首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fatty acid biosynthesis from Na[1-14C]acetate was characterized in plastids isolated from primary roots of 7-day-old germinating pea (Pisum sativum L.) seeds. Fatty acid synthesis was maximum at 82 nanomoles per hour per milligram protein in the presence of 200 micromolar acetate, 0.5 millimolar each of NADH, NADPH, and coenzyme A, 6 millimolar each of ATP and MgCl2, 1 millimolar each of MnCl2 and glycerol-3-phosphate, 15 millimolar KHCO3, 0.31 molar sucrose, and 0.1 molar Bis-Tris-propane, pH 8.0, incubated at 35°C. At the standard incubation temperature of 25°C, fatty acid synthesis was essentially linear for up to 6 hours with 80 to 120 micrograms per milliliter plastid protein. ATP and coenzyme A were absolute requirements, whereas divalent cations, potassium bicarbonate, and reduced nucleotides all variously improved activity two- to 10-fold. Mg2+ and NADH were the preferred cation and nucleotide, respectively. Glycerol-3-phosphate had little effect, whereas dithiothreitol and detergents generally inhibited the incorporation of [14C]acetate into fatty acids. On the average, the principal radioactive products of fatty acid biosynthesis were approximately 39% palmitic, 9% stearic, and 52% oleic acid. The proportions of these fatty acids synthesized depended on the experimental conditions.  相似文献   

2.
A preliminary analysis of Fatty Acid synthesis in pea roots   总被引:3,自引:3,他引:0       下载免费PDF全文
Subcellular fractions from pea (Pisum sativum L.) roots have been prepared by differential centrifugation techniques. Greater than 50% of the recovered plastids can be isolated by centrifugation at 500g for 5 minutes. Plastids of this fraction are largely free from mitochondrial and microsomal contamination as judged by marker enzyme analysis. De novo fatty acid biosynthesis in pea roots occurs in the plastids. Isolated pea root plastids are capable of fatty acid synthesis from acetate at rates up to 4.3 nanomoles per hour per milligram protein. ATP, bicarbonate, and either Mg2+ or Mn2+ are all absolutely required for activity. Coenzyme A at 0.5 millimolar improved activity by 60%. Reduced nucleotides were not essential but activity was greatest in the presence of 0.5 millimolar of both NADH and NADPH. The addition of 0.5 millimolar glycerol-3-phosphate increased activity by 25%. The in vitro and in vivo products of fatty acid synthesis from acetate were primarily palmitate, stearate, and oleate, the proportions of which were dependent on experimental treatments. Fatty acids synthesized by pea root plastids were recovered in primarily phosphatidic acid and diacylglycerol or as water soluble derivatives and the free acids. Lesser amounts were found in phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, and monogalactosyldiacylglycerol.  相似文献   

3.
Fan Kang  Stephen Rawsthorne 《Planta》1996,199(2):321-327
The aim of this work was to investigate the partitioning of imported glucose 6-phosphate (Glc6P) to starch and fatty acids, and to CO2 via the oxidative pentose phosphate pathway (OPPP) in plastids isolated from developing embryos of oilseed rape (Brassica napus L.). The ability of the isolated plastids to utilize concurrently supplied substrates and the effects of these substrate combinations on the Glc6P partitioning were also assessed. The relative fluxes of carbon from Glc6P to starch, fatty acids, and to CO2 via the OPPP were close to 2∶1∶1 when Glc6P was supplied alone. Under these conditions NADPH generated via the OPPP was greater than that required by the concurrent rate of fatty acid synthesis. Fatty acid synthesis was unaffected by the presence or absence of exogenous NADH and/or NADPH and the requirement of fatty acid synthesis for reducing power is therefore met entirely by intraplastidial metabolism. When Glc6P was supplied in the presence of either pyruvate or pyruvate and acetate, the total flux from these metabolites to fatty acids was up to threefold greater than that from either Glc6P or pyruvate when they were supplied singly. In these experiments there was little competition between Glc6P and pyruvate in fatty acid synthesis and the flux to starch was unchanged. This implies that the starch and fatty acid biosynthesis pathways did not compete for the exogenously supplied ATP on which they were strongly dependent. When Glc6P and pyruvate were provided together, the NADPH generated by the OPPP pathway was less than that required by the concurrent rate of fatty acid synthesis. This suggests that the metabolism of exogenous Glc6P via the OPPP can contribute to the NADPH demand created during fatty acid synthesis but it also indicates that other intraplastidial sources of reducing power must be available under the in-vitro conditions used.  相似文献   

4.
The capacity of both developing seeds and germinating seedlings of safflower for the incorporation of acetate-C14 into long-chain fatty acids is examined.

Intact tissue of the developing seed shows a low rate of acetate incorporation into fatty acid initially but between the tenth and twenty-fifth day after flowering the tissue has a high rate of synthesis, in particular with respect to the unsaturated fatty acids. Centrifuged fractionation of homogenates of this developmental tissue yielded several active fractions, the most active being the PI fraction consisting mostly of plastids. Cofactor requirements and pH effects are examined.

Germinating tissue shows a more uniform capacity for synthesis of fatty acids since there is no marked change in synthetic capacity. The newly synthesized fatty acids are consistently palmitic, stearic, and oleic acid. No linoleic synthesis could be detected. The most active fraction of cell-free preparation of germinating tissue is the plastid fraction (PI), similar to what was formed with developing tissue.

  相似文献   

5.
Mechanisms restricting the accumulation of chloroplast glycolipids in achlorophyllous etiolated or heat-treated 70S ribosome-deficient rye leaves (Secale cereale L. cv “Halo”) and thereby coupling glycolipid formation to the availability of chlorophyll, were investigated by comparing [14C]acetate incorporation by leaf segments of different age and subsequent chase experiments. In green leaves [14C]acetate incorporation into all major glycerolipids increased with age. In etiolated leaves glycerolipid synthesis developed much more slowly. In light-grown, heat-bleached leaves [14C]acetate incorporation into glycolipids was high at the youngest stage but declined with age. In green leaves [14C]acetate incorporation into unesterified fatty acids and all major glycerolipids was immediately and strongly diminished after application of an inhibitor of chlorophyll synthesis, 4,6-dioxoheptanoic acid. The turnover of glyco- or phospholipids did not differ markedly in green, etiolated, or heat-bleached leaves. The total capacity of isolated ribosome-deficient plastids for fatty acid synthesis was not much lower than that of isolated chloroplasts. However, the main products synthesized from [14C]acetate by chloroplasts were unesterified fatty acids, phosphatidic acid, and diacylglycerol, while those produced by ribosome-deficient plastids were unesterified fatty acids, phosphatidic acid, and phosphatidylglycerol. Isolated heat-bleached plastids exhibited a strikingly lower galactosyltransferase activity than chloroplasts, suggesting that this reaction was rate-limiting, and lacked phosphatidate phosphatase activity.  相似文献   

6.
The labeling kinetics of the fatty acids of phosphatidylcholine (PC), phosphatidylglycerol (PG), monogalactosyldiglyceride (MGDG), and digalactosyldiglyceride (DGDG) were examined after 14CO2 feeding and incubation of leaf discs of Vicia faba over 72 hours in continuous light. The results indicate a rapid accumulation and turnover of radioactivity into PC and PG fatty acids (oleic acid in PC and oleic and palmitic acids in PG). Radioactivity accumulates in MGDG and DGDG fatty acids much more slowly and continuously over 72 hours. Most of this activity is found in linoleic and linolenic acids; very little activity is found in the more saturated fatty acids. Little or no desaturation occurs in situ in conjunction with the galactolipids. The results suggest that PC and PG may act as “carriers” for MGDG and DGDG fatty acid synthesis. Analyses of the labeling patterns of the molecular species of MGDG after 14CO2 and 14C-acetate feeding confirm that MGDG is formed by galactosylation of a preformed diglyceride containing predominantly unsaturated fatty acids.  相似文献   

7.
The aim of this work was to investigate the capacity for synthesis of starch and fatty acids from exogenous metabolites by plastids from developing embryos of oilseed rape (Brassica napus L.). A method was developed for the rapid isolation from developing embryos of intact plastids with low contamination by cytosolic enzymes. The plastids contain a complete glycolytic pathway, NADP-glucose-6-phosphate dehydrogenase, NADP-6-phosphogluconate dehydrogenase, fructose-1,6-bisphosphatase, NADP-malic enzyme, the pyruvate dehydrogenase complex (PDC), and acetyl-CoA carboxylase. Organelle fractionation studies showed that 67% of the total cellular PDC activity was in the plastids. The isolated plastids were fed with 14C-labelled carbon precursors and the incorporation of 14C into starch and fatty acids was determined. 14C from glucose-6-phosphate (G-6-P), fructose, glucose, fructose-6-phosphate and dihydroxyacetone phosphate (DHAP) was incorporated into starch in an intactness- and ATP-dependent manner. The rate of starch synthesis was highest from G-6-P, although fructose gave rates which were 70% of those from G-6-P. Glucose-1-phosphate was not utilized by intact plastids for starch synthesis. The plastids utilized pyruvate, G-6-P, DHAP, malate and acetate as substrates for fatty acid synthesis. Of these substrates, pyruvate and G-6-P supported the highest rates of synthesis. These studies show that several cytosolic metabolites may contribute to starch and/or fatty acid synthesis in the developing embryos of oilseed rape.  相似文献   

8.
On the light dependence of Fatty Acid synthesis in spinach chloroplasts   总被引:3,自引:3,他引:0  
The capacity of intact chloroplasts to synthesize long chain fatty acids from acetate depends on the stroma pH in Spinacia oleracea, U. S. hybrid 424. The pH optimum is close to 8.5. Lowering of the stroma pH leads to a reduction of acetate incorporation but does not suffice to eliminate fatty acid synthesis completely. Chain elongation from palmitic to oleic acid shows the same pH dependence. Fatty acid synthesis is activated in the dark upon the simultaneous addition of dihydroxyacetone phosphate and orthophosphate supplying ATP and oxaloacetate for reoxidation of NADPH in the stroma. Under these conditions both dark fatty acid synthesis and synthesis of oleate from palmitate show the same pH dependence as in the light. Dark fatty acid synthesis is further stimulated by increasing the stromal Mg2+ concentration with the ionophore A 23187. In contrast to CO2 fixation, dark fatty acid synthesis is considerably reduced by dithiothreitol (DTT). This observation may be due to an acetyl-CoA deficiency, caused by a nonenzymic acylation of DTT, and a competition for ATP between DTT-activated CO2 fixation and fatty acid synthesis. Because d,l-glyceraldehyde as inhibitor of CO2 fixation compensates the DTT effect on dark fatty acid synthesis, reducing equivalents may be involved in the light dependence of acetate activation.  相似文献   

9.
Microsomal particles from dark-grown Euglena gracilis incorporated malonyl-CoA into fatty acids and fatty alcohols in the presence of acetyl-CoA, NADH, NADPH, and ATP with an optimum pH of 8.0. Schmidt degradation of the individual fatty acids derived from [l,3-14C]malonyl-CoA showed that the microsomal fatty acid synthesis was a de novo type. Detailed analysis of the products formed in the absence of various cofactors showed that the role of ATP was specifically in the formation of fatty alcohols and that fatty acid reduction specifically required NADH.The major aliphatic chains synthesized by the microsomes were C16, C18, and C14 in both the acyl portions and alcohols. Although relative concentrations of acetyl-CoA and malonyl-CoA influenced the chain length distribution of products, C16remained the major product in both the alcohol and the acid fractions. Effects of NADPH and NADH concentrations on malonyl-CoA incorporation suggested that the two reductive steps involved in the microsomal fatty acid synthesis have different pyridine nucleotide specificity. The apparent Km for malonyl-CoA was 4.2 × 10?4m. Based on the experimental results a mechanism is suggested by which carbon is channeled into wax esters under conditions of nutritional abundance in dark-grown E. gracilis.  相似文献   

10.
The effect of archidonic, oleic and linoleic acid on calcium uptake and release by sarcoplasmic reticulum isolated from longissimus dorsi muscle was investigated using a Ca2+ electrode. All three long chain fatty acids stimulated the release of Ca2+ from sacroplasmic reticulum when added after exogenous Ca2+ was accumulated by the vesicles, and also inhibited Ca2+ uptake when added before Ca2+. This inhibitory effect on the calcium transport by arachidonic, oleic and linoleic acid was prevented by bovine serum albumin through its ability to bind with the fatty acid. The order of effectiveness of the fatty acids in inhibiting calcium transport by isolated sarcoplasmic reticulum was arachidonic acid> oleic acid > linoleic acid. Similar inhibition of calcium uptake and induction of calcium release by arachidonic acid was observed in muscle homogenate sarcoplasmic reticulum preparations. Both arachidonic and oleic acid stimulated the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum at low concentrations, but inhibited the (Ca2+ + Mg2+)-ATPase activity at high concentrations. The maximal (Ca2+ + Mg2+-ATPase activity observed with arachidonic acid was twice that obtained with oleic acid, but the concentration of arachidonic acid required was 3–4-times greater than that of oleic acid. The concentration of arachidonic acid required to give maximum stimulation of the (Ca2+ + Mg2+)-ATPase activity was 3.6-times greater than that needed for complete inhibition of calcium accumulation by the sacroplasmic reticulum. With oleic acid, however, the concentration required to give maximum stimulation of the (Ca2+ + Mg2+)-ATPase activity inhibited the sarcoplasmic reticulum Ca2+ accumulation by 72%. The present data support our hypothesis that, in porcine malignant hyperthermia, unsaturated fatty acids from mitochondrial membranes released by endogenous phospholipase A2 would induce the sarcoplasmic reticulum to release calcium (Cheah K.S. and Cheah, A.M. (1981) Biochim. Biophys. Acta 634, 70–84).  相似文献   

11.
The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.  相似文献   

12.
—The conversion of [l-14C]palmitic acid to [1-14C]hexadecanol has been demonstrated with a cell-free system from developing rat brain. ATP, Coenzyme A and Mg2+ were required for the activity. Fatty aldehyde was found to be an intermediate in this reaction. The conversion of fatty acid to fatty alcohol was mainly localized in the microsomal fraction and the formation of hexadecanol showed absolute specificity towards NADPH while fatty aldehyde was formed even in the absence of exogenous reduced pyridine nucleotides. The brain microsomes showed maximal activity with stearic acid and the activities with palmitic and oleic acids were 65% and 38% respectively of that with stearic acid. This enzymic reduction increased with age and showed a maximum in the 15-day old rat brain.  相似文献   

13.
Fatty acid synthesis from Na (1-14C) acetate in leucoplasts isolated from developing seeds of Brassica compestris was found to be maximum when leucoplasts were supplied with 0.8 mM acetate, 20 mM NaHCO3, 8 mM ATP, 8 mM MgCl2, 4 mM MnCl2, 0.6 mM CoA, 1 mM NADH, 1 mM NADPH and 0.2 M sorbitol and incubated at 30°C for 2 h. The rate of fatty acid synthesis was highest at pH 8.5 In presence of 0.4 M Bistris-propane buffer and linear for upto 4 h at 30°C with 80–110 μg plastid protein. Sorbitol was an essential requirement as it prevented the rupturing of leucoplasts by osmosis. ATP and divalent cations were almost absolute requirements, whereas nucleotides, CoA and bicarbonate improved the rate of fatty acid synthesis by two to ten folds. Mg2+ and NADH were the preferred cation and nucleotide, respectively. High concentration of dithiothreltol inhibited the incorporation of (14C) acetate Into fatty acids. The system developed as above could be used for in vitro studies.  相似文献   

14.
Saccharomyces cerevisiae is able to use some fatty acids, such as oleic acid, as a sole source of carbon. β-oxidation, which occurs in a single membrane-enveloped organelle or peroxisome, is responsible for the assimilation of fatty acids. In S. cerevisiae, β-oxidation occurs only in peroxisomes, and H2O2 is generated during this fatty acid-metabolizing pathway. S. cerevisiae has three GPX genes (GPX1, GPX2, and GPX3) encoding atypical 2-Cys peroxiredoxins. Here we show that expression of GPX1 was induced in medium containing oleic acid as a carbon source in an Msn2/Msn4-dependent manner. We found that Gpx1 was located in the peroxisomal matrix. The peroxisomal Gpx1 showed peroxidase activity using thioredoxin or glutathione as a reducing power. Peroxisome biogenesis was induced when cells were cultured with oleic acid. Peroxisome biogenesis was impaired in gpx1? cells, and subsequently, the growth of gpx1? cells was lowered in oleic acid-containing medium. Gpx1 contains six cysteine residues. Of the cysteine-substituted mutants of Gpx1, Gpx1C36S was not able to restore growth and peroxisome formation in oleic acid-containing medium, therefore, redox regulation of Gpx1 seems to be involved in the mechanism of peroxisome formation.  相似文献   

15.
Fatty acid and glycerolipid biosynthesis from [14C]acetate by isolated pea root plastids is completely dependent on exogenously supplied ATP. CTP, GTP, and UTP are ineffective in supporting fatty acid biosynthesis, all resulting in <3% of the activity obtained with ATP. However, ADP alone or in combination with inorganic phosphate (Pi) or pyrophosphate (PPi) gave up to 28% of the ATP control activity, whereas AMP + PPi, PPi alone, or Pi alone were ineffective in promoting fatty acid biosynthesis. The components of the dihydroxyacetonephosphate (DHAP) shuttle (DHAP, oxaloacetate, and Pi), which promote intraplastidic ATP synthesis, restored 41% of the control ATP activity, whereas the omission of any of the shuttle components abolished this activity. When the DHAP shuttle components were supplemented with ADP, the rate of fatty acid biosynthesis was completely restored to that observed in the presence of ATP. Under the conditions of ADP + DHAP shuttle-driven fatty acid biosynthesis, exogenously supplied ATP gave only a 6% additional stimulation of activity. In general, variations in the energy source had only small effects on the proportions of radioactive fatty acids and glycerolipids synthesized. Most notably, higher amounts of radioactive oleic acid, free fatty acids, and diacylglycerol and lower amounts of phosphatidic acid were observed when ADP and/or the DHAP shuttle were substituted for ATP. The results presented here indicate that, although isolated pea root plastids readily utilize exogenously supplied ATP for fatty acid biosynthesis, these plastids can also synthesize sufficient ATP when provided with the appropriate cofactors.  相似文献   

16.
Plastids isolated from developing leaves and embryos of oilseed rape (Brassica napus L.) were incubated with substrates in the light or the dark, with or without exogenous ATP. Incorporation of HCO-3, and carbon from a range of substrates into fatty acids and/or starch by leaf chloroplasts was absolutely light-dependent and was unaffected by provision of ATP. Incorporation of HCO-3 into fatty acids and/or starch by embryo plastids was also light-dependent. However, the light-dependent rates attained, when expressed on a comparable basis, were less than 32% of those from Glc6P (plus ATP), which was the most effective substrate for starch and fatty acid synthesis. In the light alone the rates of carbon incorporation from Glc6P, pyruvate and acetate into fatty acids, and from Glc6P into starch by embryo plastids were less than 27% of the respective ATP-dependent (dark) rates. Light had no effect on these ATP-dependent rates of synthesis by embryo plastids. While transporter activities for both glucose and Glc6P were present in embryo plastids, leaf chloroplasts did not have the latter activity. It is concluded that light at in vivo levels can contribute energy to carbon metabolism in embryo plastids. However, this contribution is likely to be small and these plastids are therefore largely dependent upon interaction with the cytosol for the ATP, reducing power and carbon precursors that are required for maximal rates of starch and fatty acid synthesis.  相似文献   

17.
Joo YC  Jeong KW  Yeom SJ  Kim YS  Kim Y  Oh DK 《Biochimie》2012,94(3):907-915
A putative fatty acid hydratase gene from Macrococcus caseolyticus was cloned and expressed in Escherichia coli. The recombinant enzyme was a 68 kDa dimer with a molecular mass of 136 kDa. The enzymatic products formed from fatty acid substrates by the putative enzyme were isolated with high purity (>99%) by solvent fractional crystallization at low temperature. After the identification by GC–MS, the purified hydroxy fatty acids were used as standards to quantitatively determine specific activities and kinetic parameters for fatty acids as substrates. Among the fatty acids evaluated, specific activity and catalytic efficiency (kcat/Km) were highest for oleic acid, indicating that the putative fatty acid hydratase was an oleate hydratase. Hydration occurred only for cis-9-double and cis-12-double bonds of unsaturated fatty acids without any trans-configurations. The maximum activity for oleate hydration was observed at pH 6.5 and 25 °C with 2% (v/v) ethanol and 0.2 mM FAD. Without FAD, all catalytic activity was abolished. Thus, the oleate hydratase is an FAD-dependent enzyme. The residues G29, G31, S34, E50, and E56, which are conserved in the FAD-binding motif of fatty acid hydratases (GXGXXG(A/S)X(15–21)E(D)), were selected by alignment, and the spectral properties and kinetic parameters of their alanine-substituted variants were analyzed. Among the five variants, G29A, G31A, and E56A showed no interaction with FAD and exhibited no activity. These results indicate that G29, G31, and E56 are essential for FAD-binding.  相似文献   

18.
Biosynthetic activity for mycolic acid occurred in the fluffy layer fraction but not in the 5000g supernatant of Bacterionema matruchotii. With [1-14C]palmitic acid as precursor for the in vitro system, the predominant product was identified as C32:0 mycolic acid by radio-gas-liquid chromatographie (radio-GLC) and gas chromatographic/mass spectroscopic analyses; if [1-14C]stearic acid was used, two major radioactive peaks appeared on GLC: one corresponding to the peak of (C34:0 + C34:1) mycolic acids and the other to (C36:0 + C36:1) mycolic acids. By pyrolysis/radio-GLC analysis, C32:0 mycolic acid synthesized by [1-14C]palmitic acid was pyrolyzed at 300 °C to form palmitaldehyde (the mero moiety) and methyl palmitate (the branch moiety). The pH optimum for the incorporation of [1-14C]palmitate into bacterionema mycolic acids was 6.4 and the reaction required a divalent cation. The in vitro system utilized myristic, palmitic, stearic and oleic acids (probably via their activated forms) well as precursors, among which myristic and palmitic acids were more effective than the rest. Avidin showed no effect on the biosynthesis of mycolic acid from 14C-palmitate whereas cerulenin, a specific inhibitor of β-ketoacyl synthetase in de novo fatty acid synthesis, inhibited the reaction at a relatively higher concentration. Thin-layer chromatographic analysis of lipids extracted from the reacting mixture without alkaline hydrolysis showed that both exogenous [1-14] fatty acid and synthesized mycolic acids were bound to an unknown compound by an alkali-labile linkage and this association seemed to occur prior to the condensation of two molecules of fatty acid.  相似文献   

19.
To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates.  相似文献   

20.
The activity of the enzyme involved in catalyzing the formation of fatty acid anilides can be measured by quantitating the fatty acid anilides formed. We have shown earlier that oleic acid is the most preferred substrate among other fatty acids studied for the conjugation with aniline. The reaction product (oleyl anilide) could be separated by thin-layer chromatography (TLC) and then quantified by reversed-phase high-performance liquid chromatography (HPLC). Using [1-14C]oleic acid as substrate, the fatty acid anilide forming activity can be determined in a single step by TLC analysis. The conventional TLC methods used for the separation of the fatty acid esters, however, could not resolve oleyl anilide from the residual [1-14C]oleic acid. Therefore, a simple and reliable TLC method was developed for the separation of oleyl anilide from oleic acid using a freshly prepared solvent consisting of petroleum ether–ethyl acetate–ammonium hydroxide (80:20:1, v/v). Using this solvent system the relative flow (Rf) values were found to be 0.54 for oleyl anilide and 0.34 for aniline, whereas oleic acid remained at the origin. The TLC procedure developed in the present study could be used to determine the fatty acid anilide forming activity using [1-14C]oleic or other fatty acids as substrate and was also found suitable for the analysis of fatty acid anilides from the biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号