首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
He P  Li M  Hu N 《Biopolymers》2005,79(6):310-323
With the isoelectric point at pH 7.4, hemoglobin (Hb) has net positive surface charges at pH 5.0 and overall negative charges at pH 9.0, and is essentially neutral at pH 7.0. The fifth-generation poly(propyleneimine) (PPI) dendrimer is usually positively charged in aqueous solution. The {PPI/Hb}n films under different pH conditions have been successfully fabricated on various solid surfaces by the layer-by-layer assembly technique, and the growth of films was monitored by ultraviolet-visible (UV-vis) spectroscopy, quartz crystal microbalance (QCM), and cyclic voltammetry (CV). Not only was the negatively charged Hb at pH 9.0 alternately adsorbed with positively charged PPI onto solid substrates by electrostatic attraction between them, but the positively charged Hb at pH 5.0 was also successfully assembled with like charged PPI into layer-by-layer {PPI/Hb(pH 5.0)}n films. For the latter, the localized electrostatic interaction or the charge reversal of proteins on PPI surface may be the main driving force. For {PPI/Hb(pH 7.0)}n films, however, the hydrophobic/hydrophilic interaction may play a more important role in the assembly, making the amount of adsorbed Hb even less than that of {PPI/Hb(pH 5.0)}n films. For comparison, negatively charged catalase (Cat) at pH 8.0 was used to assemble layer-by-layer films with positive PPI, but {PPI/Cat}n films showed quite different properties from {PPI/Hb}n films. UV-vis and infrared (IR) spectroscopy, QCM, ellipsometry, and voltammetry were utilized to characterize the {PPI/protein}n films. The results suggest that the proteins in the multilayer films retain their near-native structure and display good voltammetric response for heme Fe(III)/Fe(II) redox couples at underlying pyrolytic graphite (PG) electrodes. Electrocatalysis of oxygen and hydrogen peroxide based on direct electrochemistry of heme proteins at {PPI/protein}n film electrodes was also demonstrated.  相似文献   

2.
The small-sized Au nanoparticles (3 nm) were prepared by reduction of HAuCl(4) in the presence of poly(propyleneimine) (PPI) dendrimers, forming the stable PPI-Au nanoclusters in aqueous medium. The PPI-Au nanoclusters might take a kind of "core-shell" structure, in which several PPI molecules were attached on the surface of one gold nanoparticle. The PPI-Au nanoclusters in aqueous dispersions and myoglobin (Mb) in its buffers at pH 5.0 were then alternately adsorbed on the surface of pyrolytic graphite (PG) electrodes and other solid substrates, forming {PPI-Au/Mb}(n) layer-by-layer films, which was confirmed by cyclic voltammetry (CV) and quartz crystal microbalance (QCM). {PPI-Au/Mb}(n) films on PG electrodes demonstrated a pair of well-defined and quasi-reversible CV reduction-oxidation peaks for Mb heme Fe(III)/Fe(II) couple and good electrocatalytic properties toward reduction of oxygen and hydrogen peroxide. Compared with {Au/Mb}(n) multilayer films containing no dendrimers and {PAMAM/Mb}(n) films assembled by polyamidoamine (PAMAM) dendrimers and Mb but in the absence of Au nanoparticles, {PPI-Au/Mb}(n) films showed better electrochemical behaviors and catalytic performances, which may be attributed to the unique structure of PPI-Au nanoclusters and good conductivity of gold nanoparticles. This novel kind of protein multilayer films assembled with dendrimer-stabilized gold nanoparticles may provide a new and general approach to fabricate the biosensors and bioreactors based on the direct electrochemistry of proteins or enzymes.  相似文献   

3.
Shen L  Hu N 《Biomacromolecules》2005,6(3):1475-1483
A novel thin film of heme proteins, including hemoglobin (Hb), myoglobin (Mb), and catalase (Cat), was successfully assembled layer by layer with polyamidoamine (PAMAM) dendrimers on different solid surfaces. At pH 7.0, protonated PAMAM possesses positive surface charges, whereas the proteins have net negative surface charges at pH above their isoelectric points. Thus, layer-by-layer {PAMAM/protein}(n)() films were assembled with alternate adsorption of oppositely charged PAMAM and proteins from their aqueous solutions mainly by electrostatic interaction. The assembly process was monitored by quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV). The growth of the protein multilayer films was regular and linear, whereas the electroactivity of the films was only extended to a few bilayers. CVs of {PAMAM/protein}(n)() films showed a pair of well-defined and nearly reversible peaks characteristic of the protein heme Fe(III)/Fe(II) redox couples. Although {PAMAM/Hb}(n)() and {PAMAM/Mb}(n)() films showed very similar properties, {PAMAM/Cat}(n)() films displayed different and unique characters. The substrates with biological or environmental significance, such as oxygen, hydrogen peroxide, trichloroacetic acid, and nitrite, were catalytically reduced at {PAMAM/protein}(n)() film electrodes, showing the potential applicability of the films as new types of biosensors or bioreactors based on direct electrochemistry of the proteins. Both the electrochemical and electrocatalytic activity of {PAMAM/protein}(n)() films can be tailored precisely by controlling the number of bilayers or the film thickness.  相似文献   

4.
Cao D  Hu N 《Biophysical chemistry》2006,121(3):209-217
Alternate adsorption of negatively charged Fe(3)O(4) nanoparticles from their pH 8.0 aqueous dispersions and positively charged hemoglobin (Hb) from its pH 5.5 buffers on solid substrates resulted in the assembly of {Fe(3)O(4)/Hb}(n) layer-by-layer films. Quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV) were used to monitor and confirm the film growth. A pair of well-defined, nearly reversible CV peaks for HbFe(III)/Fe(II) redox couples was observed for {Fe(3)O(4)/Hb}(n) films on pyrolytic graphite (PG) electrodes. Although the multilayered films grew linearly with the number of Fe(3)O(4)/Hb bilayers (n) and the amount of Hb adsorbed in each bilayer was generally the same, the electroactive Hb could only extend to 6 bilayers. This indicates that only those Hb molecules in the first few bilayers closest to the electrode surface are electroactive. The electrochemical parameters such as the apparent heterogeneous electron transfer rate constant (k(s)) were estimated by square wave voltammetry (SWV) and nonlinear regression. The Soret absorption band position of Hb in {Fe(3)O(4)/Hb}(6) films showed that Hb in the films retained its near native structure in the medium pH range. The {Fe(3)O(4)/Hb}(6) film electrodes also showed good biocatalytic activity toward reduction of oxygen, hydrogen peroxide, trichloroacetic acid, and nitrite. The electrochemical reduction overpotentials of these substrates were lowered significantly by {Fe(3)O(4)/Hb}(n) films.  相似文献   

5.
Shan W  Liu H  Shi J  Yang L  Hu N 《Biophysical chemistry》2008,134(1-2):101-109
Anionic surfactant dihexadecyl phosphate (DHP) with two hydrocarbon chains can be self-assembled into a double-layer structure with tail-to-tail configuration and negatively charged head groups toward outside in its aqueous dispersion. Due to this unique biomembrane-like structure, the "charge reversal" in DHP adsorption on solid surface was realized, and the DHP was successfully assembled with positively charged myoglobin (Mb) or hemoglobin (Hb) into {DHP/protein}(n) layer-by-layer films. Quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV) were used to monitor or confirm the film assembly process. The {DHP/protein}(n) films grown on pyrolytic graphite (PG) electrodes showed a pair of well-defined and nearly reversible CV peaks at about -0.35 V vs SCE in pH 7.0 buffers, characteristic of the protein heme Fe(III)/Fe(II) redox couples. Based on the direct electrochemistry of heme proteins, the {DHP/protein}(n) films could also be used to electrochemically catalyze reduction of oxygen, hydrogen peroxide and nitrite with significant lowering of reduction overpotentials. Scanning electron microscopy (SEM), UV-vis spectroscopy, and reflectance absorption infrared (RAIR) spectroscopy were employed to characterize the {DHP/protein}(n) films, suggesting that the proteins in the films retain their near-native structure.  相似文献   

6.
In the present work, positively charged chitosan (CS) and negatively charged DNA were alternately adsorbed on the surface of pyrolytic graphite (PG) electrodes, forming (CS/DNA)(n) layer-by-layer films. Cyclic voltammetry (CV) results showed that negatively charged electroactive probe, 9,10-anthraquinone-2,6-disulfonate (AQDS), could be loaded into the (CS/DNA)(n) films from its solution (1 mM at pH 7.0, containing 0.1 M NaCl), designated as (CS/DNA)(n)-AQDS, and then released from the films in blank buffers. The loading/release behavior of (CS/DNA)(n) films toward AQDS was found to be obviously different between double-stranded (dsDNA) and single-stranded DNA (ssDNA). The release rate of AQDS from (CS/dsDNA)(n) films was much slower than that from the ssDNA counterparts mainly because AQDS could be intercalated into the double helix structure of dsDNA despite the repulsion between likely charged AQDS and DNA. The loading/release behavior of (CS/DNA)(n) films toward AQDS in recognition of dsDNA and ssDNA was then successfully applied to electrochemically detect the damage of natural DNA caused by Fenton reaction. To further understand the essence of the interactions involved in the AQDS loading/release process for (CS/DNA)(n) films, comparison experiments were performed, in which either positively charged intercalator brilliant cresyl blue (BCB) was used to replace AQDS as the redox probe, or poly(diallyldimethylammonium) (PDDA) with relatively high positive charge density was used to replace CS as the constituent of layer-by-layer films with DNA. The loading/release behavior of DNA films toward electroactive intercalator may open new possibilities for dsDNA/ssDNA recognition and of DNA damage detection by electrochemistry.  相似文献   

7.
Sun H  Hu N 《Biophysical chemistry》2004,110(3):411-308
A novel hemoglobin (Hb)-coated polystyrene (PS) latex bead film was deposited on pyrolytic graphite (PG) electrode surface. In the first step, positively charged Hb molecules in pH 5.0 buffers were adsorbed on the surface of negatively charged, 500 nm diameter PS latex beads bearing sulfate groups by electrostatic interaction. The aqueous dispersion of Hb-coated PS particles was then deposited on the surface of PG electrodes and, after evaporation of the solvent, Hb-PS films were formed. The Hb-PS film electrodes exhibited a pair of well-defined, quasi-reversible cyclic voltammetric (CV) peaks at about −0.36 V vs. SCE in pH 7.0 buffers, characteristic of Hb heme Fe(III)/Fe(II) redox couples. Positions of Soret absorption band of Hb-PS films suggest that Hb retains its near-native structure in the films in its dry form and in solution at medium pH. The Hb in PS films was also acted as a catalyst to catalyze electrochemical reduction of various substrates such as trichloroacetic acid (TCA), nitrite, oxygen and hydrogen peroxide.  相似文献   

8.
Pig fecal slurries converted added L-tryptophan either to indole without detectable intermediates or to 3-methylindole (skatole) via indole-3-acetate. The initial rate of production of 3-methylindole was greatest at pH 6.5 and less at pH 5.0 and 8.0; the initial rates of indole production were similar at pH 6.5 and 8.0. More than 80% of the tryptophan added was converted to 3-methylindole at pH 5.0; at pH 8.0 85% was converted to indole. Both pathways had similar Km values for tryptophan and similar maximum rates. Indole-3-carbinol and indole-3-acetonitrile completely inhibited the production of 3-methylindole from indole-3-acetate but had no effect on the reactions involving L-tryptophan.  相似文献   

9.
A convenient and effective strategy for preparation nanohybrid film of multi-wall carbon nanotubes (MWNT) and gold colloidal nanoparticles (GNPs) by using proteins as linker is proposed. In such a strategy, hemoglobin (Hb) was selected as model protein to fabricate third-generation H2O2 biosensor based on MWNT and GNPs. Acid-pretreated, negatively charged MWNT was first modified on the surface of glassy carbon (GC) electrode, then, positively charged Hb was adsorbed onto MWNT films by electrostatic interaction. The {Hb/GNPs}n multilayer films were finally assembled onto Hb/MWNT film through layer-by-layer assembly technique. The assembly of Hb and GNPs was characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The direct electron transfer of Hb is observed on Hb/GNPs/Hb/MWNT/GC electrode, which exhibits excellent electrocatalytic activity for the reduction of H2O2 to construct a third-generation mediator-free H2O2 biosensor. As compared to those H2O2 biosensors only based on carbon nanotubes, the proposed biosensor modified with MWNT and GNPs displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 2.1x10(-7) to 3.0x10(-3) M with a detection limit of 8.0x10(-8) M at 3sigma. The Michaelies-Menten constant KMapp value is estimated to be 0.26 mM. Moreover, this biosensor displays rapid response to H2O2 and possesses good stability and reproducibility.  相似文献   

10.
Adjustment of pH can alter the ensemble of three-dimensional structures of a polypeptide in solution by changing the distribution of charge and Coulombic interactions. The role of pH in layer-by-layer self-assembly (LbL) of designed 32mer peptides containing the amino acid cysteine has been investigated using a combination of physical methods. Results show that pH can have a substantial influence on the mass of adsorbed peptide, surface roughness, and film density over a range of 1.5 pH units. Peptide film thickness depends on the number of layers, as with "conventional" polyelectrolytes. Film density and morphology, however, vary more with pH than does thickness, translating into a change in density on the order of 70% over the pH range 7.4-8.9. Results of this work provide insight on the physical basis of LbL and suggest that peptides are a promising class of polyelectrolytes for the creation of designer thin films for applications in biotechnology and other areas.  相似文献   

11.
Using chitosan as an effective linker between CMK-3 and glassy carbon electrode surface, {Hb/CMK-3}n multilayer film-modified electrodes were constructed through layer-by-layer assembly. The morphology of thus-formed {Hb/CMK-3}n film was characterized by scanning electron micrographs, and the interaction of hemoglobin (Hb) with CMK-3 was studied by UV-vis spectroscopy and electrochemical methods. Under optimal conditions, {Hb/CMK-3}6 film showed a couple of stable and well-defined redox peaks at about -377 and -296 mV in pH 7.0 buffers. Furthermore, the {Hb/CMK-3}6 film displayed excellent electrocatalysis to the reduction of both H2O2 and O2. Based on thus-formed film and its direct electron transfer behavior, a novel biosensor was presented for the determination of H2O2 ranging from 1.2 to 57 muM with the detection limit of 0.6microM at S/N=3. CMK-3 provided a desirable matrix for protein immobilization and biosensor preparation.  相似文献   

12.
Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases   总被引:5,自引:0,他引:5  
Molecular mechanisms of irreversible thermal inactivation of two bacterial alpha-amylases, from the mesophile Bacillus amyloliquefaciens and from the thermophile Bacillus stearothermophilus, have been elucidated in the pH range of relevance to enzymatic catalysis. At pH 5.0, 6.5, and 8.0, B. amyloliquefaciens alpha-amylase irreversibly inactivates due to a monomolecular conformational process, formation of incorrect (scrambled) structures which subsequently undergo aggregation. At the last pH, this process can be suppressed by the presence of the substrate starch and consequently a covalent process, deamidation of asparagine and/or glutamine residues, becomes the cause of loss of enzymatic activity at 90 degrees C. Monomolecular conformational scrambling is the predominant cause of irreversible inactivation of B. stearothermophilus alpha-amylase at 90 degrees C at pH 5.0, 6.5, and 8.0. At pH 6.5 another contributing inactivation mechanism is the deamidation of amide residues, and at pH 8.0, O2 oxidation of the enzyme's cysteine residue.  相似文献   

13.
Rare earth elements (REEs) entering plant cells can directly interact with peroxidase in plants, which is the structural basis for the decrease in the activity of peroxidase. Different cellular compartments have different pH values. However, little information is available regarding the direct interaction between REEs and peroxidase in plants at different pH values. Here, we investigated the charge distribution on the surface of horseradish peroxidase (HRP) molecule as well as the interaction of terbium ion (Tb3+, one type of REEs) and HRP at different pH values. Using the molecular dynamics simulation, we found that when the pH value was from 4.0 to 8.0, a large amount of negative charges were intensively distributed on the surface of HRP molecule, and thus, we speculated that Tb3+ with positive charges might directly interact with HRP at pH 4.0–8.0. Subsequently, using ultraviolet-visible spectroscopy, we demonstrated that Tb3+ could directly interact with HRP in the simulated physiological solution at pH 7.0 and did not interact with HRP in other solutions at pH 5.0, pH 6.0 and pH 8.0. In conclusion, we showed that the direct interaction between Tb3+ and HRP molecule depended on the pH value of cellular compartments.  相似文献   

14.
The effects of magnesium ion concentration on the rate of electron transport in isolated pea thylakoids were investigated in the pH range from 4.0 up to 8.0. In the absence of magnesium ions in the medium and in the presence of 5 mM MgCl2 in the experiments not only without added artificial acceptors but also with ferricyanide or methylviologen as an acceptor, this rate had a well-expressed maximum at pH 5.0. It was shown that, after depression to minimal values at pH 5.5-6.5, it gradually rose with increasing pH. An increase in magnesium ion concentration up to 20 mM essentially affected the electron transfer rate: it decreased somewhat at pH 4.0-5.0 but increased at higher pH values. At this magnesium ion concentration, the maximum rate was at pH 6.0-6.5 and the minimum, at pH 7.0. Subsequent rise upon increasing pH to 8.0 was expressed more sharply. The influence of high magnesium ion concentration on the rate of electron transport was not observed in the presence of gramicidin D. It was found that without uncoupler, the changes in the electron transfer rate under the influence of magnesium ions correlated to the changes in the first-order rate constant of the proton efflux from thylakoids. It is supposed that the change in the ability of thylakoids to keep protons by the action of magnesium ions is the result of electrostatic interactions of these ions with the charges on the external surface of membranes. A possible role of regulation of the electron transport rate by magnesium ions in vivo is discussed.  相似文献   

15.
Protein-chitosan (CS) films were made by casting a solution of proteins and CS on pyrolytic graphite electrodes. Myoglobin (Mb), hemoglobin (Hb), and horseradish peroxidase (HRP) incorporated in CS films gave a pair of stable, well-defined, and quasi-reversible cyclic voltammetric peaks at about -0.33V vs saturated calomel electrode in pH 7 buffers, respectively, while catalase (Ct) in CS films showed a peak pair at about -0.46V which was not stable. All these peaks are located at the potentials characteristic of heme Fe(III)/Fe(II) redox couples of the proteins. The electrochemical parameters such as formal potentials (E degrees (')) and apparent heterogeneous electron-transfer rate constants (k(s)) were estimated by square-wave voltammetry with nonlinear regression analysis. Chitosan films contained considerable water and formed hydrogel in aqueous solution. Positions of the Soret absorbance band suggest that Mb and Hb in CS films keep their secondary structure similar to the native states in the medium pH range, while HRP and Ct retain their native conformation at least in the dry CS films. Scanning electron microscopy of the films demonstrated that interaction between the proteins and CS would make the morphology of dry protein-CS films very different from the CS films alone. Oxygen, trichloroacetic acid, nitrite, and hydrogen peroxide were catalytically reduced by all four proteins in CS films.  相似文献   

16.
Multilayer films have been prepared by the sequential electrostatic adsorption of poly(L-lysine) and hyaluronic acid onto charged silicon surfaces from dilute aqueous solutions under various pH conditions. Microelectrophoresis was used to examine the local acid-base equilibria of the polyelectrolytes within the films as a function of the total number of layers in the film and the assembly solution pH. The acid-base dissociation constants were observed to deviate significantly from dilute solution values upon adsorption, to be layer dependent only within the first 3-4 layers, and to show sensitivity to the assembly solution pH. As a result, some of the physicochemical properties of the films have also been found to exhibit pH-responsive behavior. For example, the thickest films result when at least one of the polyelectrolytes is only partially dissociated in solution. As well, the pH-dependent degree of dissociation of the surface functional groups can be used to vary the contact angle of a water droplet by as much as 25 degrees and the coefficient of friction by up to an order of magnitude. In addition, the extent to which PLL/HA films can be made to swell in solution can be varied by a factor of 7 depending on the assembly solution and swelling solution pH. The anomalies found in the dissociation constants account for the trends in these pH-dependent properties. Here, we demonstrate that knowledge of the acid-base dissociation behavior in multilayer films is key to understanding and controlling the physical properties of the films, particularly surface friction and wettability, which are fundamentally important factors for many biomaterials applications. For example, we outline a mechanism whereby biopolymer thin films can be electrostatically adsorbed under highly charged "sticky" conditions and then quickly transformed into stable low-friction films simply by altering the pH environment.  相似文献   

17.
Jiang B  Defusco E  Li B 《Biomacromolecules》2010,11(12):3630-3637
The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.  相似文献   

18.
Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine, which is produced by the action of hemolytic phospholipase C on phosphatidylcholine or sphyngomielin, to generate choline and inorganic phosphate. Among divalent cations, its activity is dependent on Mg2+ or Zn2+. Mg2+ produced identical activation at pH 5.0 and 7.4, but Zn2+ was an activator at pH 5.0 and became an inhibitor at pH 7.4. At this higher pH, very low concentrations of Zn2+ inhibited enzymatic activity even in the presence of saturating Mg2+ concentrations. Considering experimental and theoretical physicochemical calculations performed by different authors, we conclude that at pH 5.0, Mg2+ and Zn2+ are hexacoordinated in an octahedral arrangement in the PchP active site. At pH 7.4, Mg2+ conserves the octahedral coordination maintaining enzymatic activity. The inhibition produced by Zn2+ at 7.4 is interpreted as a change from octahedral to tetrahedral coordination geometry which is produced by hydrolysis of the [ \textZn 2+ \textL 2 - 1 \textL 20 ( \textH 2 \textO ) 2 ] \left[ {{\text{Zn}}^{ 2+ } {\text{L}}_{ 2}^{ - 1} {\text{L}}_{ 2}^{0} \left( {{\text{H}}_{ 2} {\text{O}}} \right)_{ 2} } \right] complex.  相似文献   

19.
To explain the inhibitory action of polyelectrolytes on enzymes and, in particular, to define potentially reactive zones for the binding of polyelectrolyte, the electric potential of enzymes lactate dehydrogenase and glutamate dehydrogenase was calculated using the solution of the Poisson-Boltzmann equation by a numerical method with the use of the Gauss-Seidel relaxation method at three pH values: 6.5, 7.0, and 8.0 and three values of ionic strength: 50, 100, and 150 mm. On the basis of these calculations and their visualization, representative sites for favorable binding of polyanions were determined as extended areas on the surface of proteins with the positive potential in the neutral pH region. It was shown that there is a correlation between the area of positive potential and the efficiency of enzyme inactivation for a number of pH values and concentrations of salt for two enzymes. The calculations performed allowed one to explain the inhibitory action of polyelectrolytes on the specified enzymes to understand the difference between the values of polyelectrolyte inactivation constants for the two enzymes and estimate the minimal areas of the positive potential on the protein surface that provide their effective inhibition.  相似文献   

20.
Thin films obtained from a layer-by-layer deposition of a weak polycarboxylic acid and a positively charged globular protein were studied by in situ ATR-FTIR. The system was chicken egg lysozyme (Lys), bovine pancrease ribonuclease A (RNase), or bovine gamma-globulin (IgG) self-assembled with polycarboxylic acids. When the pH value was lowered below a critical point, the growth of films and their tolerance to decomposition by added sodium chloride improved dramatically. Stabilization of protein/polyacid films in salt solutions at lower pH values occurred due to the onset of nonelectrostatic interactions to intermolecular binding within protein/polyacid multilayers and was controlled by polyacid ionization within the film rather than the pH of the external solution. A fractional ionization of polyacid in the pH-stabilization region was lower with protein-containing films than for polyacid/linear polycation films, reflecting hindrance of the inter-association of protonated carboxylic groups by protein globules. Practical ramifications of the pH-stabilization effect might extend to areas of biotechnology and biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号