首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After several hours in 20 mM sodium phosphate and 40 mM KCI (pH 7.4) or similar simple solutions, ciliated cells exfoliate en masse from stripped gill epithelium of freshwater mussels, e.g., Elliptio complanatus. Three types of ciliated cells--lateral (L), laterofrontal (LF), and frontal (F)--can be distiniguished and counted separately in the suspensions. About one-half of the cells of each type remain motile. Motility is unaffected by addition of 10(-5) M A23187 or 10(-2) M Ca+2 added separately, but when ionophore and Ca+2 are added together, ciliary beat is largely arrested. Treatment of the cells with Triton X-100 (Rohm & Haas Co., Philadelphia, Pa.) results in a total loss of motility as the ciliary membrane becomes disrupted. Such models can be reactivated by addition of ATP and Mg+2. All ciliated cell types are reactivated to about the same extent. At least 80% of the activity of the untreated preparation returns. Ca+2-EGTA buffers added to the reactivating solutions permit titration of free Ca+2 concentration vs. percent motility. Activity is unchanged for all cell types at Ca+2 less than 10(-7) M; at 10(-6) Ca+2, L cilia of all cell types are arrested differentially, whereas at Ca+2 greater than 10(-4) M most cilia of all cell types are arrested. We conclude: (a) that increasing cytoplasmic Ca+2 is directly responsible for ciliary arrest, (b) that the readily reversible physiological arrest response of the L cilia in the intact gill is caused by a rise in free Ca+2 in narrow limits from ca. 5 x 10(-7) M to ca. 8 x 10(-7) M, and (c) that the site which is sensitive to Ca+2 is part of the ciliary axoneme or the basal apparatus.  相似文献   

2.
Cellular membrane potential and ciliary motility were examined in tissues cultures prepared from frog palate and esophagus epithelia. Addition of micromolar concentrations of extracellular ATP caused membrane hyperpolarization and enhanced the beat frequency. These two effects of ATP were 1) dose dependent, reaching a maximum at 10 microM ATP; 2) dependent on the presence of extracellular Ca2+ or Mg2+; 3) insensitive to inhibitors of voltage-gated calcium channels; 4) abolished after depleting the intracellular Ca2+ stores with thapsigargin; 5) attenuated by quinidine (1 mM), Cs+ (5-20 mM), and replacement of extracellular Na+ by K+; 6) insensitive to charybdotoxin (5-20 nM), TEA (1-20 microM), and apamin (0.1-1 microM); 7) independent of initial membrane potential; and 8) unaffected by amiloride. In addition, extracellular ATP induced an appreciable rise in intracellular Ca2+. Addition of thapsigargin caused an initial enhancement of the ciliary beat frequency and membrane hyperpolarization. These results strongly suggest the involvement of calcium-dependent potassium channels in the response to ATP. The results show that moderate hyperpolarization is closely associated with a sustained enhancement of ciliary beating by extracellular ATP.  相似文献   

3.
Noncyclooxygenase metabolites of arachidonic acid may be potent modulators of the mitogenic response of renal mesangial cells to the mitogenic vasoactive peptide arginine vasopressin (AVP). Since Ca2+ is a critical second messenger in the response of mesangial cells to AVP, and Ca2+ has been implicated in the regulation of growth, we determined whether noncyclooxygenase metabolites altered the phospholipase C-Ca2+ signalling cascade which is activated by AVP. Pretreatment of mesangial cells for 10 min with lipoxygenase and cytochrome P450 monooxygenase inhibitors, nordihydroguaiaretic acid (NDGA, 10(-5) M) or SKF-525A (2.5 x 10(-5) M), but not the cyclooxygenase inhibitor indomethacin (2 x 10(-5) M), reduced the magnitude of the AVP (10(-8) and 10(-7) M)-induced increase in cytosolic free Ca2+ concentration ([Ca2+]i) without affecting inositol trisphosphate production. With 10(-8) M AVP, [Ca2+]i increased to 250 +/- 47 nM in NDGA-treated cells versus 401 +/- 59 nM in control cells (p less than 0.01). [Ca2+]i, measured 2 min after exposure to AVP, was also lower with NDGA (152 +/- 21 nM) when compared with AVP alone (220 +/- 22 nM, p less than 0.01). 14,15-epoxyeicosatrienoic acid (EET) (10(-8) M), which had no effect on inositol trisphosphate production, completely reversed the NDGA-induced inhibition of the [Ca2+]i transient, whereas 5-hydroperoxyeicosatetraenoic acid (HPETE) (5 x 10(-7) M) did not. Pretreatment with higher concentrations of 14,15-EET (10(-7)-10(-6) M) markedly potentiated the AVP-induced increase in [Ca2+]i. NDGA-induced inhibition of the AVP-generated [Ca2+]i transient was also observed when cells were incubated in low Ca2+ media ([Ca2+] less than 5 x 10(-8) M), suggesting that NDGA pretreatment impaired intracellular release of Ca2+. Since NDGA had no direct effect on inositol 1,4,5-trisphosphate-induced Ca2+ release, we postulated that NDGA blocked production of a metabolite that releases Ca2+ from intracellular stores. 14,15-EET and 15-HPETE, but not 15-hydroxyeicosatetraenoic acid (each at 3 x 10(-7) M), raised [Ca2+]i when added directly to cells in low Ca2+ media. In permeabilized cells 14,15-EET and 15-HPETE (10(-7) M) potently released Ca2+ from intracellular stores. In summary, noncyclooxygenase metabolites of arachidonic acid, and in particular P450 metabolites, are potent endogenous amplifiers of the AVP-induced [Ca2+]i signal by mechanisms not directly involving phospholipase C activation. This effect is mediated, at least in part, by enhanced release of Ca2+ from intracellular storage sites by an inositol 1,4,5-trisphosphate-independent mechanism.  相似文献   

4.
Parathyroid hormone increases cellular cAMP, 1,2-diacylglycerol, inositol 1,4,5-trisphosphate and cytosolic Ca2+ concentration ([Ca2+]i) in OK cells. In the present study, we determined the importance of the PTH-dependent increase in [Ca2+]i in the control of sodium-dependent phosphate (Na+/Pi) cotransport. PTH (10(-7) M) results in a transient increase in [Ca2+]i from basal levels of 67 +/- 4 nM to maximal concentrations of 190 +/- 9 nM. The increase in [Ca2+]i was dose-dependent with half-maximal increases at about 5.10(-8) M PTH. These hormone levels were 10(3)-fold higher than that required for half-maximal inhibition of Na+/Pi cotransport. Clamping [Ca2+]i with either intracellular Ca2+ chelators or by ionomycin in the presence of high concentrations of extracellular Ca2+ did not alter PTH-dependent inhibition of Na/Pi cotransport. Nor did indomethacin, an inhibitor of the cyclooxygenase pathway, influence the hormonal inhibition of cotransport. Accordingly, these data suggest that changes in [Ca2+]i and/or activation of the phospholipase A2 and the cyclooxygenase pathways are not involved in signal induction of the PTH-mediated control of Na+/Pi cotransport.  相似文献   

5.
Type IV collagen (Coll IV), a component of the extracellular matrix, stimulates motility in the A2058 human melanoma cell line, a response that is inhibited by pertussis toxin (PT). Fibronectin (FN)-induced chemotaxis in this cell line is not affected by PT. To understand the mechanism of cellular signaling, single cell intracellular Ca2+ responses to Coll IV and FN were studied using Fura-2 and digital imaging fluorescence microscopy. Coll IV, at a dose that stimulates motility (100 micrograms/ml, 185 nM), induces a significant rise in cytosolic free Ca2+ concentration ([Ca2+]i) within 100 s. This response is not inhibited by PT. Treatment of the cells with FN 30 micrograms/ml (70 nM), a dose that stimulates near-maximal chemotaxis, does not increase [Ca2+]i appreciably. Removal of extracellular Ca2+ fails to inhibit the Coll IV-stimulated rise in Ca2+ in all cells. Depletion of extracellular Ca2+ and pretreatment of cells with Ca2+ channel blockers only partially inhibits Coll IV-induced motility. Depletion of intracellular Ca2+ inhibits both chemotaxis and the Coll IV-induced increase in intracellular Ca2+. Coll IV does not stimulate membrane phosphoinositide hydrolysis. We conclude that Coll IV treatment induces an inositol 1,4,5-trisphosphate-independent release of intracellular Ca2+ stores which appears to play a necessary role in the chemotactic response of A2058 cells but is not mediated by a PT-sensitive G-protein. This response is not seen in cells exposed to FN, suggesting different intracellular signaling mechanisms for stimulated motility between these two extracellular matrix molecules.  相似文献   

6.
The role of Ca2+ in mediating the inhibition by glucocorticoids of human natural killer (NK) activity was investigated using Ca2+ entry blockers (verapamil and its desmethoxy-derivatives LU46973 and LU47093) and calmodulin antagonists (pimozide and two naphthalenesulfopamide derivatives, W-7 and W-13). Peripheral blood mononuclear (PBM) cell preparations were incubated for 20 h with 1 x 10(-6) M cortisol and these agents in various combinations (concentration range: 1 x 10(-7) - 1 x 10(-5) M) and then assayed in a direct 4-h cytolytic assay using 51Cr-labeled K 562 target cells. Exposure to cortisol led to a significant reduction of NK cell activity (about 50% with respect to the spontaneous activity). Ca2+ entry blockers displayed per se a dose-dependent depressive effect on cytotoxicity and gave significant enhancement of cortisol-dependent inhibition. Calmodulin antagonists were per se minimally effective but clearly amplified the cortisol-mediated inhibition. Raising extracellular Ca2+ by CaCl2 or intracellular Ca2+ by the ionophore A23187 yelded an appreciable reduction of these effects. Our data are compatible with the view that extracellular and intracellular Ca2+ play a role in the control of human NK cell activity. Moreover, it is conceivable that the mechanisms involved in glucocorticoid inhibition of NK cell activity involve Ca2+-dependent pathways.  相似文献   

7.
The effects of endothelin on cellular Ca2+ mobilization were examined in cultured rat vascular smooth muscle cells (VSMC). Endothelin (10(-8)M) induced a rapid transient increase of [Ca2+]i from 77 +/- 3 to 104 +/- 5 nM (p less than .05) in VSMC. Preincubation (60 min) with endothelin (2 x 10(-6)M) increased basal [Ca2+]i from 77 +/- 3 to 105 +/- 8 nM (p less than .05). Preincubation with endothelin also enhanced vasopressin (10(-7)M)-stimulated peak levels of [Ca2+]i (528 +/- 20 nM vs 969 +/- 21 nM, p less than .01). Endothelin (10(-7)M) induced an intracellular alkalinization (7.18 +/- 0.03 vs 7.37 +/- 0.04, p less than .01) which was blocked by pretreatment with amiloride. The biphasic effects of endothelin on [Ca2+]i were similar to those of an endogenous inhibitor of Na-K-ATPase that we examined in a previous study. Therefore, we examined the effects of endothelin on Na-K-ATPase in an enzyme preparation from hog cerebral cortex. At high concentrations, endothelin (10(-5)M) inhibited Na-K-ATPase in vitro. Thus, endothelin may exert its vasoconstrictor effects at least in part via alterations of cellular Ca2+ mobilization in VSMC. While the rapid transient increase of [Ca2+]i appears to reflect intracellular Ca2+ mobilization, the sustained effect on [Ca2+]i may be related to an increase of intracellular sodium mediated by inhibition of Na-K-ATPase and/or more likely by stimulation of the Na+/H+-antiport.  相似文献   

8.
Calcium regulation of pigment transport in vitro   总被引:8,自引:6,他引:2       下载免费PDF全文
Calcium has been implicated in the regulation of many cellular motility events. In this study we have examined the role of different Ca2+ concentrations on the in vitro transport of pigment within cultured chromatophores. Cells treated with Brij detergent for 1-2 min were stripped of their plasma membranes, leaving their cytoskeleton and associated pigment granules exposed to the external milieu. We found that retrograde pigment transport (aggregation) is induced upon addition of 1 mM MgATP2- with 10(-7) M free Ca2+, while an orthograde transport (redispersal) of pigment results from lowering the concentration of free Ca2+ to 10(-8) M while maintaining 1 mM MgATP2-. These Ca2+-regulated movements are ATP dependent but are apparently independent of cAMP and insensitive to calmodulin inhibitors. The observations reported here provide novel evidence that the concentration of free Ca2+ acts to regulate the direction of intracellular organelle transport.  相似文献   

9.
We determined the cellular free calcium concentration [Ca2+]i in response to arginine vasopressin (AVP) using single cells of cultured rat renal papillary collecting tubule cells. AVP at a concentration of 1 x 10(-10) M or higher significantly increased [Ca2+]i in a dose-dependent manner. The prompt increase in [Ca2+]i induced by AVP was completely blocked by the V1V2 antagonist, but not by the V1 antagonist. Also, an antidiuretic agonist of 1-deamino-8-D-arginine vasopressin (dDAVP) increased [Ca2+]i, which was blocked by the pretreatment with the V1 V2 antagonist. An AVP-induced increase in [Ca2+]i was still demonstrable in cells pretreated with Ca2(+)-free medium containing 1 x 10(-3) M EGTA, or a blocker of cellular Ca2+ uptake, 5 x 10(-5) M verapamil. These results indicate that AVP increases [Ca2+]i through the V2 receptor in renal papillary collecting tubule cells where cAMP is a well-known second messenger for AVP, and that cellular free Ca2+ mobilization depends on both the intracellular and extracellular Ca2+.  相似文献   

10.
To elucidate whether thromboxane A2 (TxA2), one of the important arachidonic acid metabolites that may play a role in the development of airway inflammation, affects respiratory ciliary motility and, if so, what the mechanism of action is, we measured ciliary beat frequency (CBF) of rabbit cultured tracheal epithelium in response to U46619, a TxA2 mimetic agonist, by a photoelectric method. Addition of U46619 (10(-5) M) increased CBF from 17.7 +/- 0.7 to 22.8 +/- 1.4 Hz (mean +/- SE, p less than 0.01) within 5 min, which was followed by a decline to the baseline value by 10 min. This effect was concentration-dependent, the maximal increase from the baseline value and the drug concentration required to produce a half-maximal effect (EC50) being 26.9 +/- 4.6% (p less than 0.01) and 3 x 10(-7) M, respectively. The U46619-induced increase in CBF was abolished by SQ29548, and TxA2 receptor antagonist, and inhibited by verapamil, a Ca(2+)-entry blocker, and H-7, a protein kinase C inhibitor. These results suggest that TxA2 stimulates ciliary motility through the activation of airway epithelial TxA2 receptors, and that this effect may be exerted from Ca(2+)-influx and protein kinase C.  相似文献   

11.
It was reported that neuropeptide Y (NPY) affects cardiac and vascular smooth muscle (VSM) function probably by increasing intracellular Ca2+. In this study, using fura-2 microfluorometry and fluo-3 confocal microscopy techniques for intracellular Ca2+ measurement, we attempted to verify whether the action of NPY receptor's stimulation in heart and VSM cells modulates intracellular Ca2+ and whether this effect is mediated via the Y1 receptor type. Using spontaneously contracting single ventricular heart cells of 10-day-old embryonic chicks and the fluo-3 confocal microscopy Ca2+ measurement technique to localize cytosolic ([Ca]c) and nuclear ([Ca]n) free Ca2+ level and distribution, 10-10 M of human (h) NPY significantly (P < 0.05) increased the frequency of cytosolic and nuclear Ca2+ transients during spontaneous contraction. Increasing the concentration of hNPY (10(-9) M) did not further increase the frequency of Ca2+ transients. The L-type Ca2+ channel blocker, nifedipine (10(-5) M), significantly (P < 0.001) blocked the spontaneous rise of intracellular Ca2+ in the absence and presence of hNPY (10(-10) and 10(-9) M). However, the selective Y1 receptor antagonist, BIBP3226 (10(-6) M), significantly decreased the hNPY-induced (10(-10) and 10(-9) M) increase in the frequency of Ca2+ transients back to near the control level (P < 0.05). In resting nonworking heart and human aortic VSM cells, hNPY induced a dose-dependent sustained increase of basal resting intracellular Ca2+ with an EC50 near 10(-9) M. This sustained increase was cytosolic and nuclear and was completely blocked by the Ca2+ chelator EGTA, and was significantly decreased by the Y1 receptor antagonist BIBP3226 in both heart (P < 0.05) and VSM (P < 0.01) cells. These results strongly suggest that NPY stimulates the resting basal steady-state Ca2+ influx through the sarcolemma and induces sustained increases of cytosolic and nuclear calcium, in good part, via the activation of the sarcolemma membrane Y1 receptor type in both resting heart and VSM cells. In addition, NPY also increased the frequency of Ca2+ transients during spontaneous contraction of heart cells mainly via the activation of the Y1 receptor type, which may explain in part the active cardiovascular action of this peptide.  相似文献   

12.
We examined the effects of Ca ions on the gliding movement of Tetrahymena ciliary doublet microtubules induced by 14S or 22S dyneins in an in vitro motility assay system. The doublet microtubule appeared as circular-arc in solution, about 5 to 6 microns in length [1]. The doublet microtubules glided distal-end first on a 14S or 22S dynein-coated glass surface either clockwise or counterclockwise following the addition of ATP. The diameter of the circular path changed according to Ca concentration in the solution. Gliding velocity was from 1 to 5 microns/s. The addition of 0.1% Nonidet P-40 was necessary to induce the gliding movement on 22S dynein. This movement on 22S dynein was strongly inhibited above 0.5 mM ATP in the presence of 10(-9) M Ca, and at 0.05 to 1 mM ATP in the presence of 10(-3) M Ca. Many studies have indicated that Ca ions regulate ciliary movement [2-8] in which dyneins and doublet microtubule in the axoneme may play an essential role. The inhibition of the gliding movement of doublet microtubule on dyneins at appropriate concentrations of Ca and ATP as observed in this study may be the key for understanding Ca regulation of ciliary motility.  相似文献   

13.
Agonist-induced changes in cytoplasmic free Ca2+ concentration [( Ca2+]i) of isolated canine gastric chief cells were evaluated by microspectrofluorometry of superfused fura-2 loaded cells. Application of high concentrations of carbachol (CCh, 10(-5) M) or cholecystokinin octapeptide (10(-8) M) resulted in biphasic Ca2+ mobilization comprising an initial large transient followed by a small sustained elevation above the prestimulation level. Submaximal concentrations of CCh (10(-6) M) or cholecystokinin (10(-9) M) led to either a transient series of large amplitude Ca2+ spike(s) or a higher frequency of sustained Ca2+ oscillations of smaller amplitude. Cholecystokinin at 10(-10) M induced only sustained Ca2+ oscillations. Elimination of Ca2+ from the medium had no immediate effect on oscillations indicating an intracellular source of Ca2+. Thus the Ca2+ signalling mode in chief cells is dependent on agonist concentrations.  相似文献   

14.
Extracellular calcium at millimolar concentrations inhibits collective motility of ejaculated ram spermatozoa. In untreated cells, or when motility was made dependent upon glycolytic activity, there is very small inhibition, but when motility was made dependent upon mitochondrial respiration there is very high inhibition in motility by increasing extracellular Ca2+ concentration. Quercetin, which inhibits (Ca2+ + Mg2+)-ATPase activity in isolated plasma membranes, also inhibits motility mainly in cells that have been made dependent upon glycolytic activity, but there is also inhibition in untreated cells. When motility was made dependent upon mitochondrial activity, there is no inhibition but rather some stimulation in motility by quercetin. The inhibitory effect of quercetin is enhanced by increasing Ca2+ concentration in the medium. Quercetin also inhibits uptake of calcium into the cells, in a mechanism by which a calcium channel is involved. This inhibition is high only when the glycolysis is inhibited in the cells. The rate of glycolysis is decreased by quercetin or ouabain, but their effects on motility are quite different. Based on these data, it appears that the plasma membrane (Ca2+ + Mg2+)-ATPase or the Ca2+ pump have a functional role in the regulation of spermatozoa motility. This motility regulation is functioning through mechanisms which include glycolytic activity and maintenance of intracellular calcium concentrations.  相似文献   

15.
The effects of taurine on the motility and intracellular free Ca2+ concentration of fowl spermatozoa were investigated in vitro. The addition of taurine, within the range of 0-5 mmol l(-1), did not appreciably affect the motility of intact fowl spermatozoa. Motility remained almost negligible at 40 degrees C, while vigorous movement was observed at 25 degrees C. Even with the addition of Ca2+ before the addition of taurine, neither stimulation nor inhibition of motility was observed compared with the control (no addition of taurine). Similar results were obtained by the addition of taurine and calyculin A, a specific inhibitor of protein phosphatases. There were no changes in intracellular free Ca2+ concentrations, measured by a fluorescent Ca2+ indicator, fura-2, in taurine-treated spermatozoa. These results suggest that taurine is not involved in the regulation of fowl sperm motility and metabolism by intracellular Ca2+ mobilization in vitro.  相似文献   

16.
CGRP is a potent vasodilator with increased levels in fetoplacental circulation during late pregnancy. We have recently demonstrated that acute CGRP exposure to fetoplacental vessels in vitro induced vascular relaxation, but the signaling pathway of CGRP in fetoplacental vasculature remains unclear. We hypothesized that CGRP relaxes fetoplacental vasculature via regulating smooth muscle cytosolic Ca2+ concentrations. In the present study, by using human umbilical vein smooth muscle (HUVS) cells (HUVS-112D), we examined CGRP receptors, cAMP generation, and changes in cellular Ca2+ concentrations on CGRP treatment. These cells express mRNA for CGRP receptor components, calcitonin receptor-like receptor, and receptor activity-modifying protein-1. Direct saturation binding for 125I-labeled CGRP to HUVS cells and Scatchard analysis indicate specificity of the receptors for CGRP [dissociation constant (K(D)) = 67 nM, maximum binding capcity (Bmax) = 2.7 pmol/million cells]. Exposure of HUVS cells to CGRP leads to a dose-dependent increase in intracellular cAMP accumulation, and this increase is prevented by CGRP antagonist CGRP(8-37). Using fura-2-loaded HUVS cells, we monitored the effects of CGRP on intracellular Ca2+ concentration ([Ca2+]i). In the presence of extracellular Ca2+, bradykinin (10(-6) M), a fetoplacental vasoconstrictor, increases HUVS cells [Ca2+]i concentration. CGRP (10(-8) M) abolishes bradykinin-induced [Ca2+]i elevation. When the cells were pretreated with glibenclamide, an ATP-sensitive potassium channel blocker, the CGRP actions on bradykinin-induced Ca2+ influx were profoundly inhibited. In the absence of extracellular Ca2+, CGRP (10(-8) M) attenuated the increase of [Ca2+]i induced by a sarcoplasmic reticulum Ca2+ pump ATPase inhibitor thapsigargin (10(-5) M). Furthermore, Rp-cAMPS, a cAMP-dependent protein kinase A inhibitor, blocks CGRP actions on thapsigargin-induced Ca2+ release from sarcoplasmic reticulum. Our results suggested that CGRP relaxes human fetoplacental vessels by not only inhibiting the influx of extracellular Ca2+ but also attenuating the release of intracellular Ca2+ from the sarcoplasmic reticulum, and these actions might be attributed to CGRP-induced intracellular cAMP accumulation.  相似文献   

17.
Airway ciliary activity is influenced by [Ca2+]i, but this mechanism is not fully understood. To investigate this relationship, ciliary activity and [Ca2+]i were measured simultaneously from airway epithelial ciliated cells. Ciliary beat frequency was determined, for each beat cycle, with phase-contrast optics and high-speed video imaging (at 240 images s-1) and correlated with [Ca2+]i determined, at the ciliary base, by fast imaging (30 images s-1) of fura-2 fluorescence. As a mechanically induced intercellular Ca2+ wave propagated through adjacent cells, [Ca2+]i was elevated from a baseline concentration of 45 to 100 nM, to a peak level of up to 650 nM. When the Ca2+ wave reached the ciliary base, the beat frequency rapidly increased, within a few beat cycles, from a basal rate of 6.4 to 11.6 Hz at 20-23 degrees C, and from 17.2 to 26.7 Hz at 37 degrees C. Changes in [Ca2+]i, above 350 nM, had no effect on the maximum beat frequency. We suggest that airway ciliary beat frequency is 1) controlled by a low range of [Ca2+]i acting directly at an axonemal site at the ciliary base and 2) that a maximum frequency is induced by a change in [Ca2+]i of approximately 250-300 nM.  相似文献   

18.
《The Journal of cell biology》1985,100(5):1447-1454
Previous work showed that ctenophore larvae swim backwards in high-KCl seawater, due to a 180 degrees reversal in the direction of effective stroke of their ciliary comb plates (Tamm, S. L., and S. Tamm, 1981, J. Cell Biol., 89: 495-509). Ion substitution and blocking experiments indicated that this response is Ca2+ dependent, but comb plate cells are innervated and presumably under nervous control. To determine whether Ca2+ is directly involved in activating the ciliary reversal mechanism and/or is required for synaptic triggering of the response, we (a) determined the effects of ionophore A23187 and Ca2+ on the beat direction of isolated nerve-free comb plates dissociated from larvae by hypotonic, divalent cation-free medium, and (b) used permeabilized ATP- reactivated models of comb plates to test motile responses to known concentrations of free Ca2+. We found that 5 microM A23187 and 10 mM Ca2+ induced dissociated comb plate cells to beat in the reverse direction and to swim counterclockwise in circular paths instead of in the normal clockwise direction. Detergent/glycerol-extracted comb plates beat actively in the presence of ATP, and reactivation was reversibly inhibited by micromolar concentrations of vanadate. Free Ca2+ concentrations greater than 10(-6)M caused reversal in direction of the effective stroke but no significant increase in beat frequency. These results show that ciliary reversal in ctenophores, like that in protozoa, is activated by an increase in intracellular free Ca2+ ions. This allows the unique experimental advantages of ctenophore comb plate cilia to be used for future studies on the site and mechanism of action of Ca2+ in the regulation of ciliary motion.  相似文献   

19.
The nature of downhill Ca2+ net-transport into human erythrocytes was investigated using the experimental models of Ca2+ pump inhibition by vanadate and of intracellular chelation of Ca2+ by quin2. Ca2+ uptake by erythrocytes loaded with 0.5 mM vanadate and suspended in 145 mM Na+ -5 mM K+ media was reduced by about 60% when medium K+ was raised to 80 mM. Organic and inorganic Ca2+ entry blockers such as nifedipine (10(-5) M), verapamil (10(-4) M), diltiazem (10(-4) M), Co2+ (1.5 mM) and Cu2+ (0.1 mM) as well as the K+ channel blocker quinidine (1mM) inhibited Ca2+ uptake in 145 mM Na+ -5 mM K+ media by 60-75%. Flunarizine was less effective. In vanadate-loaded cells suspended in 70 mM Na+ -80 mM K+ media, in contrast, flunarizine exerted a dose-dependent inhibition of Ca2+ uptake by up to 80% at 10(-5) M, the other blockers being ineffective (except for verapamil at 10(-4) M). A similar pattern of inhibition was seen in quin2-loaded erythrocytes. The different susceptibility towards inhibitors may indicate that passive Ca2+ uptake by vanadate-loaded erythrocytes suspended in 145 mM Na+ -5 mM K+ media, on the one hand, and by vanadate-loaded erythrocytes suspended in 70 mM Na+ -80 mM K+ media as well as by quin2-loaded erythrocytes, on the other hand, is mediated by two different transport components.  相似文献   

20.
A ciliated protozoan, Halteria grandinella, swam backward rapidly with a migration distance per second attaining 100 times the cell size. This high swimming velocity was accompanied by a high frequency of ciliary beating. Recordings with a high-speed digital video (10(3) frames/s) revealed that the frequency during forward and backward swimming was, respectively, 105 +/- 10 Hz and 260 +/- 30 Hz. These frequencies are the highest among cilia and flagella reported to date. Electron microscopic observation of the ciliary structure confirmed normal 9 + 2 arrangements of the axoneme except that cilia for migration are bundled into membranelles. Ciliary beating of saponin-treated cells was reactivated by the addition of Mg2+ -ATP, although the beating amplitude was smaller than that of intact cells. Kinetic analysis of the ATP-dependent increase of beating frequency revealed that the maximal frequency in the presence of free Ca2+ and 0.9 microM Ca2+ was approximately 60 and 110 Hz, respectively. A possible mechanism to increase beating frequency with Ca2+ is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号