首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
沙颍河下游城市黑臭内河沉积物微生物群落季节变化特征   总被引:1,自引:0,他引:1  
为了研究沙颍河下游城市黑臭内河不同季节沉积物微生物群落特征,对安徽省阜阳市黑臭内河中清河、七渔河表层沉积物进行16S rDNA高通量测序。结果发现:黑臭河流中沉积物的微生物多样性指数均不高,但是表现出一定的变化规律,即春季>冬季≥夏季>秋季;通过冗余性分析发现微生物多样性受季节与沉积物pH影响较显著。分析沉积物门水平上的微生物群落结构发现,季节、温度、TN及SOM对微生物影响较大。变形杆菌、厚壁菌门、绿弯菌门、疣微菌门、拟杆菌门和放线菌门等优势菌门的相对丰度在季节水平上存在差异,春季厚壁菌门、绿弯菌门、放线菌门和酸杆菌门相对丰度较高,其中绿弯菌门和酸杆菌门是已知指示污染的微生物,变形杆菌门相对较少。秋季疣微菌门与拟杆菌门相对丰度显著减小,变形杆菌门相对其他季节显著增加。样品中共发现16个硫酸盐还原菌(SRB)菌属,其中Desulfoprunum是丰度最高的菌属。春季沉积物中SRB的类群最多,相对丰度最大;硫酸盐还原菌群与SO42-、TN、SOM、Cl–等呈显著正相关。上述结果为营养盐控制时机的选择从而有效避免河流中黑臭物质的产生提供了一定参考。  相似文献   

2.
A molecular approach based on the construction of 16S ribosomal DNA clone libraries was used to investigate the microbial diversity of an underground in situ reactor system filled with the original aquifer sediments. After chemical steady state was reached in the monochlorobenzene concentration between the original inflowing groundwater and the reactor outflow, samples from different reactor locations and from inflowing and outflowing groundwater were taken for DNA extraction. Small-subunit rRNA genes were PCR-amplified with primers specific for Bacteria, subsequently cloned and screened for variation by restriction fragment length polymorphism (RFLP). A total of 87 bacterial 16S rDNA genes were sequenced and subjected to phylogenetic analysis. The original groundwater was found to be dominated by a bacterial consortium affiliated with various members of the class of Proteobacteria, by phylotypes not affiliated with currently recognized bacterial phyla, and also by sporulating and non-sporulating sulfate-reducing bacteria. The most occurring clone types obtained from the sediment samples of the reactor were related to the beta-Proteobacteria, dominated by sequences almost identical to the widespread bacterium Alcaligenes faecalis, to low G+C gram-positive bacteria and to Acidithiobacillus ferrooxidans (formerly Thiobacillus ferrooxidans) within the gamma subclass of Proteobacteria in the upper reactor sector. Although bacterial phylotypes originating from the groundwater outflow of the reactors also grouped within different subdivisions of Proteobacteria and low G+C gram-positive bacteria, most of the 16S rDNA sequences were not associated with the sequence types observed in the reactor samples. Our results suggest that the different environments were inhabited by distinct microbial communities in respect to their taxonomic diversity, particular pronounced between sediment attached microbial communities from the reactor samples and free-living bacteria from the groundwater in- and outflow.  相似文献   

3.
The hyporheic zone of stream ecosystems is a critical habitat for microbial communities. However, the factors influencing hyporheic bacterial communities along spatial and seasonal gradients remain poorly understood. We sought to characterize patterns in bacterial community composition among the sediments of a small stream in southern Ontario, Canada. We used sampling cores to collect monthly hyporheic water and sediment microbial communities in 2006 and 2007. We described bacterial communities terminal-restriction fragment length polymorphism (TRFLP) and tested for spatial and seasonal relationships with physicochemical parameters using multivariate statistics. Overall, the hyporheic zone appears to be a DOC, oxygen, and nitrogen sink. Microbial communities were distinct from those at the streambed surface and from soil collected in the adjacent watershed. In the sediments, microbial communities were distinct between the fall, spring, and summer seasons, and bacterial communities were more diverse at streambed surface and near-surface sites compared with deeper sites. Moreover, bacterial communities were similar between consecutive fall seasons despite shifting throughout the year, suggesting recurring community assemblages associated with season and location in the hyporheic zone. Using canonical correspondence analysis, seasonal patterns in microbial community composition and environmental parameters were correlated in the following way: temperature was related to summer communities; DOC (likely from biofilm and allochthonous inputs) influenced most fall communities; and nitrogen associated strongly with winter and spring communities. Our results also suggest that labile DOC entering the hyporheic zone occurred in concert with shifts in the bacterial community. Generally, seasonal patterns in hyporheic physicochemistry and microbial biodiversity remain largely unexplored. Therefore, we highlight the importance of seasonal and spatial resolution when assessing surface- and groundwater interactions in stream ecosystems.  相似文献   

4.
Arsenic contamination in groundwater has been reported in the Jianghan Plain of China since 2005, yet little is known about the microbial communities involved in As mobilization in this area, especially the dissimilatory arsenate-reducing bacteria (DARB) communities. Here, we conducted a cultivation-independent investigation on core sediments collected from a region with arsenic-contaminated groundwater in the Jianghan Plain to reveal the total bacteria and DARB community structures. Highly diverse As-resistant bacteria communities were found from sediment samples via high-throughput sequencing of 16S rRNA genes. Notably, we identified 27 unique arrA gene (encoding the alpha subunit of dissimilatory arsenate reductase) phylotypes, none of which was related to any previously described arrA gene sequence. This suggests a novel and unique DARB community in the sediments of the Jianghan Plain and expands our knowledge about the distribution and diversity of this group of bacteria in natural environments. Moreover, RDA and CCA demonstrated that total bacterial communities and specific functional groups are controlled by different environmental factors. Specifically, sediment pH, NH4+, total nitrogen, total Fe, total organic carbon and total phosphorus were the key factors driving total bacterial community compositions, while As significantly shaped DARB community structures. This report is the first to describe DARB communities and their correlation with environmental factors in Jianghan Plain sediments, which could give us clues about the origin of the arsenic contamination of groundwater in this region.  相似文献   

5.
为探究缢蛏养殖过程中养殖环境和缢蛏体内的细菌群落结构季节变化特征及其与环境因子的相关性,采用高通量测序技术对缢蛏养殖池塘的水体、沉积物及缢蛏内脏团细菌菌群进行了研究.结果表明: 水体中冬季的细菌菌群结构与其他3季差异显著,沉积物和缢蛏内脏团4季的细菌菌群结构均无显著差异.水体各季节细菌群落的Shannon多样性指数无明显差异,沉积物及缢蛏内脏团细菌群落Shannon多样性指数夏季最低,冬季最高.门水平上,蓝细菌门、变形菌门和拟杆菌门为水体的优势菌群;变形菌门、绿弯菌门和拟杆菌门为沉积物的优势菌群;柔膜菌门和变形菌门为缢蛏内脏团的优势菌群.属水平上,水体冬季的优势菌属为NS3a_marine_group,而其余3季为聚球藻属;沉积物优势菌属为厌氧绳菌科下的一类菌属norank_f_Anaerolineacea和硝化螺旋菌属;内脏团优势菌属为支原体属和弓形菌属.环境因子与菌群的相关性分析表明: 水体的优势菌属聚球藻属与水温、化学需氧量(COD)、PO4--P、NH4+-N、pH和透明度呈正相关;沉积物的优势菌属厌氧绳菌科菌属norank_f_Anaerolineacea与COD、水温、总磷呈正相关;缢蛏内脏团的优势菌属支原体属与水温、pH、NH4+-N、PO4--P和透明度呈正相关.这表明不同季节的缢蛏养殖池塘及缢蛏体内细菌群落结构及多样性差异较大,水体细菌菌群受养殖环境的影响明显,尤其是水温及氮磷含量.  相似文献   

6.

Sedimentary environments in the Arctic are known to harbor diverse microbial communities playing a crucial role in the remineralization of organic matter and associated biogeochemical cycles. In this study, we used a combination of culture-dependent and culture-independent approaches to understanding the bacterial community composition associated with the sediments of a terrestrial versus fjord system in the Svalbard Arctic. Community-level metabolic profiling and growth response of retrieved bacterial isolates towards different carbon substrates at varying temperatures were also studied to assess the metabolic response of communities and isolates in the system. Bacterial species belonging to Cryobacterium and Psychrobacter dominated the terrestrial and fjord sediment retrievable fraction. Amplicon sequencing analysis revealed higher bacterial diversity in the terrestrial sediments (Shannon index; 8.135 and 7.935) as compared to the fjord sediments (4.5–5.37). Phylum Proteobacteria and Bacteroidetes dominated both terrestrial and fjord sediments. Phylum Verrucomicrobia and Cyanobacteria were abundant in terrestrial sediments while Epsilonbacteraeota and Fusobacteriia dominated the fjord sediments. Significant differences were observed in the carbon substrate utilization profiles between the terrestrial and fjord sediments at both 4 °C and 20 °C incubations (p?<?0.005). Utilization of N-acetyl-D-glucosamine, D-mannitol and Tween-80 by the sediment communities and bacterial isolates from both systems, irrespective of their temperature incubations implies the affinity of bacteria for such substrates as energy sources and for their survival in cold environments. Our results suggest the ability of sediment bacterial communities to adjust their substrate utilization profiles according to condition changes in the ecosystems and are found to be less influenced by their phylogenetic relatedness.

  相似文献   

7.
In a contaminated water-table aquifer, we related microbial community structure on aquifer sediments to gradients in 24 geochemical and contaminant variables at five depths, under three recharge conditions. Community amplified ribsosomal DNA restriction analysis (ARDRA) using universal 16S rDNA primers and denaturing gradient gel electrophoresis (DGGE) using bacterial 16S rDNA primers indicated: (i). communities in the anoxic, contaminated central zone were similar regardless of recharge; (ii). after recharge, communities at greatest depth were similar to those in uncontaminated zones; and (iii). after extended lack of recharge, communities at upper and lower aquifer margins differed from communities at the same depths on other dates. General aquifer geochemistry was as important as contaminant or terminal electron accepting process (TEAP) chemistry in discriminant analysis of community groups. The Shannon index of diversity (H) and the evenness index (E), based on DGGE operational taxonomic units (OTUs), were statistically different across community groups and aquifer depths. Archaea or sulphate-reducing bacteria 16S rRNA abundance was not clearly correlated with TEAP chemistry indicative of methanogenesis or sulphate reduction. Eukarya rRNA abundance varied by depth and date from 0 to 13% of the microbial community. This contaminated aquifer is a dynamic ecosystem, with complex interactions between physical, chemical and biotic components, which should be considered in the interpretation of aquifer geochemistry and in the development of conceptual or predictive models for natural attenuation or remediation.  相似文献   

8.
【背景】城市河流底泥含有丰富的微生物资源,底泥表面更是硝化作用的主要位点之一,其表面微生物在河流生态系统氮的转化过程中发挥着重要作用。【目的】以温州市境内的城市河流水系温瑞塘河茶山段舜岙河和横江河的4条河道作为采样点,比较分析4种不同环境下城市河流表层底泥氨氧化菌富集培养物的微生物群落结构。【方法】通过野外采样及室内培养对底泥中氨氧化功能菌进行富集培养,采用高通量测序技术分析微生物群落的组成、丰度和多样性。【结果】富集培养后主要优势类群为变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)。4个样品共涉及氨氧化细菌3个属,分别为亚硝化单胞菌属(Nitrosomonas)、亚硝化螺菌属(Nitrosospira)、亚硝化球菌属(Nitrosococcus),涉及氨氧化古菌1个属为Nitrososphaera,其中所有样品均以Nitrosomonas为主。不同底泥富集样品氨氧化微生物可操作分类单元(Operational taxonomic unit,OTU)组成存在明显差异,栽种有水生植物的河道底泥样品DA2具有最高的氨氧化细菌OTU数量和相对丰度,而存在生活餐饮污染的河道底泥样品DA4具有最高的氨氧化古菌OTU数量和相对丰度;相较于滞留水体,采自相对流动水体的富集样品DA2、DA4具有更高的氨氧化微生物OTU数量和相对丰度。【结论】阐述了4种不同环境下城市河流底泥氨氧化菌富集培养物微生物群落结构的多样性,确定了富集培养之后的优势类群,为氨氧化微生物培养源的选择提供了参考,也为城市河流底泥中氨氧化菌进一步的筛选分离及其生理生态特征的研究提供了科学依据。  相似文献   

9.
The undisturbed sediment of Lake Hovsgol (Mongolia) is scientifically important because it represents a record of the environmental changes that took place between the Holocene (the present age) and Pleistocene (the last ice age; 12,000 14C years before present day). Here, we investigated how the current microbial communities change as the depth increases by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA genes of the microbial communities. The microbial diversity, as estimated by the Shannon index, decreased as the depth increased. In particular, significant changes in archaeal diversity were observed in the middle depth (at 39-42 cm depth of total 60 cm depth) that marks the border between the Holocene and Pleistocene. Phylotype belonging to Beta-and Gamma-Proteobacteria were the predominant bacteria and most of these persisted throughout the depth examined. However, as the depth increased, some bacteria (some genera belonging to Beta-Proteobacteria, Nitrospira, and OP8-9) were not detectable while others (some genera belonging to Alpha-, Beta-, Gamma-Proteobacteria) newly detected by DGGE. Crenarchaea were the predominant archaea and only one phylotype belonging to Euryarchaea was found. Both the archaeal and bacterial profiles revealed by the DGGE band patterns could be grouped into four and three subsets, respectively, subsets that were largely divided by the border between the Holocene and Pleistocene. Thus, the diversity of the current microbial communities in Lake Hovsgol sediments decreases with increasing depth. These changes probably relate to the environmental conditions in the sediments, which were shaped by the paleoclimatic events taking place between the Holocene and Pleistocene.  相似文献   

10.
The 454 pyrosequencing technique was applied to evaluate microbial community composition in sediment and water samples collected from the river receiving effluents from a swine farm and a farmhouse restaurant, respectively. For each sample, 4,600 effective sequences were selected and used to do the bacterial diversity and abundance analysis, respectively. Bacterial phylotype richness in the river sediment sample without effluent input was higher than the other samples, and the river water sample with addition of effluent from the swine farm had the least richness. Effluents from both the swine farm and the farmhouse restaurant have the potential to decrease the bacterial diversity and abundance in the river sediment and water, especially it is more significant in the river sediment. Effect of effluent from the swine farm on riverine bacterial communities was more significant than that from the farmhouse restaurant. Characterization of bacterial community composition in sediments from two tributaries of the downstream river showed that various effluents from the swine farm and the farmhouse restaurant have the similar potential to reduce the natural variability in riverine ecosystems, and contribute to the biotic homogenization in the river sediment.  相似文献   

11.
The effects of spilled oil on sedimentary bacterial communities were examined in situ at 20 m water depth in a Mediterranean coastal area. Sediment collected at an experimental site chronically subjected to hydrocarbon inputs was reworked into PVC cores with or without a massive addition of crude Arabian light oil (∼20 g kg−1 dry weight). Cores were reinserted into the sediment and incubated in situ at the sampling site (20 m water depth) for 135 and 503 days. The massive oil contamination induced significant shifts in the structure of the indigenous bacterial communities as shown by ribosomal intergenic spacer analysis (RISA). The vertical heterogeneity of the bacterial communities within the sediment was more pronounced in the oiled sediments particularly after 503 days of incubation. Response to oil of the deeper depth communities (8–10 cm) was slower than that of superficial depth communities (0–1 and 2–4 cm). Analysis of the oil composition by gas chromatography revealed a typical microbial alteration of n-alkanes during the experiment. Predominant RISA bands in oiled sediments were affiliated to hydrocarbonoclastic bacteria sequences. In particular, a 395-bp RISA band, which was the dominant band in all the oiled sediments for both incubation times, was closely related to hydrocarbonoclastic sulfate-reducing bacteria (SRB). These bacteria may have contributed to the main fingerprint changes and to the observed biodegradation of n-alkanes. This study provides useful information on bacterial dynamics in anoxic contaminated infralittoral sediments and highlights the need to assess more precisely the contribution of SRB to bioremediation in oil anoxic contaminated areas.  相似文献   

12.
Bacterial community structure along the Changjiang River (which is more than 2,500 km long) was studied by using denaturing gradient gel electrophoresis (DGGE) and clone library analysis of PCR-amplified 16S ribosomal DNA (rDNA) with universal bacterial primer sets. DGGE profiles and principal-component analysis (PCA) demonstrated that the bacterial community gradually changed from upstream to downstream in both 1998 and 1999. Bacterial diversity, as determined by the Shannon index (H'), gradually decreased from upstream to downstream. The PCA plots revealed that the differences in the bacterial communities among riverine stations were not appreciable compared with the differences in two adjacent lakes, Lake Dongting and Lake Poyang. The relative stability of the bacterial communities at the riverine stations was probably due to the buffering action of the large amount of water flowing down the river. Clone library analysis of 16S rDNA revealed that the dominant bacterial groups changed from beta-proteobacteria and the Cytophaga-Flexibacter-Bacteroides group upstream to high-G+C-content gram-positive bacteria downstream and also that the bacterial community structure differed among the stations in the river and the lakes. The results obtained in this study should provide a reference for future changes caused by construction of the Three Gorges Dam.  相似文献   

13.
为了揭示人工林对土壤微生物环境的作用机理,利用高通量测序技术,比较了宁南山区刺槐、河北杨、油松、青海云杉和自然恢复林地的土壤真菌、细菌群落组成及多样性,分析了土壤理化性质与优势菌群的关系.结果 表明:1)不同恢复模式土壤真菌优势菌门为子囊菌门、担子菌门、被孢霉门、未分类真菌,占总真菌群落的90%以上;细菌优势菌门为放线...  相似文献   

14.
海水混养池塘虾蛤肠道与养殖环境的微生物多样性   总被引:1,自引:0,他引:1  
【背景】海水混养池塘环境微生物以及动物肠道微生物的群落结构已有研究,但对混养环境中多品种动物肠道与环境微生物群落的关系尚未见报道。【目的】研究海水虾蛤混养环境中微生物多样性以及与养殖动物健康之间的关系。【方法】采用Illumina高通量测序技术测定冬季莆田市北江养殖区2个混养池塘中水体、底泥以及虾蛤肠道的菌群结构。【结果】同一池塘水体与底泥之间、不同池塘水体或底泥之间的微生物结构存在一定的差异;同一养殖区2个混养池塘虾与蛤肠道微生物结构之间具有极高的相似性,与养殖环境存在显著的差异。微生物多样性和丰富度差异很大,表现出底泥水体肠道;虾蛤肠道微生物以厚壁细菌和γ-变形细菌为主;池塘水体以放线菌、α-变形细菌以及拟杆菌为主,底泥以γ-变形细菌和δ-变形细菌为主。养殖动物肠道微生物主要优势种为乳球菌属和假单胞菌属,池塘环境内存在较高丰度的黄杆菌类潜在致病菌,而在虾和蛤的肠道中基本未检出。2个池塘底泥硫还原细菌含量较高,增加了底质产生硫化氢等有害物质的风险。【结论】比较混养池塘中水体、底泥以及虾蛤肠道三者之间微生物群落结构的差异,揭示虾、贝混养模式微生物与养殖环境的关系,为池塘养殖虾、贝疾病防治和混养结构的优化提供参考。  相似文献   

15.
为了解武夷山自然保护区常绿阔叶林土壤微生物群落特征和季节变化,采用Illumina Miseq高通量测序技术分析了土壤微生物多样性的季节响应。结果表明,武夷山常绿阔叶林土壤为典型的南方酸性土壤,有效钾、土壤温度四季内存在显著差异,其他理化指标均无显著差异。土壤中的微生物多样性比较丰富,已鉴定出23门206属细菌和2门17属的古菌。夏季反映细菌总数的Chao指数最高,但反映细菌多样性的Shannon指数比春季低0.21,夏季古菌的Chao指数和Shannon指数分别比冬季高21.7%和0.27%。4个季节共有的细菌和古菌分别占总数的83.1%和70.0%,说明武夷山常绿阔叶林土壤不同季节的核心微生物组成具有很好的稳定性。在门和属水平的聚类树分析表明,春季和冬季的细菌和古菌群落组成最为接近,而夏季与其他3个季节的差异最大。冗余分析和热图分析结果表明,土壤p H是决定和影响细菌和古菌多样性的主要环境因子,有效钾、有效碳和总氮对微生物群落组成均有很大的影响。因此,随季节变化武夷山常绿阔叶林土壤微生物多样性呈现出规律性变化。  相似文献   

16.
《Genomics》2021,113(4):2547-2560
Water quality parameter dynamics, gut, sediment and water bacteria communities were studied to understand the environmental influence on the gut microbial community of a new strain of Huanghe common carp. A total of 3,384,078 raw tags and 5105 OTUs were obtained for the gut, water and sediment bacteria. The water quality had a stronger influence on the water bacteria community than gut and sediment bacteria communities. The ambient water quality parameters also significantly influenced the water and sediment bacteria communities. Comparing the gut, sediment, and water microbial communities, a relationship was found among them. However, gut bacteria were more closely related to sediment bacterial communities than to water bacteria communities. The results showed that the top three bacterial taxa were identical in gut and sediment samples in the early days of rearing. Interestingly, bacterial communities in the carp gut, water, and sediment had different adaptabilities to variations in environmental factors.  相似文献   

17.
通过高通量测序和qPCR技术对象山港4种典型生境(牡蛎养殖区OA、海带养殖区SA、自然岛礁区NR、人工鱼礁区AR)和对照区CK的沉积物反硝化细菌丰度和群落结构进行了测定分析,并探讨了反硝化细菌群落与环境因子之间的相关关系.结果表明:沉积物nirK型反硝化细菌丰度在5种生境间没有显著性差异,而沉积物nirS型反硝化细菌丰...  相似文献   

18.
Sediments contain a huge number and diversity of microorganisms that are important for the flux of material and are pivotal to all major biogeochemical cycles. Sediments of reservoirs are affected by a wide spectrum of allochthous and autochthonous influences providing versatile environments along the flow of water within the reservoir. Here we report on the microbial diversity in sediments of the mesotrophic drinking water reservoir Saidenbach, Germany, featuring a pronounced longitudinal gradient in sediment composition in the reservoir system. Three sampling sites were selected along the gradient, and the microbial communities in two sediment depths were characterized using catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and a bar-coded pyrosequencing approach. Multivariate statistic was used to reveal relationships between sequence diversity and the environmental conditions. The microbial communities were tremendously diverse with a Shannon index of diversity (H') ranging from 6.7 to 7.1. 18,986 sequences could be classified into 37 phyla including candidate divisions, but the full extent of genetic diversity was not captured. While CARD-FISH gave an overview about the community composition, more detailed information was gained by pyrosequencing. Bacteria were more abundant than Archaea. The dominating phylum in all samples was Proteobacteria, especially Betaproteobacteria and Deltaproteobacteria. Furthermore, sequences of Bacteroidetes, Verrucomicrobia, Acidobacteria, Chlorobi, Nitrospira, Spirochaetes, Gammaproteobacteria, Alphaproteobacteria, Chloroflexi, and Gemmatimonadetes were found. The site ammonium concentration, water content and organic matter content revealed to be strongest environmental predictors explaining the observed significant differences in the community composition between sampling sites.  相似文献   

19.
刺参池塘底质微生物群落功能多样性的季节变化   总被引:4,自引:0,他引:4  
闫法军  田相利  董双林  阳钢  刘瑞娟  张凯 《生态学报》2014,34(11):2996-3006
利用BIOLOG技术和冗余分析(Redundancy analysis,RDA)方法对刺参(Apostichopus japonicus)养殖池塘底质环境(底泥、附着基)微生物群落功能多样性的季节变化及其与环境因子的关系进行了研究。结果表明:(1)刺参池塘底泥和附着基微生物对碳源总量和单类碳源的利用均具有显著的季节变化,总体表现为春、夏、秋季节高于冬季,其中,底泥微生物利用比例较高的碳源类型为聚合物、糖类、羧酸和氨基酸,附着基微生物利用比例较高的碳源类型为聚合物、糖类、氨基酸和胺。(2)主成分分析表明,刺参池塘底泥和附着基微生物碳代谢方式均具有显著的季节变化。底泥中,与主成分显著相关的碳源有18种,其中与主成分1显著相关的主要是糖类、羧酸和氨基酸,与主成分2显著相关的主要是聚合物和糖类;附着基中,与主成分显著相关的碳源有22种,其中与主成分1显著相关的主要是聚合物、糖类、羧酸和氨基酸,与主成分2显著相关的是羧酸。(3)刺参池塘底泥和附着基微生物多样性指数Shannon、McIntosh、Simpson和S-E均匀度均存在显著的季节变化,但不同指数之间的变化有较大差异。(4)RDA分析表明,TP、NO3-N和PO4-P是影响底泥微生物功能多样性季节变化的主要因素,SOM、NO3-N和TN是影响附着基微生物功能多样性季节变化的主要因素。结论认为,刺参池塘底泥和附着基微生物功能多样性具有显著的不同的季节变化,这些变化与环境因子具有很好的相关性。  相似文献   

20.
We investigated vertical distribution and depth-related patterns (from 670 to 2,570 metres) of bacterial diversity in sediment samples collected along a transect in the warm deep Mediterranean sea. Analyses of bacterial diversity were compared with the abundance of benthic bacteria, their metabolically active fraction and the substrates potentially available for their growth. The number of active bacteria was dependent upon the availability of organic substrate in the sediment deriving from phytopigment inputs from the photic layer. The T-RFLP analysis revealed that the surface layers of all sediments analysed were dominated by the same ribotypes, but clear shifts in bacterial community structure were observed in deeper sediment layers. High values of bacterial diversity (expressed as D, H') and evenness (as J) were observed at all stations (a total of 61 ribotypes was identified), and as a result of the large fraction of rare ribotypes (c. 35%), the overall bacterial diversity in the deep sea region investigated was among the highest reported so far in literature. Biodiversity parameters did not display any relationship with water depth, but ribotype richness was related with the number and percentage of active bacteria, suggesting a coupling between organic inputs stimulating bacterial growth and deep-sea bacterial diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号