首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 536 毫秒
1.
Serotonin (5-HT) is one of the regulators of feeding in humans. Drugs acting on the serotoninergic system are used to treat bulimia nervosa and to enhance the effect of hypocaloric diets in overweight subjects. They act rapidly to normalise feeding when used to treat eating-related problems. To explore the role of the 5-HT transporter (serotonin transporter (SERT)) in the short-term action of serotonin selective reuptake inhibitor fluoxetine, rats were i.p. given the drug for five consecutive days. Acute administration of fluoxetine in male and female rats produced a strong reduction in food intake, an effect that held up when daily treatment was maintained for five consecutive days. This reduction translated into a diminution of body weight that was statistically significant in the case of the males. As a reflection of the body weight change in rats killed after the fifth daily drug injection, retroperitoneal fat pad also decreased; a diminution that was statistically significant in the case of male rats. In these conditions, plasma leptin levels of both male and female rats were lower than in untreated animals. While acute fluoxetine administration did not modify SERT gene expression, subchronic drug treatment increased the content of SERT mRNA in the midbrain raphe complex of both rat genders. These findings may contribute to explain the role of SERT in fluoxetine action on binging and as an adjunct to hypocaloric diets.  相似文献   

2.
BTBR mice are potentially useful tools for autism research because their behavior parallels core social interaction impairments and restricted-repetitive behaviors. Altered regulation of central serotonin (5-HT) neurotransmission may underlie such behavioral deficits. To test this, we compared 5-HT transporter (SERT), 5-HT(1A) and 5-HT(2A) receptor densities among BTBR and C57 strains. Autoradiographic [(3) H] cyanoimipramine (1 nM) binding to SERT was 20-30% lower throughout the adult BTBR brain as compared to C57BL/10J mice. In hippocampal membrane homogenates, [(3) H] citalopram maximal binding (B(max) ) to SERT was 95 ± 13 fmol/mg protein in BTBR and 171 ± 20 fmol/mg protein in C57BL/6J mice, and the BTBR dissociation constant (K(D) ) was 2.0 ± 0.3 nM versus 1.1 ± 0.2 in C57BL/6J mice. Hippocampal 5-HT(1A) and 5-HT(2A) receptor binding was similar among strains. However, 8-OH-DPAT-stimulated [(35) S] GTPγS binding in the BTBR hippocampal CA(1) region was 28% higher, indicating elevated 5-HT(1A) capacity to activate G-proteins. In BTBR mice, the SERT blocker, fluoxetine (10 mg/kg) and the 5-HT(1A) receptor partial-agonist, buspirone (2 mg/kg) enhanced social interactions. The D(2) /5-HT(2) receptor antagonist, risperidone (0.1 mg/kg) reduced marble burying, but failed to improve sociability. Overall, altered SERT and/or 5-HT(1A) functionality in hippocampus could contribute to the relatively low sociability of BTBR mice.  相似文献   

3.
The neurotransmitter serotonin (5-HT) controls several physiological functions, and a disturbance of the 5-HT system is implicated in many psychiatric conditions. Seasonal variation has been suggested in the 5-HT system. We investigated within-subject seasonal variation in brain serotonin transporter (SERT) binding with the SERT-ligand [(123)I]ADAM and single photon emission computed tomography (SPECT) in 12 healthy individuals. No systematic variation was found in the midbrain or thalamus areas between scans done in summer and winter. Our results suggest that factors other than season are more important in causing within-subject variation of brain SERT binding between summer and winter.  相似文献   

4.
Constipation and slowed transit are associated with diet-induced obesity, although the mechanisms by which this occurs are unclear. Enterochromaffin (EC) cells within the intestinal epithelium respond to mechanical stimulation with the release of serotonin [5-hydroxytryptamine (5-HT)], which promotes transit. Thus our aim was to characterize 5-HT availability in the rat colon of a physiologically relevant model of diet-induced obesity. EC cell numbers were determined immunohistochemically in chow-fed (CF) and Western diet-fed (WD) rats, while electrochemical methods were used to measure mechanically evoked (peak) and steady-state (SS) 5-HT levels. Fluoxetine was used to block the 5-HT reuptake transporter (SERT), and the levels of mRNA for tryptophan hydroxylase 1 and SERT were determined by quantitative PCR, and SERT protein was determined by Western blot. In WD rats, there was a significant decrease in the total number of EC cells per crypt (0.86 ± 0.06 and 0.71 ± 0.05 in CF and WD, respectively), which was supported by a reduction in the levels of 5-HT in WD rats (2.9 ± 1.0 and 10.5 ± 2.6 μM at SS and peak, respectively) compared with CF rats (7.3 ± 0.4 and 18.4 ± 3.4 μM at SS and peak, respectively). SERT-dependent uptake of 5-HT was unchanged, which was supported by a lack of change in SERT protein levels. In WD rats, there was no change in tryptophan hydroxylase 1 mRNA but an increase in SERT mRNA. In conclusion, our data show that foods typical of a WD are associated with decreased 5-HT availability in rat colon. Decreased 5-HT availability is driven primarily by a reduction in the numbers and/or 5-HT content of EC cells, which are likely to be associated with decreased intestinal motility in vivo.  相似文献   

5.
Anorectic drugs such as mazindol bind to a class of low-affinity, sodium-sensitive sites in the brain which are affected by ambient glucose concentrations and a predisposition to develop diet-induced obesity (DIO). This study used quantitative autoradiography of 10 nM 3H-mazindol binding to identify the cellular location of these putative anorectic binding sites in the brain and to assess the way in which the development of DIO affected their binding. We previously showed that chow-fed, obesity-prone rats have widespread increases in brain 3H-mazindol binding to these low-affinity sites as compared with diet-resistant (DR) rats. Here, low-affinity 3H-mazindol binding was assessed in the brains of eight rats which developed DIO vs. eight which were DR after three months on a high-energy diet. DIO rats gained 89% more weight and had 117% higher plasma insulin levels but no difference in plasma glucose levels compared with DR rats. Along with these differences, low-affinity 3H-mazindol binding in DIO rats was identical to that in DR rats in all of the 23 brain areas assessed. This suggested that this binding was downregulated by the development of obesity in DIO rats. In other chow-fed rats, stereotaxic injections of 5,7-dihydroxytrypta-mine and 6-hydroxydopamine (60HDA) to ablate serotonin and catecholamine nerve terminals in the ventromedial nucleus of the hypothalamus (VMN) had no effect on 3H-mazindol binding. However, ibotenic acid injected into the VMN, substantia nigra, pars reticulata, and pars compacta destroyed intrinsic neurons and/or their local processes and decreased low-affinity 3H-mazindol binding by 13%-22%. Destruction of dopamine neurons in the substantia nigra, pars compacta, and noradrenergic neurons in the locus ceruleus with 60HDA also reduced 3H-mazindol binding in those areas by 9% and 12%, respectively. This suggested that up to 22% of putative anorectic binding sites may be located on the cell bodies of dopamine, norepinephrine, and other neurons, but not on serotonin or catecholamine nerve terminals in the brain. Binding to these sites may be downregulated by the development of DIO, possibly as a result of the concomitant hyperinsulinemia.  相似文献   

6.
Disturbances in serotonergic neurotransmission have been suggested to be closely interlinked with hyperactivity of the hypothalamic-pituitary-adrenocortical (HPA) system, and are likely to be involved in the pathophysiology of anxiety disorders and major depression. We therefore investigated markers of serotonergic transmission and their modulation by chronic paroxetine in rats selectively bred for high (HAB) or low (LAB) anxiety-related behaviour, both under basal conditions and in response to emotional stress. Hippocampal serotonin 1 A (5-HT1A) receptor mRNA expression was reduced in HAB rats, whereas 5-HT concentrations in hippocampal microdialysates did not differ between HAB and LAB rats under basal conditions. In the hippocampus, overall expression of serotonin transporter binding sites was increased in HAB compared with LAB rats. Exposure to emotional stress failed to increase intrahippocampal 5-HT release in HAB rats whereas LAB rats displayed a physiological, albeit small rise. Chronic paroxetine treatment markedly increased the stress-induced rise in hippocampal 5-HT in HAB, but not LAB rats. This effect may be (at least in part) related to a greater down-regulation of hippocampal serotonin transporter binding sites by paroxetine in HABs compared with LABs, while 5-HT1A receptor expression remained unaffected in this brain area. The findings indicate reduced hippocampal serotonergic transmission in HAB rats as compared with LAB rats, which is evident both at the presynaptic (5-HT release) and the postsynaptic (5-HT1A receptor) level. Chronic paroxetine enhanced the presynaptic responsivity in HAB rats, but not LAB rats, pointing to a preferential efficacy of paroxetine in rats with enhanced anxiety/depression-related behaviour.  相似文献   

7.
Study of molecular mechanisms of psychotropic drug action is the main aim of molecular psychopharmacology. New synthetic analog of variacin 8-(Trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine (TX-2153) was shown to produce anxiolytic and anticonvulsant effects on mice. Here the effect of chronic administration of TX-2153 on expression of some serotonin-related genes in mouse brain was investigated. The drug (10 mg/kg, per os, 16 days) was administered to adult males of ASC (Antidepressant Sensitive Catalepsy) mouse strain characterizing by alterations in behavior and brain serotonin system. The expression of genes encoding 1) the key enzyme of serotonin synthesis, tryptophan hydroxylase 2 (TPH2), 2) main enzyme of serotonin degradation, monoamine oxydase A (MAOA), 3) 5-HT transporter (SERT) and 4) 5-HT(1A) receptor was studied using quantitative RT-PCR. TX-2153 significantly reduced m-RNA level of 5-HT(1A) receptor and MAOA genes in the midbrain without any effect on expression of these genes in the frontal cortex and hippocampus. The drug failed to affect expression of TPH2 and SERT genes in the midbrain. The result indicates involvement of the brain 5-HT system in the molecular mechanism underlying the effect of TX-2153.  相似文献   

8.
In addition to their established role in nervous system development, vitamin A and related retinoids are emerging as regulators of adult brain function. Accutane (13-cis-retinoic acid, isotretinoin) treatment has been reported to increase depression in humans. Recently, we showed that chronic administration of 13-cis-retinoic acid (13-cis-RA) to adolescent male mice increased depression-related behaviors. Here, we have examined whether 13-cis-RA regulates components involved in serotonergic neurotransmission in vitro. We used the RN46A-B14 cell line, derived from rat embryonic raphe nuclei. This cell line synthesizes serotonin (5-hydroxytryptamine, 5-HT) and expresses the 5-HT(1A) receptor and the serotonin reuptake transporter (SERT). Cells were treated with 0, 2.5, or 10 microM 13-cis-RA for 48 or 96 hrs, and the levels of 5-HT; its metabolite, 5-hydroxyindoleacetic acid (5HIAA); 5-HT(1A) receptor; and SERT were determined. Treatment with 13-cis-RA for 96 hrs increased the intracellular levels of 5-HT and tended to increase intra-cellular 5HIAA levels. Furthermore, 48 hrs of treatment with 2.5 and 10 microM 13-cis-RA significantly increased 5-HT(1A) protein to 168.5 +/- 20.0% and 148.7 +/- 2.2% of control respectively. SERT protein levels were significantly increased to 142.5 +/- 11.1% and 119.2 +/- 3.6% of control by 48 hrs of treatment with 2.5 and 10 microM of 13-cis-RA respectively. Increases in both 5-HT(1A) receptor and SERT proteins may lead to decreased serotonin availability at synapses. Such an effect of 13-cis-RA could contribute to the increased depression-related behaviors we have shown in mice.  相似文献   

9.
A series of quipazine derivatives, previously synthesized to probe the 5-HT(3) receptor, was evaluated for its potential interaction with serotonin transporter (SERT). Some of them show nanomolar affinity for the rodent SERT comparable to or slightly higher than quipazine or N-methylquipazine. Subsequently a candidate was selected on the basis of its SERT affinity and submitted to a molecular manipulation of the basic moiety. The structure-affinity relationships obtained provided information on the role of the fused benzene ring of quipazine in the interaction with the SERT binding site and on the stereoelectronic requirements for the interaction of both the heteroaromatic component and the basic moiety. Moreover, the comparison of the structure-affinity relationships obtained in the present work with those concerning the interaction of these heteroarylpiperazine derivatives with 5-HT3 receptor suggested some molecular determinants of the selectivity SERT/5HT3 receptor.  相似文献   

10.
p-Methoxyamphetamine (PMA) has been implicated in fatalities as a result of 'ecstasy' (MDMA) overdose worldwide. Like MDMA, acute effects are associated with marked changes in serotonergic neurotransmission, but the long-term effects of PMA are poorly understood. The aim of this study was to determine the effect of repeated PMA administration on in vitro measures of neurodegeneration: serotonin (5-HT) uptake, 5-HT transporter (SERT) density and 5-HT content in the hippocampus, and compare with effects on in vivo 5-HT clearance. Male rats received PMA, MDMA (4 or 15 mg/kg s.c., twice daily) or vehicle for 4 days and 2 weeks later indices of SERT function were measured. [(3)H]5-HT uptake into synaptosomes and [(3)H]cyanoimipramine binding to the SERT were significantly reduced by both PMA and MDMA treatments. 5-HT content was reduced in MDMA-, but not PMA-treatment. In contrast, clearance of locally applied 5-HT measured in vivo by chronoamperometry was only reduced in rats treated with 15 mg/kg PMA. The finding that 5-HT clearance in vivo was unaltered by MDMA treatment suggests that in vitro measures of 5-HT axonal degeneration do not necessarily predict potential compensatory mechanisms that maintain SERT function under basal conditions.  相似文献   

11.
Immunocytochemical and autoradiographic techniques were employed to determine the time course of expression of the serotonin (5-HT) transporter (SERT) on thalamocortical afferents in the rat's primary somatosensory cortex (S-I), and to correlate this expression to the transient vibrissae-related patterning of 5-HT immunostaining previously described. In additional in vivo and in vitro experiments, 5-HT and 3 H-5-HT were applied directly to the cortices of untreated and 5,7-dihydroxytryptamine-treated (5,7-DHT) rats in order to determine the period during which SERT functions on thalamocortical axons to take up 5-HT. In postnatal rats, SERT immunohistochemistry revealed a somatotopic patterning in S-I that persisted until P-15, which is 6 days after the disappearance of the vibrissae-related 5-HT immunostaining. 3 H-citalopram autoradiography revealed a vibrissae-related pattern in layer IV of S-I until at least P-30. Following destruction of raphe-cortical afferents with 5,7-DHT on the day of birth, this binding pattern remained visible until at least P-25, indicating that SERT located on thalamocortical axons is responsible for the 3 H-citalopram patterning observed in S-I. Tissue from 5,7-DHT-treated rats that had 5-HT applied directly to their cortices revealed a normal vibrissae-related pattern of 5-HT immunostaining in S-I at P-7 and P-11 but only a faint pattern at P-13 and none at P-14. In addition, 3 H-5-HT injected directly into S-I labeled layer IV barrels at P-6 and P-12 but not at P-18. The results of these experiments demonstrate that SERT is expressed by thalamocortical afferents and remains functional long after the vibrissae-related 5-HT immunostaining in cortex disappears.  相似文献   

12.
The impact of maternal obesity on brain monoamine function in adult offspring of dams selectively bred to express diet-induced obesity (DIO) or diet resistance (DR) was assessed by making dams obese or lean during gestation and lactation. After 12 wk on chow and 4 wk on a 31% fat diet, offspring hypothalamic nucleus size and [(3)H]nisoxetine binding to norepinephrine transporters (NET) and [(3)H]paroxetine binding to serotonin transporters (SET) were measured. Offspring of obese DIO dams became more obese than all other groups, but maternal obesity did not alter weight gain in DR offspring (25). Maternal obesity was associated with 10-17% enlargement of ventromedial nuclei (VMN) and dorsomedial nuclei in both DIO and DR offspring. Offspring of obese DIO dams had 25-88% lower NET binding in the paraventricular nuclei (PVN), arcuate nuclei, VMN, and the central amygdalar nuclei, while offspring of obese DR dams had 43-67% higher PVN and 90% lower VMN NET binding and a generalized increase in SET binding across all hypothalamic areas compared with other groups. Thus maternal obesity was associated with alterations in offspring brain monoamine metabolism, which varied as a function of genotype and the development of offspring obesity.  相似文献   

13.
In HEK-293 cells, serotonin (5-hydroxytryptamine, 5-HT) was found to induce cAMP production showing pharmacological characteristics consistent with the 5-HT(7) receptor. The presence of 5-HT(7) (and 5-HT(6)) receptor mRNA was confirmed by RT-PCR. Stable HEK-293 cell lines expressing either wild-type or haemagglutinin (HA)-tagged human 5-HT transporter (SERT) were selected and SERT function was confirmed using [3H]5-HT transport. The presence of SERT caused a 10-fold reduction in the potency of 5-HT-induced cAMP production compared to control cells. Downstream signalling by 5-HT(6/7) receptors could be detected as 5-HT-induced protein kinase A activation and phosphorylation of MAP kinase and CREB using phospho-specific antibodies. SERT inhibitors reversed the reduction in potency of 5-HT-induced cAMP production caused by the presence of SERT, resulting in a concentration-dependent left shift in EC(50) values but also a progressive decrease in the maximal response. Thus, when antidepressants were used to block SERT activity, 5-HT receptor signalling was effectively clamped within a mid-range.  相似文献   

14.
The handling of serotonin [5-hydroxytryptamine (5-HT)] depends on the serotonin transporter (SERT). A SERT knockout (KO) rat is a useful model to test the hypothesis that SERT is the primary mechanism for arterial 5-HT uptake and to investigate the impact of SERT removal on blood pressure. Wild-type (WT) and KO rats were used to measure 5-HT content (plasma, raphe, aorta, carotid, and mesenteric artery), aortic isometric contraction, and blood pressure. HPLC supported the lack of circulating 5-HT in plasma (ng/ml plasma, WT, 310 +/- 96; and KO, 1.0 +/- 0.5; P < 0.05). Immunohistochemistry and Western blot analyses validated the presence of the SERT protein in the WT rats and a lesser expression in the KO rat. The aorta isolated from KO rats had a normal contraction to phenylephrine and norepinephrine and a normal relaxation to the endothelium-dependent agonist acetylcholine compared with the aorta from WT. In contrast, the potency of 5-HT was increased in the aorta from KO rats compared with WT rats [-log EC(50) (M); WT, 5.71 +/- 0.08; and KO, 6.7 +/- 0.18] and maximum contraction was reduced [%phenylephrine (10 muM) contraction, WT, 113 +/- 6%; and KO, 52 +/- 12%]. 5-HT uptake was reduced but not abolished in arteries of the KO compared with the WT rats. Diurnal mean arterial blood pressure, heart rate, and locomotor activity level of the KO rats were similar to the WT rats. These data suggest that there are other mechanisms of 5-HT uptake in the arteries of the rat and that although the absence of circulating 5-HT and/or SERT function sensitizes arteries to 5-HT, SERT dysfunction does not impair normal blood pressure.  相似文献   

15.
采用放射性配基结合分析法,对大鼠大脑皮质的5-HT受体作了检定,并观察了老年大鼠(36月龄)大脑皮质中该受体的变化。证实大鼠大脑皮质存在着丰富的、高亲和力和单一结合位点的5-HT受体。老年大鼠大脑皮质中5-HT受体的数目较成年大鼠(3月龄)明显减少,但亲和力无改变。应用荧光分光技术测定了成年和老年大鼠脑干和大脑皮质5-HT含量,证实老年大鼠上述两个脑区的5-HT含量均有降低。本研究的结果提示,老年大鼠中枢5-HT系统的功能减低,这一变化可能与老年期的一些表现如睡眠障碍、体温低、记忆力减退和易患精神疾病等有关。  相似文献   

16.
Ibogaine, a hallucinogenic alkaloid with purported anti-addiction properties, inhibited serotonin transporter (SERT) noncompetitively by decreasing V(max) with little change in the K(m) for serotonin (5-HT). Ibogaine also inhibited binding to SERT of the cocaine analog 2beta-2-carbomethoxy-3-(4-[(125)I]iodophenyl)tropane. However, inhibition of binding was competitive, increasing the apparent K(D) without much change in B(max). Ibogaine increased the reactivity of cysteine residues positioned in the proposed cytoplasmic permeation pathway of SERT but not at nearby positions out of that pathway. In contrast, cysteines placed at positions in the extracellular permeation pathway reacted at slower rates in the presence of ibogaine. These results are consistent with the proposal that ibogaine binds to and stabilizes the state of SERT from which 5-HT dissociates to the cytoplasm, in contrast with cocaine, which stabilizes the state that binds extracellular 5-HT.  相似文献   

17.
Rats exposed to acute unavoidable stress develop a deficit in escaping avoidable aversive stimuli that lasts as long as unavoidable stress exposure is repeated. A 3-week exposure to unavoidable stress also reduces dopamine (DA) output in the nucleus accumbens shell (NAcS). This study showed that a 7-day exposure to unavoidable stress induced in rats an escape deficit and a decrease in extraneuronal DA basal concentration in the NAcS. Moreover, animals had reduced DA and serotonin (5-HT) accumulation after cocaine administration in the medial pre-frontal cortex (mPFC) and NAcS, compared with control animals. After a 3-week exposure to unavoidable stress, escape deficit and reduced DA output in the NAcS were still significant at day 14 after the last stress administration. In the mPFC we observed: (i) a short-term reduction in DA basal levels that was back to control values at day 14; (ii) a decrease in DA accumulation at day 3 followed by a significant increase beyond control values at day 14; (iii) a significant reduction in 5-HT extraneuronal basal levels at day 3, but not at day 14. Finally, a significant decrease in 5-HT accumulation following cocaine administration was present in the NAcS and mPFC at day 3, but not at day 14. In conclusion, a long-term stress exposure induced long-lasting behavioral sequelae associated with reproducible neurochemical modifications.  相似文献   

18.
Male Sprague-Dawley rats, which are prone to develop diet-induced obesity (DIO) on a high energy (HE) diet can be separated from rats which are diet-resistant (DR) by several prospective tests. Using such tests, chow-fed DR-prone rats have higher binding of 3H paraminoclonidine (PAC) to brain α2-adrenoceptors than do DIO-prone rats. These differences disappear after 3 months on a HE diet. To study the predictive value of these tests and possible associated changes in presynaptic membrane composition, brain α1-(1nM 3H prazosin) and α2-adrenoceptor (1nM 3H PAC) binding and synaptosomal fatty acid composition were assessed in 3-month-old male rats separated by weight gain into DR and DIO groups after 1 month on a HE diet. DIO had comparable total caloric intake but gained 30% and 43% more weight and were hyperinsulinemic compared to DR and chow-fed rats, respectively. After 1 month on a HE diet, DR rats still had 15%-53% higher 3H PAC binding than DIO and/or chow-fed rats in 14 of 16 brain areas assessed. A phenotype effect was present primarily in the amygdala where DR rats had higher 3H PAC binding than DIO rats. A diet effect was seen in some hypothalamic nuclei where both DR and DIO rats had higher 3H PAC binding than chow-fed rats. Conversely, DIO rats had 14%–21% higher 3H prazosin binding than DR rats in 3 brain areas. Changes in brain synaptosomal membranes' fatty acids reflected both phenotype and diet effects. Thus, while diet composition affects presynaptic membrane composition and α2-adrenoceptor binding in both DR and DIO rats, the predominance of plasticity of these parameters is limited to the brains of DR rats. This suggests that such plasticity may be an important determinant of the ability to resist the development of diet-induced obesity on a HE diet.  相似文献   

19.
The serotonin (5-HT) transporter (SERT) plays an important role in the termination of 5-HT-mediated neurotransmission by transporting 5-HT away from the synaptic cleft and into the presynaptic neuron. In addition, SERT is the main target for antidepressant drugs, including the selective serotonin reuptake inhibitors (SSRIs). The three-dimensional (3D) structure of SERT has not yet been determined, and little is known about the molecular mechanisms of substrate binding and transport, though such information is very important for the development of new antidepressant drugs. In this study, a homology model of SERT was constructed based on the 3D structure of a prokaryotic homologous leucine transporter (LeuT) (PDB id: 2A65). Eleven tryptamine derivates (including 5-HT) and the SSRI (S)-citalopram were docked into the putative substrate binding site, and two possible binding modes of the ligands were found. To study the conformational effect that ligand binding may have on SERT, two SERT–5-HT and two SERT–(S)-citalopram complexes, as well as the SERT apo structure, were embedded in POPC lipid bilayers and comparative molecular dynamics (MD) simulations were performed. Our results show that 5-HT in the SERT–5-HTB complex induced larger conformational changes in the cytoplasmic parts of the transmembrane helices of SERT than any of the other ligands. Based on these results, we suggest that the formation and breakage of ionic interactions with amino acids in transmembrane helices 6 and 8 and intracellular loop 1 may be of importance for substrate translocation.  相似文献   

20.
Specific serotonin binding (5-HT1, 5-HT1A, and 5-HT2 subtypes) and membrane anisotropy were measured at 2 h intervals over a 24 h period in the hippocampus and cortex of Wistar WU rats, housed under a 12 h light-dark cycle, with lights on at 07.00. All experiments were performed both in March and December. In the hippocampus significant circadian rhythms could be ascertained for 5-HT1 binding sites in March and December while for 5-HT1A (subtype of 5-HT1) binding sites the circadian rhythm was only significant in March. The membrane anisotropy also showed significant variations only in March. Circadian rhythms were also found in the cortex for 5-HT1 (December) and 5-HT2 (March and December) binding sites as well as for the membrane anisotropy (December). A correlation was found between membrane anisotropy and 5-HT1 and 5-HT2 binding sites in hippocampus and cortex, respectively. A circadian rhythmicity was also observed for serotonin release as measured by in vivo voltammetry in both brain areas. The results obtained on the diurnal variations of serotonin receptor subtypes and serotonin release and the probable inverse relationship of these two parameters may be relevant in understanding the coupling of pre- and postsynaptic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号