首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
B cells require MHC class II (MHC II)-restricted cognate help and CD40 engagement by CD4(+) T follicular helper (T(FH)) cells to form germinal centers and long-lasting Ab responses. Invariant NKT (iNKT) cells are innate-like lymphocytes that jumpstart the adaptive immune response when activated by the CD1d-restricted lipid α-galactosylceramide (αGalCer). We previously observed that immunization of mice lacking CD4(+) T cells (MHC II(-/-)) elicits specific IgG responses only when protein Ags are mixed with αGalCer. In this study, we investigated the mechanisms underpinning this observation. We find that induction of Ag-specific Ab responses in MHC II(-/-) mice upon immunization with protein Ags mixed with αGalCer requires CD1d expression and CD40 engagement on B cells, suggesting that iNKT cells provide CD1d-restricted cognate help for B cells. Remarkably, splenic iNKT cells from immunized MHC II(-/-) mice display a typical CXCR5(hi)programmed death-1(hi)ICOS(hi)Bcl-6(hi) T(FH) phenotype and induce germinal centers. The specific IgG response induced in MHC II(-/-) mice has shorter duration than that developing in CD4-competent animals, suggesting that iNKT(FH) cells preferentially induce transient rather than long-lived Ab responses. Together, these results suggest that iNKT cells can be co-opted into the follicular helper function, yet iNKT(FH) and CD4(+) T(FH) cells display distinct helper features, consistent with the notion that these two cell subsets play nonredundant functions throughout immune responses.  相似文献   

3.
Protection from influenza A virus (IAV) challenge requires switched, high affinity Abs derived from long-lived memory B cells and plasma cells. These B cell subsets are generated in germinal centers (GCs), hallmark structures of T helper cell-driven B cell immunity. A full understanding of the GC reaction after respiratory IAV infection is lacking, as is the characterization of T follicular helper (T(FH)) cells that support GCs. Here, GC B cell and T(FH) cell responses were studied in mice following pulmonary challenge with IAV. Marked GC reactions were induced in draining lymph nodes (dLNs), lung, spleen and nasal-associated lymphoid tissue (NALT), although the magnitude and kinetics of the response was site-specific. Examination of switching within GCs demonstrated IgG2(+) cells to compose the largest fraction in dLNs, lung and spleen. IgA(+) GC B cells were infrequent in these sites, but composed a significant subset of the switched GC population in NALT. Further experiments demonstrated splenectomized mice to withstand a lethal recall challenge, suggesting the spleen to be unnecessary for long-term protection in spite of strong GC responses in this organ. Final studies showed that T(FH) cell numbers were highest in dLNs and spleen, and peaked in all sites prior to the height of the GC reaction. T(FH) cells purified from dLNs generated IL-21 and IFNγ upon activation, although CD4(+)CXCR5(-) T effector cells produced higher levels of all cytokines. Collectively, these findings reveal respiratory IAV infection to induce strong T helper cell-driven B cell responses in various organs, with each site displaying unique attributes.  相似文献   

4.
A fundamental problem in immunoregulation is how CD4(+) T cells react to immunogenic peptides derived from the V region of the BCR that are created by somatic mechanisms, presented in MHC II, and amplified to abundance by B cell clonal expansion during immunity. BCR neo Ags open a potentially dangerous avenue of T cell help in violation of the principle of linked Ag recognition. To analyze this issue, we developed a murine adoptive transfer model using paired donor B cells and CD4 T cells specific for a BCR-derived peptide. BCR peptide-specific T cells aborted ongoing germinal center reactions and impeded the secondary immune response. Instead, they induced the B cells to differentiate into short-lived extrafollicular plasmablasts that secreted modest quantities of Ig. These results uncover an immunoregulatory process that restricts the memory pathway to B cells that communicate with CD4 T cells via exogenous foreign Ag.  相似文献   

5.
6.
7.
The durable alloantibody responses that develop in organ transplant patients indicate long-lived plasma cell output from T-dependent germinal centers (GCs), but which of the two pathways of CD4 T cell allorecognition is responsible for generating allospecific T follicular helper cells remains unclear. This was addressed by reconstituting T cell-deficient mice with monoclonal populations of TCR-transgenic CD4 T cells that recognized alloantigen only as conformationally intact protein (direct pathway) or only as self-restricted allopeptide (indirect pathway) and then assessing the alloantibody response to a heart graft. Recipients reconstituted with indirect-pathway CD4 T cells developed long-lasting IgG alloantibody responses, with splenic GCs and allospecific bone marrow plasma cells readily detectable 50 d after heart transplantation. Differentiation of the transferred CD4 T cells into T follicular helper cells was confirmed by follicular localization and by acquisition of signature phenotype. In contrast, IgG alloantibody was not detectable in recipient mice reconstituted with direct-pathway CD4 T cells. Neither prolongation of the response by preventing NK cell killing of donor dendritic cells nor prior immunization to develop CD4 T cell memory altered the inability of the direct pathway to provide allospecific B cell help. CD4 T cell help for GC alloantibody responses is provided exclusively via the indirect-allorecognition pathway.  相似文献   

8.
The murine B cell FcR for IgG (Fc gamma RII) is a membrane glycoprotein reported to mediate inhibition of B cell activation and differentiation. We show that IL-4 inhibits the enhanced expression of Fc gamma RII by LPS-stimulated B cells. This activity is completely reversed by anti-IL-4 mAb and is specific, in that multiple other lymphokines tested do not exert a similar effect. This effect of IL-4 is apparent by day 1 of culture, although maximal inhibition occurs on day 4 at a concentration of 500 U/ml. The IL-4-induced inhibition of enhanced Fc gamma RII expression by LPS stimulation observed on day 4 of culture is associated with a significant reduction in the steady state level of Fc gamma RII beta gene-specific mRNA. IFN-gamma which inhibits many of the effects of IL-4 on B cells, does not reverse the IL-4-induced inhibition of Fc gamma RII membrane expression nor the levels of beta gene-specific mRNA. Fc gamma RII expression is significantly increased in B cells stimulated with antigen-specific, CD4+ T cell clones of the Th1 type (i.e., IL-2 and IFN-gamma-producing). By contrast, three different Th2 clones (i.e., IL-4-producing) fail to stimulate an increase in Fc gamma RII levels. Anti-IL-4 mAb significantly enhanced Fc gamma RII expression by Th2-stimulated B cells indicating that IL-4 was the active, inhibitory, substance produced by the Th2 cells. Supernatants from stimulated Th2 clones inhibited the enhanced expression of Fc gamma RII by LPS-stimulated B cells and this activity was completely reversed by anti-IL-4 mAb. By contrast, supernatants from stimulated Th1 clones further enhanced Fc gamma RII expression by LPS-stimulated B cells. The differential regulation of B cell Fc gamma RII expression by Th subsets may play an important role in the regulation of humoral immunity by altering the sensitivity of B cells to IgG immune complex-mediated inhibition of B cell activation and differentiation in vivo.  相似文献   

9.
The low-affinity FcR for IgG FcgammaRIIB suppresses the development of IgG autoantibodies and autoimmune disease in normal individuals, but how this effect is mediated is incompletely understood. To investigate this issue, we created FcgammaRIIB-deficient versions of two previously described targeted BCR-transgenic lines of mice that contain follicular B cells with specificity for the hapten arsonate, but with different levels of antinuclear autoantigen reactivity. The primary development and tolerance of both types of B cells were unaltered by the absence of FcgammaRIIB. Moreover, the reduced p-azophenylarsonate-driven germinal center and memory responses characteristic of the highly autoreactive clonotype were not reversed by an intrinsic FcgammaRIIB deficiency. In contrast, the p-azophenylarsonate-driven primary Ab-forming cell responses of both clonotypes were equivalently increased by such a deficiency. In total, our data do not support the idea that FcgammaRIIB directly participates in the action of primary or germinal center tolerance checkpoints. In contrast, this receptor apparently contributes to the prevention of autoimmunity by suppressing the production of autoreactive IgGs from B cells that have breached tolerance checkpoints and entered the Ab-forming cell pathway due to spontaneous, or cross-reactive, Ag-mediated activation.  相似文献   

10.
T-cell-dependent antigenic stimulation drives the differentiation of B cells into antibody-secreting plasma cells and memory B cells, but how B cells regulate this process is unclear. We show that LKB1 expression in B cells maintains B-cell quiescence and prevents the premature formation of germinal centers (GCs). Lkb1-deficient B cells (BKO) undergo spontaneous B-cell activation and secretion of multiple inflammatory cytokines, which leads to splenomegaly caused by an unexpected expansion of T cells. Within this cytokine response, increased IL-6 production results from heightened activation of NF-κB, which is suppressed by active LKB1. Secreted IL-6 drives T-cell activation and IL-21 production, promoting T follicular helper (TFH) cell differentiation and expansion to support a ∽100-fold increase in steady-state GC B cells. Blockade of IL-6 secretion by BKO B cells inhibits IL-21 expression, a known inducer of TFH-cell differentiation and expansion. Together, these data reveal cell intrinsic and surprising cell extrinsic roles for LKB1 in B cells that control TFH-cell differentiation and GC formation, and place LKB1 as a central regulator of T-cell-dependent humoral immunity.  相似文献   

11.
12.
13.
《Cell》2021,184(25):6101-6118.e13
  1. Download : Download high-res image (168KB)
  2. Download : Download full-size image
  相似文献   

14.
15.
16.
Transgenic mice broadly expressing JunD (Ubi-junD(m)) appear phenotypically normal, but have strongly reduced numbers of peripheral lymphocytes. JunD overexpression in lymphocytes does not protect from numerous apoptotic insults; however, transgenic T cells proliferate poorly and exhibit impaired activation due to reduced levels of IL-4, CD25 and CD69. Consistently, in the absence of JunD (junD(-/-)) T cells hyperproliferate following mitogen induction. Moreover, transgenic T helper (Th) 2 cells have decreased IL-4 and IL-10 expression, whereas junD(-/-) Th2 cells secrete higher amounts of both Th2 cytokines. Th1-polarized junD(-/-) CD4(+) T cells display enhanced IFN-gamma cytokine production associated with upregulated T-bet expression and downregulated expression of suppressor of cytokine signaling-1. These novel findings demonstrate a regulatory role of JunD in T lymphocyte proliferation and Th cell differentiation.  相似文献   

17.
HIV/SIV infections induce chronic immune activation with remodeling of lymphoid architecture and hypergammaglobulinemia, although the mechanisms leading to such symptoms remain to be fully elucidated. Moreover, lymph nodes have been highlighted as a predilection site for SIV escape in vivo. Following 20 rhesus macaques infected with SIVmac239 as they progress from pre-infection to acute and chronic infection, we document for the first time, to our knowledge, the local dynamics of T follicular helper (T(FH)) cells and B cells in situ. Progression of SIV infection was accompanied by increased numbers of well-delineated follicles containing germinal centers (GCs) and T(FH) cells with a progressive increase in the density of programmed death-1 (PD-1) expression in lymph nodes. The rise in PD-1(+) T(FH) cells was followed by a substantial accumulation of Ki67(+) B cells within GCs. However, unlike in blood, major increases in the frequency of CD27(+) memory B cells were observed in lymph nodes, indicating increased turnover of these cells, correlated with increases in total and SIV specific Ab levels. Of importance, compared with T cell zones, GCs seemed to exclude CD8(+) T cells while harboring increasing numbers of CD4(+) T cells, many of which are positive for SIVgag, providing an environment particularly beneficial for virus replication and reservoirs. Our data highlight for the first time, to our knowledge, important spatial interactions of GC cell subsets during SIV infection, the capacity of lymphoid tissues to maintain stable relative levels of circulating B cell subsets, and a potential mechanism for viral reservoirs within GCs during SIV infection.  相似文献   

18.
19.
The Hedgehog (Hh) signaling pathway is involved in the development of many tissues during embryogenesis, but has also been described to function in adult self-renewing tissues. In the immune system, Sonic Hedgehog (Shh) regulates intrathymic T cell development and modulates the effector functions of peripheral CD4(+) T cells. In this study we investigate whether Shh signaling is involved in peripheral B cell differentiation in mice. Shh is produced by follicular dendritic cells, mainly in germinal centers (GCs), and GC B cells express both components of the Hh receptor, Patched and Smoothened. Blockade of the Hh signaling pathway reduces the survival, and consequently the proliferation and Ab secretion, of GC B cells. Furthermore, Shh rescues GC B cells from apoptosis induced by Fas ligation. Taken together, our data suggest that Shh is one of the survival signals provided by follicular dendritic cells to prevent apoptosis in GC B cells.  相似文献   

20.
Granular lymphocytes co-expressing the Leu-7 (NK-related) and CD4 (T helper cell) markers are selectively localized in the germinal centers of lymphoid tissues. Leu-7+ cells (greater than 98% of which co-expressed CD4) were isolated from inflammatory tonsils and were cloned by the limiting dilution technique. Clones were analyzed for their phenotypic and functional characteristics. CD4+-Leu-7+ cell-derived clones retained their CD3 and CD4 surface antigens, lost the Leu-7 marker, and acquired HLA-DR determinants. In comparison with clones derived from peripheral blood or tonsil CD4+ cells, CD4+-Leu-7+ tonsil cell-derived clones showed similar low frequencies of cytotoxic precursors. In contrast, the frequency of interleukin 2 (IL 2) and B cell growth factor producing clones was much lower for tonsil CD4+-Leu-7+ cells than for CD4+ blood or tonsil progenitors. We conclude that germinal center CD4+-Leu-7+ cells are a subset of T cells unable to produce IL 2 in response to phytohemagglutinin or anti-CD3 stimulation, which is effective on the majority of T helper cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号