首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defensins are a family of host defence peptides that play an important role in the innate immunity of mammalian and avian species. In humans, four beta-defensins have been isolated so far, corresponding to the products of the genes DEFB1 (h-BD1, GenBank accession number NM_005218); DEFB4 (h-Bd2, NM_004942.2), DEFB103 (h-BD3, NM_018661); and DEFB104 (hBD4, NM_080389) mapping on chromosome 8p23.22. We have localized beta-defensin genes on metaphasic chromosomes of great apes and several non-human primate species to determine their physical mapping. Using fluorescent in situ hybridization and BAC probes containing the four beta-defensin genes, we have mapped the homologous regions to the beta-defensin genes on chromosome 8p23-p.22 in non-human primates, while no signals were detected on prosimians chromosomes.  相似文献   

2.
Human beta defensins contribute to the first line of defense against infection of the lung. Polymorphisms in these genes are therefore potential modifiers of the severity of lung disease in cystic fibrosis. Polymorphisms were sought in the human beta-defensin genes DEFB1, DEFB4, DEFB103A, and DEFB104 in healthy individuals and cystic fibrosis (CF) patients living in various European countries. DEFB1, DEFB4, and DEFB104 were very polymorphic, but DEFB103A was not. Within Europe, differences between control populations were found for some of the frequent polymorphisms in DEFB1, with significant differences between South-Italian and Czech populations. Moreover, frequent polymorphisms located in DEFB4 and DEFB104 were not in Hardy Weinberg equilibrium in all populations studied, while those in DEFB1 were in Hardy Weinberg equilibrium. Sequencing of a monochromosomal chromosome 8 mouse-human hybrid cell line revealed signals for multiple alleles for some loci in DEFB4 and DEFB104, but not for DEFB1. This indicated that more than one DEFB4 and DEFB104 gene was present on this chromosome 8, in agreement with recent findings that DEFB4 and DEFB104 are part of a repeat region. Individual DEFB4 and DEFB104 PCR amplification products of various samples were cloned and sequenced. The results showed that one DNA sample could contain more than two haplotypes, indicating that the various repeats on one chromosome were not identical. Given the higher complexity found in the genomic organization of the DEFB4 and DEFB104 genes, association studies with CF lung disease severity were performed only for frequent polymorphisms located in DEFB1. No association with the age of first infection by Pseudomonas aeruginosa or with the FEV1 percentage at the age of 11-13 years could be found.  相似文献   

3.
Defensins are a class of small cationic peptides found in higher organisms that serve as both antimicrobial and cell signaling molecules. The exact mechanism of the antimicrobial activity of defensins is not known, but two models have been postulated, one involving pore formation and the other involving nonspecific electrostatic interaction with the bacterial membrane. Here we report the high resolution structures of human beta-defensin-1 (hBD1) in two crystallographic space groups. The structure of a single molecule is very similar to that of human beta-defensin-2 (hBD2), confirming the presence of an N-terminal alpha-helix. However, while the packing of hBD1 is conserved across both space groups, there is no evidence for any larger quaternary structure similar to octameric hBD2. Furthermore, the topology of hBD1 dimers that are formed between monomers in the asymmetric unit is distinct from both hBD2 and other mammalian alpha-defensins. The structures of hBD1 and hBD2 provide a first step toward understanding the structural basis of antimicrobial and chemotactic properties of human beta-defensins.  相似文献   

4.
Beta-defensins are cationic antimicrobial peptides expressed by epithelial cells and exhibit antibacterial, antifungal, and antiviral properties. The defensins are part of the innate host defense network and may have a significant protective role in the oral cavity and other mucosa. Defects or alteration in expression of the beta-defensins may be associated with susceptibility to infection and mucosal disorders. We examined the occurrence of single-nucleotide polymorphisms (SNPs) in the human beta-defensin genes DEFB1 and DEFB2 encoding human beta-defensin-1 and -2 (hBD-1, hBD-2), respectively, in five ethnic populations and defined haplotypes in these populations. Fifteen SNPs were identified in both DEFB1 and DEFB2. Coding region SNPs were found in very low frequency in both genes. One nonsynonymous DEFB1 SNP, G1654A (Val --> Ile), and one nonsynonymous DEFB2 SNP, T2312A (Leu --> His), were identified. Seven sites in each gene exhibited statistically significant differences in frequency between ethnic groups, with the greatest variation in the promoter and in the 5'-untranslated region of DEFB1. DEFB1 displayed 10 common haplotypes, including one cosmopolitan haplotype. Eight common haplotypes were found in DEFB2, including one cosmopolitan haplotype shared among all five ethnic groups. Our results show that genotypic variability among ethnic groups will need to be addressed when performing associative genetic studies of innate defense mechanisms and susceptibility to disease.  相似文献   

5.

Background  

Defensins, small endogenous peptides with antimicrobial activity, are pivotal components of the innate immune response. A large cluster of defensin genes is located on human chromosome 8p; among them the beta defensin 1 (DEFB1) promoterhas been extensively studied since discovery that specific polymorphisms and haplotypes associate with asthma and atopy, susceptibility to severe sepsis, as well as HIV and Candida infection predisposition.  相似文献   

6.
Defensins, a family of antimicrobial peptides, are one of the first lines of host defense. Human beta-defensins (hBD) such as hBD-2 and -3 have anti-HIV activity. Previous studies have shown that HIV-1 virion can induce the expression of hBD, although the exact components of HIV-1 virion that are responsible for hBD expression have not yet been elucidated. In this study, we examined the effect of HIV-1 Tat on the expression of hBD in B cells. Stimulation of B cells with HIV-1 Tat protein significantly increased the mRNA and protein levels of hBD-2. HIV-1 Tat also induced the activation of a reporter gene for hBD-2 in a dose-dependent manner in B cells. Pretreatment of B cells with a JNK inhibitor suppressed HIV-1 Tat-induced hBD-2 expression. Pretreatment of B cells with AP-1 inhibitors or NF-κB inhibitors led to a decrease in HIV-1 Tat-induced protein and mRNA expression of hBD-2. Taken together, our results indicate that HIV-1 Tat can up-regulate the expression of hBD-2 via JNK-NF-κB/AP-1-dependent pathways in human B cells.  相似文献   

7.
8.
9.
Sequence analysis of a 212 kb defensin gene cluster on ECA 27q17   总被引:1,自引:0,他引:1  
Defensins are a family of evolutionary ancient antimicrobial peptides consisting of three sub-families: alpha-, beta- and theta-defensins. This investigation was focused on the genomic characterization of equine beta-defensins and the investigation of the potential clustering of beta-defensin genes in the equine genome. Six genomic BAC clones were isolated from the CHORI-241 library and one of these was mapped by FISH to ECA 27q17. This location was confirmed by RH-mapping. The contiguous 212 kb sequence of this clone was determined. Sequence analysis revealed the identification of ten pseudogenes and nine genes, six of which were highly homologous to human beta-defensin DEFB4. Clustering of the beta-defensin genes was confirmed and the order of the genes on the analyzed BAC was related to the corresponding defensin cluster on HSA 8. The knowledge about the sequence and the genomic structure of the equine beta-defensin genes will improve the classification of different paralogous defensin genes and is a prerequisite for subsequent functional studies. Additionally, the first alpha-defensin-like sequence outside the groups of primates, lagomorphs and rodents (glires) was identified.  相似文献   

10.
A 450-kb contig of defensin genes on human chromosome 8p23.   总被引:10,自引:0,他引:10  
R Linzmeier  C H Ho  B V Hoang  T Ganz 《Gene》1999,233(1-2):205-211
Defensins are a large family of host defense peptides expressed in leukocytes and epithelia. Using P1 and BAC clones, we have determined the organization of the human alpha-defensin genes and the beta-defensin gene HDEFB1 on chromosome 8p23. From the telomere, the order of the genes (with encoded peptides in parentheses) is HDEFA5 (HD-5), HDEFA1/1A (HNP-1/3), HDEFA4 (HNP-4), HDEFA6 (HD-6), and HDEFB1 (HBD-1). These genes span a region of approximately 450kb. Genes encoding intestinal Paneth cell defensins (HDEFA5 and HDEFA6) flank the myeloid defensin gene cluster (HDEFA1, HDEFA1A, HDEFA4). Based on our previous studies, the remaining known defensin gene, HDEFB2 (HBD-2), is about 400kb centromeric to HDEFB1. This map supports the hypothesis, originally proposed because of sequence similarities, that myeloid alpha-defensin genes evolved by reduplication and divergence from Paneth cell defensin genes, and identifies regions and clones, which should be useful in the search for new defensin genes.  相似文献   

11.
Assignment of defensin gene(s) to human chromosome 8p23   总被引:8,自引:0,他引:8  
A relatively abundant component of the polymorphonuclear leukocyte granulocytes has been recently isolated and called defensin. Defensins have antimicrobial activity against gram-positive and gram-negative bacteria and enveloped viruses. A cDNA insert for defensin HNP-1 (DEF1) has been used to map the gene(s) to human chromosome 8p23 using a mouse/human somatic cell hybrid panel and in situ hybridization to normal human metaphase chromosomes. Because of the similarity of HNP-1 defensin to other defensins, it is likely that two of these genes map to this region.  相似文献   

12.
13.

Background

Human beta-defensins (hBDs) are antimicrobial peptides known to play a major role in intestinal innate host defence. Altered mucosal expression of hBDs has been suggested to be implicated in chronic inflammatory bowel disease pathogenesis. However, little is known about expression of these peptides in children.

Methods

Intestinal biopsies were obtained from the duodenum (n = 88), terminal ileum (n = 90) and ascending colon (n = 105) of children with Crohn''s disease (n = 26), ulcerative colitis (n = 11) and healthy controls (n = 16). Quantitative real-time (RT) PCR was performed and absolute mRNA copy numbers analyzed for hBD1-3 as well as inflammatory cytokines IL-8 and TNF-alpha.

Results

Significant induction of hBD2 and hBD3 was observed in the inflamed terminal ileum and ascending colon of IBD children. In the ascending colon induction of hBD2 was found to be significantly lower in children with Crohn''s disease compared to ulcerative colitis. A strong correlation was found between inducible defensins hBD2 and 3 and the inflammatory cytokines IL-8 and TNF-alpha, both in the terminal ileum and ascending colon.

Conclusion

Our study demonstrates distinct changes in hBD expression throughout the intestinal tract of children with IBD, lending further support for their potential role in disease pathogenesis.  相似文献   

14.
The cytosolic innate immune molecule, NOD1, recognizes peptidoglycan (PG) delivered to epithelial cells via the Helicobacter pylori cag pathogenicity island (cagPAI), and has been implicated in host defence against cagPAI+H. pylori bacteria. To further clarify the role of NOD1 in host defence, we investigated NOD1‐dependent regulation of human β‐defensins (DEFBs) in two epithelial cell lines. Our findings identify that NOD1 activation, via either cagPAI+ bacteria or internalized PG, was required for DEFB4 and DEFB103 expression in HEK293 cells. To investigate cell type‐specific induction of DEFB4 and DEFB103, we generated stable NOD1‘knockdown’ (KD) and control AGS cells. Reporter gene assay and RT‐PCR analyses revealed that only DEFB4 was induced in an NOD1‐/cagPAI‐dependent fashion in AGS cells. Moreover, culture supernatants from AGS control, but not AGS NOD1 KD cells, stimulated with cagPAI+H. pylori, significantly reduced H. pylori bacterial numbers. siRNA studies confirmed that human β‐defensin 2 (hBD‐2), but not hBD‐3, contributes to the antimicrobial activity of AGS cell supernatants against H. pylori. This study demonstrates, for the first time, the involvement of NOD1 and hBD‐2 in direct killing of H. pylori bacteria by epithelial cells and confirms the importance of NOD1 in host defence mechanisms against cagPAI+H. pylori infection.  相似文献   

15.

Introduction

Human beta-defensins are key components of human innate immunity to a variety of pathogens, including Staphylococcus aureus. The aim of the present study was to investigate a potential association between gene variations in DEFB1 and DEFB103/DEFB4 and the development of S. aureus bacteremia (SAB) employing a case-control design.

Methods

Cases were unique patients with documented SAB, identified with the National S. aureus Bacteremia Register, a comprehensive dataset of all episodes of community associated-SABs (CA-SAB) occurring in children (≤20 yrs) in Denmark from 1990 to 2006. Controls were age-matched healthy individuals with no history of SAB. DNA obtained from cases and controls using the Danish Newborn Screening Biobank were genotyped for functional polymorphisms of DEFB1 by Sanger sequencing and copy number variation of the DEFB103 and DEFB4 genes using Pyrosequencing-based Paralogue Ratio Test (P-PRT).

Results

193 ethnic Danish SAB cases with 382 age-matched controls were used for this study. S. aureus isolates represented a variety of bacterial (i.e., different spa types) types similar to SAB isolates in general. DEFB1 minor allele frequencies of rs11362 (cases vs. controls 0.47/0.44), rs1800972 (0.21/0.24), and rs1799946 (0.32/0.33) were not significantly different in cases compared with controls. Also, DEFB4/DEFB103 gene copy numbers (means 4.83/4.92) were not significantly different in cases compared with controls.

Conclusions

Using a large, unique cohort of pediatric CA-SAB, we found no significant association between DEFB1 genetic variation or DEFB4/DEFB103 gene copy number and susceptibility for SAB.  相似文献   

16.
We recently reported the isolation of human β-defensin-2 (hBD-2), a novel epithelia-derived peptide antibiotic belonging to the β-defensin family. hBD-2 is expressed in skin and epithelia of the airway system, where it is believed to contribute to its antimicrobial defense. By fluorescencein situhybridization using a hBD-2 genomic DNA probe and subsequent fluorescence R-banding, the hBD-2 gene (HGMW-approved symbol DEFB2) was assigned to human chromosome region 8p22–p23.1. PCR with a set of CEPH YAC clones spanning this chromosomal region revealed CEPH YACs 773G4, 920D12, and 820B4 to contain the hBD-2 gene. Relying on the preexisting physical maps of 8p22–p23.1, the hBD-2 gene was mapped in close proximity to D8S1993 (WI-9956) within the interval flanked by D8S552 and D8S1130 (CHLC.GATA25C10). The fact that all currently described genes encoding defensins map to chromosome 8p21–pter suggests that a gene cluster in this chromosomal region may play a major role in antimicrobial defense.  相似文献   

17.
Host-pathogen interactions that allow Helicobacter pylori to survive and persist in the stomach of susceptible individuals remain unclear. Human beta-defensins (hBDs), epithelial-derived antimicrobial peptides are critical components of host-defense at mucosal surfaces. The role of H. pylori-mediated NF-kappaB and epidermal growth factor receptor (EGFR) activation on beta-defensin expression was investigated. Transient transfection studies utilizing beta-defensin promoter constructs were conducted in gastric cells with contribution of individual signaling events evaluated by the addition of specific inhibitors, small interference nucleotide-binding oligomerization domain 1 (NOD1) RNA or plasmids encoding Vaccinia virus proteins that interrupt interleukin-1 and Toll-like receptor signaling. The role of individual MAPK pathways was further delineated in HEK-293 cells expressing conditional MAPK mutants. We found hBD2 expression exclusively dependent on the presence of the bacterial cag pathogenicity island, with NOD1 a critical host sensor. Impairment of murinebeta-defensin 4 (an orthologue of hBD2) expression in NOD1-deficient mice 7-days post-infection further confirmed the role of this cytoplasmic pattern-recognition receptor in eliciting host innate immunity. In contrast to hBD2, hBD3 expression was NOD1-independent but EGFR and ERK pathway-dependent. Importantly, Toll-like receptor signaling was not implicated in H. pylori-mediated hBD2 and hBD3 gene expression. The divergent signaling events governing hBD2 and hBD3 expression suggest temporal functional variation, such that hBD2 may contribute to antimicrobial barrier function during the inflammatory phase with hBD3 playing a greater role during the repair, wound healing phase of infection.  相似文献   

18.
On-going airway inflammation is characteristic for the pathophysiology of chronic obstructive pulmonary disease (COPD). However, the key factors determining the decrease in lung function, an important clinical parameter of COPD, are not clear. Genome-wide linkage analyses provide evidence for significant linkage to airway obstruction susceptibility loci on chromosome 8p23, the location of the human defensin gene cluster. Moreover, a genetic variation in the defensin beta 1 (DEFB1) gene was found to be associated with COPD. Therefore, we hypothesized that DEFB1 is differently regulated and expressed in human lungs during COPD progression. Gene expression of DEFB1 was assessed in bronchial epithelium and BAL fluid cells of healthy controls and patients with COPD and using bisulfite sequencing and ChIP analysis, the epigenetic control of DEFB1 mRNA expression was investigated. We can demonstrate that DEFB1 mRNA expression was significantly increased in bronchopulmonary specimen of patients with COPD (n = 34) vs. healthy controls (n = 10) (p<0.0001). Furthermore, a significant correlation could be detected between DEFB1 and functional parameters such as FEV1 (p = 0.0024) and the FEV1/VC ratio (p = 0.0005). Upregulation of DEFB1 mRNA was paralleled by changes in HDAC1-3, HDAC5 and HDAC8 mRNA expression. Whereas bisulfite sequencing revealed no differences in the methylation state of DEFB1 promoter between patients with COPD and controls, ChIP analysis showed that enhanced DEFB1 mRNA expression was associated with the establishment of an active histone code. Thus, expression of human DEFB1 is upregulated and related to the decrease in pulmonary function in patients with COPD.  相似文献   

19.
Werner syndrome (WRN) is an inherited disorder that produces symptoms of premature aging. This disease is caused by a recessive mutation that has previously been mapped to chromosome 8p. We have now used genetic linkage analysis to map the WRN gene relative to chromosome 6 reference loci, to screen candidate genes, and to identify a novel dinucleotide repeat polymorphic marker closely linked to WRN. The WRN locus was mapped relative to the marker loci, PLAT, ANK1, D8S135, and D8S87 of the comprehensive chromosome 8 linkage map. The heregulin (HRG) and the fibroblast growth factor receptor 1 genes (FGFR1) have been mapped to chromosome 8p and are involved in cellular growth. Recombination events were detected between WRN and the HRG and FGFR1 genes, excluding them as candidates for the WRN gene. A polymorphic marker generated in this study, WT251, is linked to WRN at a recombination fraction of 0.006, with a lod score of 16.5.  相似文献   

20.
Linzmeier RM  Ganz T 《Genomics》2005,86(4):423-430
To investigate defensin gene copy number polymorphisms, a quantitative real-time PCR assay was developed and used to study DNA from 27 unrelated individuals of diverse ethnic and racial backgrounds. The DEFB4 and DEFB103A genes varied in tandem, with copy numbers 2 to 8, with a mode of 6 per diploid genome (PDG). The combined copy numbers of the DEFA1 and DEFA3 genes ranged from 5 to 14, with a mode of 10 copies PDG. The copy numbers of the DEFA1/3 genes varied independently of those of the DEFB4 and DEFB103A genes. The amount of HNP-1 and HNP-3 peptides expressed in neutrophils was found to be proportional to the combined copy number of DEFA1 and DEFA3. The DEFA3 allele was absent in 7/27 subjects. The highly copy-number-variable DEFA1 and DEFA3 genes are flanked by other defensin genes present uniformly at 2 copies PDG. The remarkable variability in defensin gene copy numbers could contribute to differences in individual resistance to infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号