首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Higher and prolonged viral replication is critical for the increased pathogenesis of the highly pathogenic avian influenza (HPAI) subtype of H5N1 influenza A virus (IAV) over the lowly pathogenic H1N1 IAV strain. Recent studies highlighted the considerable roles of cellular miRNAs in host defence against viral infection. In this report, using a 3′UTR reporter system, we identified several putative miRNA target sites buried in the H5N1 virus genome. We found two miRNAs, miR‐584‐5p and miR‐1249, that matched with the PB2 binding sequence. Moreover, we showed that these miRNAs dramatically down‐regulated PB2 expression, and inhibited replication of H5N1 and H1N1 IAVs in A549 cells. Intriguingly, these miRNAs expression was differently regulated in A549 cells infected with the H5N1 and H1N1 viruses. Furthermore, transfection of miR‐1249 inhibitor enhanced the PB2 expression and promoted the replication of H5N1 and H1N1 IAVs. These results suggest that H5N1 virus may have evolved a mechanism to escape host‐mediated inhibition of viral replication through down‐regulation of cellular miRNAs, which target its viral genome.  相似文献   

2.
3.
MicroRNAs (miRNAs) play an important role in the regulation of gene expression and are involved in many cellular processes including inhibition of viral replication in infected cells. In this study, three subtypes of influenza A viruses (pH1N1, H5N1 and H3N2) were analyzed to identify candidate human miRNAs targeting and silencing viral genes expression. Candidate human miRNAs were predicted by miRBase and RNAhybrid based on minimum free energy (MFE) and hybridization patterns between human miRNAs and viral target genes. In silico analysis presented 76 miRNAs targeting influenza A viruses, including 70 miRNAs that targeted specific subtypes (21 for pH1N1, 27 for H5N1 and 22 for H3N2) and 6 miRNAs (miR-216b, miR-3145, miR-3682, miR-4513, miR-4753 and miR-5693) that targeted multiple subtypes of influenza A viruses. Interestingly, miR-3145 is the only candidate miRNA targeting all three subtypes of influenza A viruses. The miR-3145 targets to PB1 encoding polymerase basic protein 1, which is the main component of the viral polymerase complex. The silencing effect of miR-3145 was validated by 3′-UTR reporter assay and inhibition of influenza viral replication in A549 cells. In 3′-UTR reporter assay, results revealed that miR-3145 triggered significant reduction of the luciferase activity. Moreover, expression of viral PB1 genes was also inhibited considerably (P value < 0.05) in viral infected cells expressing mimic miR-3145. In conclusion, this study demonstrated that human miR-3145 triggered silencing of viral PB1 genes and lead to inhibition of multiple subtypes of influenza viral replication. Therefore, hsa-miR-3145 might be useful for alternative treatment of influenza A viruses in the future.  相似文献   

4.
MicroRNAs (miRNAs) are ~22-nt small RNAs that are important regulators of mRNA turnover and translation. Recent studies have shown the importance of the miRNA pathway in HIV-1 infection, particularly in maintaining latency. Our initial in vitro studies demonstrated that HIV-1-infected HUT78 cells expressed significantly higher IL-10 levels compared with uninfected cultures. IL-10 plays an important role in the dysregulated cytotoxic T cell response to HIV-1, and in silico algorithms suggested that let-7 miRNAs target IL10 mRNA. In a time course experiment, we demonstrated that let-7 miRNAs fall rapidly following HIV-1 infection in HUT78 cells with concomitant rises in IL-10. To show a direct link between let-7 and IL-10, forced overexpression of let-7 miRNAs resulted in significantly reduced IL-10 levels, whereas inhibition of the function of these miRNAs increased IL-10. To demonstrate the relevance of these results, we focused our attention on CD4(+) T cells from uninfected healthy controls, chronic HIV-1-infected patients, and long-term nonprogressors. We characterized miRNA changes in CD4(+) T cells from these three groups and demonstrated that let-7 miRNAs were highly expressed in CD4(+) T cells from healthy controls and let-7 miRNAs were significantly decreased in chronic HIV-1 infected compared with both healthy controls and long-term nonprogressors. We describe a novel mechanism whereby IL-10 levels can be potentially modulated by changes to let-7 miRNAs. In HIV-1 infection, the decrease in let-7 miRNAs may result in an increase in IL-10 from CD4(+) T cells and provide the virus with an important survival advantage by manipulating the host immune response.  相似文献   

5.
6.
7.
MicroRNAs (miRNAs) are 22-nt non-coding RNAs involved in the regulation of cellular gene expression and potential cellular defense against viral infection. Using in silico analyses, we predicted target sites for 22 human miRNAs in the HIV genome. Transfection experiments using synthetic miRNAs showed that five of these miRNAs capably decreased HIV replication. Using one of these five miRNAs, human miR-326 as an example, we demonstrated that the degree of complementarity between the predicted viral sequence and cellular miR-326 correlates, in a Dicer-dependent manner, with the potency of miRNA-mediated restriction of viral replication. Antagomirs to miR-326 that knocked down this cell endogenous miRNA increased HIV-1 replication in cells, suggesting that miR-326 is physiologically functional in moderating HIV-1 replication in human cells.  相似文献   

8.
The objectives of this study included: (1) identify the expression of miRNAs specific to bovine cumulus-oocyte complexes (COCs) during late oogenesis, (2) characterize the expression of candidate miRNAs as well as some miRNA processing genes, and (3) computationally identify and characterize the expression of target mRNAs for candidate miRNAs. Small RNAs in the 16-27 bp range were isolated from pooled COCs aspirated from 1- to 10-mm follicles of beef cattle ovaries and used to construct a cDNA library. A total 1798 putative miRNA sequences from the cDNA library of small RNA were compared to known miRNAs. Sixty-four miRNA clusters matched previously reported sequences in the miRBase database and 5 miRNA clusters had not been reported. TaqMan miRNA assays were used to confirm the expression of let-7b, let-7i, and miR-106a from independent collections of COCs. Real-time PCR assays were used to characterize expression of miRNA processing genes and target mRNAs (MYC and WEE1A) for the candidate miRNAs from independent collections of COCs. Expression data were analyzed using general linear model procedures for analysis of variance. The expression of let-7b and let-7i were not different between the cellular populations from various sized follicles. However, miR-106a expression was greater (P<0.01) in oocytes compared with COCs and granulosa cells. Furthermore, all the miRNA processing genes have greater expression (P<0.001) in oocytes compared with COCs and granulosa cells. The expression of potential target mRNAs for let-7 and let-7i (i.e., MYC), and miR-106a (i.e., WEE1A) were decreased (P<0.05) in oocytes compared with COCs and granulosa cells. These results demonstrate specific miRNAs within bovine COCs during late oogenesis and provide some evidence that miRNAs may play a role regulating maternal mRNAs in bovine oocytes.  相似文献   

9.
10.
RNAi plays important roles in many biological processes, including cellular defense against viral infection. Components of the RNAi machinery are widely conserved in plants and animals. In mammals, microRNAs (miRNAs) represent an abundant class of cell encoded small noncoding RNAs that participate in RNAi-mediated gene silencing. Here, findings that HIV-1 replication in cells can be regulated by miRNAs and that HIV-1 infection of cells can alter cellular miRNA expression are reviewed. Lessons learned from and questions outstanding about the complex interactions between HIV-1 and cellular miRNAs are discussed.  相似文献   

11.
MicroRNAs (miRNAs) are small non-coding RNAs that control a multitude of critical processes in mammalian cells. Increasing evidence has emerged that host miRNAs serve in animal cells to restrict viral infections. In turn, many viruses encode RNA silencing suppressors (RSS) which are employed to moderate the potency of the cell's miRNA selection against viral replication. Some viruses also encode viral miRNAs. In this review, we summarize findings from human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1) that illustrate examples of host cell miRNAs that target the viruses, of RSS encoded by viruses, and of host cell miRNA profile changes that are seen in infected cells. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.  相似文献   

12.
The COP9 signalosome (CSN) complex controls protein degradation via the ubiquitin (Ub) proteasome system (UPS) in eukaryotes. In mammalian cells, the multimeric CSN is composed of eight subunits (CSN1 - CSN8). It regulates cullin-RING Ub ligases (CRLs), which target essential regulatory proteins for ubiquitination and subsequent degradation. Thereby, the CSN cooperates with the UPS in a variety of essential cellular functions, including DNA repair, cell cycle and differentiation. Although functions of the CSN have been elucidated, mechanisms and regulatory principles of its de novo formation are completely unknown. Here, we show that there is a fundamental mechanism that allows a coordinated expression of all CSN subunits, a prerequisite for CSN assembly. CSN subunit mRNAs are targets of miRNAs of the let-7 family suppressing CSN subunit expression in human cells. Factors that reduce or block let-7 miRNAs induce the coordinated expression of CSN subunits. For instance, over-expression of CSN1 specifically traps let-7a-1 miRNA and elevates CSN subunit levels by two- to fourfold in a coordinated manner. CSN subunit expression is also increased by specific miRNA inhibitors or by interferon (IFN)-mediated induction of STAT1 and c-Myc reducing levels of let-7 miRNAs. Activation of STAT1 by IFNα or IFNγ induces c-Myc, which increases CSN subunit expression via the Lin28B/let-7 regulatory pathway. By contrast, a let-7a-1 mimic reduces CSN subunit expression. Our data show that let-7 miRNAs control the fine-tuning and coordinated expression of subunits for CSN de novo formation, presumably a general regulatory principle for other Zomes complexes as well.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Recent findings suggest that mammalian microRNAs (miRNAs) may influence viral replication in host cells. Studies on HIV-1 infection have contributed in part to the development of this notion. Herein, we review, in brief, some of the evidence supportive of an interplay between human miRNAs and HIV-1 in cells. Several cellular miRNAs potentially act to restrict HIV-1 replication, and the virus has countermeasures to evade such restriction.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) latency is achieved when host cells contain integrated proviral DNA but do not produce viral particles. The virus remains in resting CD4 T-lymphocytes, evading host immune surveillance and antiviral drugs. When resting cells are activated, infectious viral particles are produced. Latency is critical for the survival of all HIV-1 strains in vivo. Recently, it has been reported that a cluster of cellular microRNAs (miRNAs) enriched specifically in resting CD4+ T-cells suppresses translation of most HIV-1-encoded proteins in the cytoplasm, sustaining HIV-1 escape from the host immune response. Complementary antisense miRNA inhibitors block the inhibitory effect of miRNAs and drive viral production from the resting T-lymphocytes without activating the cells. Therefore, inhibition of these HIV-1-specific cellular miRNAs is of great therapeutic significance for eliminating the HIV-1 reservoir in HIV-1-infected individuals receiving suppressive highly active antiretroviral therapy (HAART).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号