition of DNA synthesis by aphidicolin in a competitive manner.  相似文献   

16.
The apicomplexan parasite Toxoplasma gondii displays some unusual localisations of carbohydrate converting enzymes, which is due to the presence of a vestigial, non-photosynthetic plastid, referred to as the apicoplast. It was recently demonstrated that the single pyruvate dehydrogenase complex (PDH) in T. gondii is exclusively localised inside the apicoplast but absent in the mitochondrion. This raises the question about expression, localisation and function of enzymes for the tricarboxylic acid (TCA)-cycle, which normally depends on PDH generated acetyl-CoA. Based on the expression and localisation of epitope-tagged fusion proteins, we show that all analysed TCA cycle enzymes are localised in the mitochondrion, including both isoforms of malate dehydrogenase. The absence of a cytosolic malate dehydrogenase suggests that a typical malate-aspartate shuttle for transfer of reduction equivalents is missing in T. gondii. We also localised various enzymes which catalyse the irreversible steps in gluconeogenesis to a cellular compartment and examined mRNA expression levels for gluconeogenesis and TCA cycle genes between tachyzoites and in vitro bradyzoites. In order to get functional information on the TCA cycle for the parasite energy metabolism, we created a conditional knock-out mutant for the succinyl-CoA synthetase. Disruption of the sixth step in the TCA cycle should leave the biosynthetic parts of the cycle intact, but prevent FADH2 production. The succinyl-CoA synthetase depletion mutant displayed a 30% reduction in growth rate, which could be restored by supplementation with 2 microM succinate in the tissue culture medium. The mitochondrial membrane potential in these parasites was found to be unaltered. The lack of a more severe phenotype suggests that a functional TCA cycle is not essential for T. gondii replication and for maintenance of the mitochondrial membrane potential.  相似文献   

17.
The CDP–choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP–choline pathway in yeast provides a basis for understanding the CDP–choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP–choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP–choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell‐ and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP–choline cycle. Knockout mouse models define the biological functions of the CDP–choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

18.
Phosphatidylcholine (PtdCho) is the major phospholipid component of eukaryotic membranes and deciphering the molecular mechanisms regulating PtdCho homeostasis is necessary to fully understand many pathophysiological situations where PtdCho metabolism is altered. This concept is illustrated in this review by summarizing recent evidence on Nte1p, a yeast endoplasmic reticulum resident phospholipase B that deacylates PtdCho producing intracellular glycerophosphocholine. The mammalian and Drosophila homologues, neuropathy target esterase and swiss cheese, respectively, have been implicated in normal brain development with increased intracytoplasmic vesicularization and multilayered membrane stacks as cytological signatures of their absence. Consistent with a role in lipid and membrane homeostasis, Nte1p-mediated PtdCho deacylation is strongly affected by Sec14p, a component of the yeast secretory machinery characterized by its ability to interface between lipid metabolism and vesicular trafficking. The preference of Nte1p toward PtdCho produced through the CDP-choline pathway and the downstream production of choline by the Gde1p glycerophosphodiesterase for resynthesis of PtdCho by the CDP-choline pathway are also highlighted.  相似文献   

19.
The major membrane phospholipid classes, described thus far, include phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylserine (PtdSer), and phosphatidylinositol (PtdIns). Here, we demonstrate the natural occurrence and genetic origin of an exclusive and rather abundant lipid, phosphatidylthreonine (PtdThr), in a common eukaryotic model parasite, Toxoplasma gondii. The parasite expresses a novel enzyme PtdThr synthase (TgPTS) to produce this lipid in its endoplasmic reticulum. Genetic disruption of TgPTS abrogates de novo synthesis of PtdThr and impairs the lytic cycle and virulence of T. gondii. The observed phenotype is caused by a reduced gliding motility, which blights the parasite egress and ensuing host cell invasion. Notably, the PTS mutant can prevent acute as well as yet-incurable chronic toxoplasmosis in a mouse model, which endorses its potential clinical utility as a metabolically attenuated vaccine. Together, the work also illustrates the functional speciation of two evolutionarily related membrane phospholipids, i.e., PtdThr and PtdSer.  相似文献   

20.
Apicomplexan parasites cause devastating diseases including malaria and toxoplasmosis. They harbour a plastid-like, non-photosynthetic organelle of algal origin, the apicoplast, which fulfils critical functions for parasite survival. Because of its essential and original metabolic pathways, the apicoplast has become a target for the development of new anti-apicomplexan drugs. Here we show that the lipid phosphatidylinositol 3-monophosphate (PI3P) is involved in apicoplast biogenesis in Toxoplasma gondii. In yeast and mammalian cells, PI3P is concentrated on early endosomes and regulates trafficking of endosomal compartments. Imaging of PI3P in T. gondii showed that the lipid was associated with the apicoplast and apicoplast protein-shuttling vesicles. Interference with regular PI3P function by over-expression of a PI3P specific binding module in the parasite led to the accumulation of vesicles containing apicoplast peripheral membrane proteins around the apicoplast and, ultimately, to the loss of the organelle. Accordingly, inhibition of the PI3P-synthesising kinase interfered with apicoplast biogenesis. These findings point to an unexpected implication for this ubiquitous lipid and open new perspectives on how nuclear encoded proteins traffic to the apicoplast. This study also highlights the possibility of developing specific pharmacological inhibitors of the parasite PI3-kinase as novel anti-apicomplexan drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号