首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion channels in human endothelial cells.   总被引:4,自引:0,他引:4  
Ion channels were studied in human endothelial cells from umbilical cord by the patch clamp technique in the cell attached mode. Four different types of ion channels were recorded: i) potassium channel current that rectifies at positive potentials in symmetrical potassium solutions (inward rectifier); ii) low-conductance non-selective cation channel with a permeability ratio K:Na:Ca = 1:0.9:0.2; iii) high-conductance cation-selective channel that is about 100 times more permeable for calcium than for sodium or potassium; iv) high-conductance potassium channel with a permeability ratio K:Na = 1:0.05. The extrapolated reversal potential of the inwardly rectifying current was near to the potassium equilibrium potential. The slope conductance decreased from 27 pS in isotonic KCl solution to 7 pS with 5.4 mmol/l KCl and 140 mmol/l NaCl in the pipette but 140 mmol/l KCl in the bath. The low-conductance non-selective cation channel showed a single-channel conductance of 26 pS with 140 mmol/l Na outside, 28 pS with 140 mmol/l K outside, and rectified in inward direction in the presence of Ca (60 mmol/l Ca, 70 mmol/l Na, 2.7 mmol/l K in the pipette) at negative potentials. The current could be observed with either chloride or aspartate as anion. The high-conductance non-selective channel did not discriminate between Na and K. The single-channel conductance was about 50 pS. The extrapolated reversal potential was more positive than +40 mV (140 K or 140 Na with 5 Ca outside). Both the 26 and 50 pS channel showed a run-down, and they rapidly disappeared in excised patches. The high-conductance potassium channel with a single-channel conductance of 170 pS was observed only rarely. It reversed near the expected potassium equilibrium potential. The 26 pS channel could be stimulated with histamine and thrombin from outside in the cell-attached mode. Both the 26 pS as well as the 50 pS channel can mediate calcium flux into the endothelial cell.  相似文献   

2.
In the present study we used established methods to obtain apical membrane vesicles from the toad urinary bladder and incorporated these membrane fragments to solvent-free planar lipid bilayer membranes. This resulted in the appearance of a macroscopic conductance highly sensitive to the diuretic amiloride added to the cis side. The blockage is voltage dependent and well described by a model which assumes that the drug binds to sites in the channel lumen. This binding site is localized at about 15% of the electric field across the membrane. The apparent inhibition constant (K(0)) is equal to 0.98 microM. Ca2+, in the micromolar range on the cis side, is a potent blocker of this conductance. The effect of the divalent has a complex voltage dependence and is modulated by pH. At the unitary level we have found two distinct amiloride-blockable channels with conductances of 160 pS (more frequent) and 120 pS. In the absence of the drug the mean open time is around 0.5 sec for both channels and is not dependent on voltage. The channels are cation selective (PNa/PCl = 15) and poorly discriminate between Na+ and K+ (PNa/PK = 2). Amiloride decreases the lifetime in the open state of both channels and also the conductance of the 160-pS channel.  相似文献   

3.
Purified bovine renal papillary Na+ channels, when reconstituted into planar lipid bilayers, reside in three conductance states: a 40-pS main state, and two subconductive states (12-13 pS and 24-26 pS). The activity of these channels is regulated by phosphorylation and by G-proteins. Protein kinase A (PKA)-induced phosphorylation increased channel activity by increasing the open state time constants from 160 +/- 30 (main conductance), and 15 +/- 5 ms (both lower conductances), respectively, to 365 +/- 30 ms for all of them. PKA phosphorylation also altered the closed time of the channel from 250 +/- 30 ms to 200 +/- 35 ms, thus shifting the channel into a lower-conductance, long open time mode. PKA phosphorylation increased the PNa:PK of the channel from 7:1 to 20:1, and shifted the amiloride inhibition curve to the right (apparent K(i)amil from 0.7 to 20 microM). Pertussis toxin-induced ADP-ribosylation of either phosphorylated of either phosphorylated or nonphosphorylated channels decreased the PNa:PK to 2:1 and 4:1, respectively, and altered K(i)amil to 8 and 2 microM for phosphorylated and nonphosphorylated channels, respectively. GTP-gamma-S treatment of either phosphorylated or nonphosphorylated channels resulted in an increase of PNa:PK to 30:1 and 10:1, respectively, and produced a leftward shift in the amiloride dose-response curve, altering K(i)amil to 0.5 and 0.1 microM, respectively. These results suggest that amiloride-sensitive renal Na+ channel biophysical characteristics are not static, but depend upon the biochemical state of the channel protein and/or its associated G-protein.  相似文献   

4.
The Arg615 to Cys615 mutation of the sarcoplasmic reticulum (SR) Ca2+ release channel of malignant hyperthermia susceptible (MHS) pigs results in a decreased sensitivity of the channel to inhibitory Ca2+ concentrations. To investigate whether this mutation also affects the ion selectivity filter of the channel, the monovalent cation conductances and ion permeability ratios of single Ca2+ release channels incorporated into planar lipid bilayers were compared. Monovalent cation conductances in symmetrical solutions were: Li+, 183 pS +/- 3 (n = 21); Na+, 474 pS +/- 6 (n = 29); K+, 771 pS +/- 7 (n = 29); Rb+, 502 pS +/- 10 (n = 22); and Cs+, 527 pS +/- 5 (n = 16). The single-channel conductances of MHS and normal Ca2+ release channel were not significantly different for any of the monovalent cations tested. Permeability ratios measured under biionic conditions had the permeability sequence Ca2+ >> Li+ > Na+ > K+ > or Rb+ > Cs+, with no significant difference noted between MHS and normal channels. This systematic examination of the conduction properties of the pig skeletal muscle Ca2+ release channel indicated a higher Ca2+ selectivity (PCa2+:Pk+ approximately 15.5) than the sixfold Ca2+ selectivity previously reported for rabbit skeletal (Smith et al., 1988) or sheep cardiac muscle (Tinker et al., 1992) Ca2+ release channels. These results also indicate that although Ca2+ regulation of Ca2+ release channel activity is altered, the Arg615 to Cys615 mutation of the porcine Ca2+ release channel does not affect the conductance or ion selectivity properties of the channel.  相似文献   

5.
Aconitine-modified sodium channels in the neuroblastoma cell membrane were investigated with patch-clamp technique in outside-out configuration. When aconitine (0.1 mmol/l) was present in the pipette solution two types of modified single sodium channels were observed. The first type showed openings with normal amplitude (slope conductance 15.5 pS) and bursting behaviour. The second type of modified channel openings was characterized with low amplitude (slope conductance 2.8 pS) and longer open time as comparing to unmodified channels. The low-amplitude channels were shown to have altered ion selectivity: they were permeable to NH4+. Both populations of aconitine-modified channels could be blocked by tetrodotoxin. In contrast to macroscopic current experiments (Mozhayeva et al. 1977) the development of aconitine modification was not affected by repetitive stimulation and external application of the agent had no effect on single sodium channels in outside-out membrane patch.  相似文献   

6.
Studies on ion channel currents in freshly isolated murine B lymphocytes with the patch clamp technique revealed the presence of a non-selective anion channel of large conductance in inside-out (i/o) patches. This channel is characterized here according to its unitary conductance, ion selectivity, regulatory factors, distribution and kinetic behaviour. With a unitary conductance of 348 +/- 4.4 pS in a normal physiological ion gradient, it exhibited an indiscriminate selectivity to cations (Na+ and K+). Selectivity to chloride over sodium was established by substitution of high concentrations of NaCl (450 mM) in the bath (i/o patches), resulting in a selectivity ratio (PCl/PNa) of 33. Selectivity to chloride over potassium was confirmed in a similar manner by substitution of TEA-Cl for KCl, yielding a selectivity ratio (PCl/Pk) greater than 80. Conductance of aspartate through the channel demonstrated the non-selective nature of this anion channel. Voltage proved to be a regulatory factor but other influences on channel activity were also present, including the configuration of the patch (channel is inactive in cell attached patches), and the enhancement of activity at negative membrane voltages by previous pulsing. Intracellular levels of calcium (i/o patches) did not appear to control channel conductances or regulate kinetic activity. Kinetic behaviour of this channel was complex, with periods of bursting and flickering activity interspersed with prolonged closed/open intervals. Multiple subconductance states were also present. The complex properties and behaviour of this channel suggest a possible role in signal transduction in B cell activation.  相似文献   

7.
M Chua  W J Betz 《Biophysical journal》1991,59(6):1251-1260
The channels present on the surface membrane of isolated rat flexor digitorum brevis muscle fibers were surveyed using the patch clamp technique. 85 out of 139 fibers had a novel channel which excluded the anions chloride, sulfate, and isethionate with a permeability ratio of chloride to sodium of less than 0.05. The selectivity sequence for cations was Na+ = K+ = Cs+ greater than Ca++ = Mg++ greater than N-Methyl-D-Glucamine. The channel remained closed for long periods, and had a large conductance of approximately 320 pS with several subconductance states at approximately 34 pS levels. Channel activity was not voltage dependent and the reversal potential for cations in muscle fibers of approximately 0 mV results in the channel's behaving as a physiological leakage conductance. Voltage activated potassium channels were present in 65 of the cell attached patches and had conductances of mostly 6, 12, and 25 pS. The voltage sensitivity of the potassium channels was consistent with that of the delayed rectifier current. Only three patches contained chloride channels. The scarcity of chloride channels despite the known high chloride conductance of skeletal muscle suggests that most of the chloride channels must be located in the transverse tubular system.  相似文献   

8.
We have applied patch-clamp techniques to on-cell and excised-membrane patches from human retinal pigment epithelial cells in tissue culture. Single-channel currents from at least four ion channel types were observed: three or more potassium-selective channels with single-channel slope conductances near 100, 45, and 25 pS as measured in on-cell patches with physiological saline in the pipette, and a relatively nonselective channel with subconductance states, which has a main-state conductance of approximately 300 pS at physiological ion concentrations. The permeability ratios, PK/PNa, measured in excised patches were 21 for the 100-pS channels, 3 for the 25-pS channels, and 0.8 for the 300-pS nonselective channel. The 45-pS channels appeared to be of at least two types, with PK/PNa's of approximately 41 for one type and 3 for the other. The potassium-selective channels were spontaneously active at all potentials examined. The average open time for these channels ranged from a few milliseconds to many tens of milliseconds. No consistent trend relating potassium-selective channel kinetics to membrane potential was apparent, which suggests that channel activity was not regulated by the membrane potential. In contrast to the potassium-selective channels, the activity of the nonselective channel was voltage dependent: the open probability of this channel declined to low values at large positive or negative membrane potentials and was maximal near zero. Single-channel conductances observed at several symmetrical KCl concentrations have been fitted with Michaelis-Menten curves in order to estimate maximum channel conductances and ion-binding constants for the different channel types. The channels we have recorded are probably responsible for the previously observed potassium permeability of the retinal pigment epithelium apical membrane.  相似文献   

9.
Currents through single cardiac sodium channels have been measured in inside-out patches from guinea pig ventricular cells. To abolish the fast inactivation, Na channels were modified by DPI 201–106. In symmetrical Na solutions, a diminution of outward sodium currents can be observed that depends on the intracellular magnesium concentration and the membrane potential. Inward currents were not altered by the concentrations of magnesium used (between 0 and 22.5 mmol/1). In Mg free solutions a linear current-voltage relation can also be measured in the range of outward Na currents. At +60 mV (symmetrical Na solutions, single channel conductance 24 pS) a half maximal block of cardiac Na channels by intracellular magnesium was found at 2.1 mmol/l. From the analysis of single channel current-voltage relationships the concentration and voltage-dependent block by intracellular magnesium of cardiac sodium channels could be described as binding of Mg at one site with a K d value of 5.1 mmol/1 at 0 mV. The site is located at an electrical distance of 0.18 from the inside. Offprint requests to: B. Nilius  相似文献   

10.
A cation selective channel was identified in the apical membrane of fetal rat (Wistar) alveolar type II epithelium using the patch clamp technique. The single channel conductance was 23 +/- 1.2 pS (n = 16) with symmetrical NaCl (140 mM) solution in the bath and pipette. The channel was highly permeable to Na+ and K+ (PNa/PK = 0.9) but essentially impermeant to chloride and gluconate. Membrane potential did not influence open state probability when measured in a high Ca2+ (1.5 mM) bath. The channel reversibly inactivated when the bath was exchanged with a Ca(2+)-free (less than 10(-9) M) solution. The Na+ channel blocker amiloride (10(-6) M) applied to the extracellular side of the membrane reduced P(open) relative to control patches; P(control) = 0.57 +/- 0.11 (n = 5), P(amiloride) = 0.09 +/- 0.07 (n = 4, p less than 0.01), however, amiloride did not significantly influence channel conductance (g); g(control) 19 +/- 0.9 pS (n = 5), 18 +/- 3.0 pS (n = 4). More than one current level was observed in 42% (16/38) of active patches; multiple current levels (ranging from 2 to 6) were of equal amplitude suggesting the presence of multiple channels or subconductance states. Channel activity was also evident in cell attached patches. Since monolayers of these cells absorb Na+ via an amiloride sensitive transport mechanism we speculate that this amiloride sensitive cation selective channel is a potential apical pathway for electrogenic Na+ transport in the alveolar region of the lung.  相似文献   

11.
The urinary bladder of euryhaline teleost is an important osmoregulatory organ which absorbs Na+, Cl-, and water from urine. Using patch clamp technique, single stretch-activated channels, which were permeable to K+ and Na+ (PNa/PK approximately 0.75) and had conductances of 55 and 116 pS, were studied. In excised, inside-out patches which were voltage-clamped in the physiological range of membrane potential, the single-channel open probability (Po) was low (approximately 0.02), and increased to a maximum of 0.9 with applied pipette suction. Single-channel conductance also increased with suction. The channels showed adaptation to applied suction and relaxed to a steady-state activity about 20 seconds after application of suction. The Po increased up to 0.9 with strong membrane depolarization (Vm = 0 to +80 mV); however, there was little dependence of Po on membrane potential in the physiological range. The kinetic data suggest that there is one conducting state and at least two non-conducting states of the channel. The open-time constant increased with suction but remained unchanged with membrane potential (Vm = -70 to +60 mV). The mean closed-time of the channel decreased with suction and membrane depolarization. These results demonstrate the presence of a non-selective monovalent cation channel which may be involved in cell volume regulation in the goby urinary bladder. Additionally, this channel may function as an enhancer of Na+ influx and K+ efflux across the bladder cell as part of transepithelial ion transport if it is located in apical membrane.  相似文献   

12.
A novel potassium-selective channel which is active at membrane potentials between -100 mV and +40 mV has been identified in peripheral myelinated axons of Xenopus laevis using the patch-clamp technique. At negative potentials with 105 mM-K on both sides of the membrane, the channel at 1 kHz resolution showed a series of brief openings and closings interrupted by longer closings, resulting in a flickery bursting activity. Measurements with resolution up to 10 kHz revealed a single-channel conductance of 49 pS with 105 mM-K and 17 pS with 2.5 mM-K on the outer side of the membrane. The channel was selective for K ions over Na ions (PNa/PK = 0.033). The probability of being within a burst in outside-out patches varied from patch to patch (> 0.2, but often > 0.9), and was independent of membrane potential. Open-time histograms were satisfactorily described with a single exponential (tau o = 0.09 msec), closed times with the sum of three exponentials (tau c = 0.13, 5.9, and 36.6 msec). Sensitivity to external tetraethylammonium was comparatively low (IC50 = 19.0 mM). External Cs ions reduced the apparent unitary conductance for inward currents at Em = -90 mV (IC50 = 1.1 mM). Ba and, more potently, Zn ions lowered not only the apparent single-channel conductance but also open probability. The local anesthetic bupivacaine with high potency reduced probability of being within a burst (IC50 = 165 nM). The flickering K channel is clearly different from the other five types of K channels identified so far in the same preparation. We suggest that this channel may form the molecular basis of the resting potential in vertebrate myelinated axons.  相似文献   

13.
The apically restricted, voltage-dependent K+ conductance of Necturus taste receptor cells was studied using cell-attached, inside-out and outside-out configurations of the patch-clamp recording technique. Patches from the apical membrane typically contained many channels with unitary conductances ranging from 30 to 175 pS in symmetrical K+ solutions. Channel density was so high that unitary currents could be resolved only at negative voltages; at positive voltages patch recordings resembled whole-cell recordings. These multi-channel patches had a small but significant resting conductance that was strongly activated by depolarization. Patch current was highly K+ selective, with a PK/PNa ratio of 28. Patches containing single K+ channels were obtained by allowing the apical membrane to redistribute into the basolateral membrane with time. Two types of K+ channels were observed in isolation. Ca(2+)-dependent channels of large conductance (135-175 pS) were activated in cell-attached patches by strong depolarization, with a half-activation voltage of approximately -10 mV. An ATP-blocked K+ channel of 100 pS was activated in cell-attached patches by weak depolarization, with a half-activation voltage of approximately -47 mV. All apical K+ channels were blocked by the sour taste stimulus citric acid directly applied to outside-out and perfused cell-attached patches. The bitter stimulus quinine also blocked all channels when applied directly by altering channel gating to reduce the open probability. When quinine was applied extracellularly only to the membrane outside the patch pipette and also to inside-out patches, it produced a flickery block. Thus, sour and bitter taste stimuli appear to block the same apical K+ channels via different mechanisms to produce depolarizing receptor potentials.  相似文献   

14.
These studies examine the properties of an apical potassium (K+) channel in macula densa cells, a specialized group of cells involved in tubuloglomerular feedback signal transmission. To this end, individual glomeruli with thick ascending limbs (TAL) and macula densa cells were dissected from rabbit kidney and the TAL covering macula densa cells was removed. Using patch clamp techniques, we found a high density (up to 54 channels per patch) of K+ channels in the apical membrane of macula densa cells. An inward conductance of 41.1 +/- 4.8 pS was obtained in cell-attached patches (patch pipette, 140 mM K+). In inside- out patches (patch pipette, 140 mM; bath, 5 mM K+), inward currents of 1.1 +/- 0.1 pA (n = 11) were observed at 0 mV and single channel current reversed at a pipette potential of -84 mV giving a permeability ratio (PK/PNa) of over 100. In cell-attached patches, mean channel open probability (N,Po, where N is number of channels in the patch and Po is single channel open probability) was unaffected by bumetanide, but was reduced from 11.3 +/- 2.7 to 1.6 +/- 1.3 (n = 5, p < 0.02) by removal of bath sodium (Na+). Simultaneous removal of bath Na+ and calcium (Ca2+) prevented the Na(+)-induced decrease in N.Po indicating that the effect of Na+ removal on N.Po was probably mediated by stimulation of Ca2+ entry. This interpretation was supported by studies where ionomycin, which directly increases intracellular Ca2+, produced a fall in N.Po from 17.8 +/- 4.0 to 5.9 +/- 4.1 (n = 7, p < 0.02). In inside- out patches, the apical K+ channel was not sensitive to ATP but was directly blocked by 2 mM Ca2+ and by lowering bath pH from 7.4 to 6.8. These studies constitute the first single channel observations on macula densa cells and establish some of the characteristics and regulators of this apical K+ channel. This channel is likely to be involved in macula densa transepithelial Cl- transport and perhaps in the tubuloglomerular feedback signaling process.  相似文献   

15.
Sodium currents were recorded in cell-attached and inside-out patches from the innervated membrane of Electrophorus electrocytes. Electrocytes from Sachs and main electric organs were prepared as described by Pasquale et al. (1986. J. Membr. Biol. 93:195.). Maximal currents in the Sachs organ, measured with 1-2 microns diameter patch pipettes and at room temperature, were in the range of 20 to 300 pA (27 patches) and were obtained near +10 mV. This range of current corresponds to approximately 70 to 1,300 channels in a patch. Maximal current in main organ cells also occurred near +10 mV and were in the range of 100 to 400 pA. Delayed K current was observed in a few patches. The inactivation phase of the currents during maintained depolarizations appears to be a single-exponential relaxation. The time constant decreases from 1 ms near -55 mV to a minimum of 0.3 ms near 0 mV, and then gradually increases with stronger depolarization. The mean currents are half inactivated near -90 mV with an apparent voltage dependence of e-fold per 6 mV. No apparent differences were observed in the decay time course or steady-state inactivation of the currents in the same patch before and after excision. From ensemble fluctuation analysis the peak open probability was found to be approximately 0.5 at +25 mV and increased only gradually with larger depolarizations. The single channel conductances were approximately 20 pS with 200 mM Na outside and 200 mM K inside, and 40 pS in 400 mM solutions. Reversal potentials in the 200 Na parallel 200 K solutions ranged from +51 to +94 mV in multichannel patches, corresponding to selectivity ratios PNa/PK from 8 to 43. Large differences in reversal potentials were seen even among patches from the same cell. Several controls rule out obvious sources of error in the reversal potential measurements. It is concluded that there is heterogeneity in the selectivity properties of the Na channels.  相似文献   

16.
Single-channel patch-clamp experiments were performed on MDCK cells in order to characterize the ionic channels participating in regulatory volume decrease (RVD). Subconfluent layers of cultured cells were exposed to a hypotonic medium (150 mOsm), and the membrane currents at the single-channel level were measured in cell-attached experiments. The results indicate that MDCK cells respond to a hypotonic swelling by activating several different ionic conductances. In particular, a potassium and a chloride channel appeared in the recordings more frequently than other channels, and this allowed a more detailed study of their properties in the inside-out configuration of the patch-clamp technique. The potassium channel had a linear I/V curve with a unitary conductance of 24 +/- 4 pS in symmetrical K+ concentrations (145 mM). It was highly selective for K+ ions vs. Na+ ions: PNa/PK less than 0.04. The time course of its open probability (P0) showed that the cells responded to the hypotonic shock with a rapid activation of this channel. This state of high activity was maintained during the first minute of hypotonicity. The chloride channel participating in RVD was an outward-rectifying channel: outward slope conductance of 63.3 +/- 4.7 pS and inward slope conductance of 26.1 +/- 4.9 pS. It was permeable to both Cl- and NO3- and its maximal activation after the hypotonic shock was reached after several seconds (between 30 and 100 sec). The activity of this anionic channel did not depend on cytoplasmic calcium concentration. Quinine acted as a rapid blocker of both channels when applied to the cytoplasmic side of the membrane. In both cases, 1 mM quinine reversibly reduced single-channel current amplitudes by 20 to 30%. These results indicate that MDCK cells responded to a hypotonic swelling by an early activation of highly selective potassium conductances and a delayed activation of anionic conductances. These data are in good agreement with the changes of membrane potential measured during RVD.  相似文献   

17.
Three mutations in the M2 transmembrane domains of the chloride-conducting alpha1 homomeric glycine receptor (P250Delta, A251E, and T265V), which normally mediate fast inhibitory neurotransmission, produced a cation-selective channel with P(Cl)/P(Na), = 0.27 (wild-type P(Cl)/P(Na) = 25), a permeability sequence P(Cs) > P(K) > P(Na) > P(Li), an impermeability to Ca(2+), and a reduced glycine sensitivity. Outside-out patch measurements indicated reversed and accentuated rectification with extremely low mean single channel conductances of 3 pS (inward current) and 11 pS (outward current). The three inverse mutations, to those analyzed in this study, have previously been shown to make the alpha7 acetylcholine receptor channel anion-selective, indicating a common location for determinants of charge selectivity of inhibitory and excitatory ligand-gated ion channels.  相似文献   

18.
The passive ionic membrane conductances (gj) and permeabilities (Pj) of K, Na, and Cl of crayfish (Procambarus clarkii) medial giant axons were determined in the potassium-depolarized axon and compared with that of the resting axon. Passive ionic conductances and permeabilities were found to be potassium dependent with a major conductance transition occurring around an external K concentration of 12-15 mM (Vm = -60 to -65 mV). The results showed that K, Na, and Cl conductances increased by 6.2, 6.9, and 27-fold, respectively, when external K was elevated from 5.4 to 40 mM. Permeability measurements indicated that K changed minimally with K depolarization while Na and Cl underwent an order increase in permeability. In the resting axon (K0 = 5.4 mM, pH = 7.0) PK = 1.33 X 10(-5), PCl = 1.99 X 10(-6), PNa = 1.92 X 10(-8) while in elevated potassium (K0 = 40 mM, pH 7.0), PK = 1.9 X 10(-5), PCl = 1.2 X 10(-5), and PNa = 2.7 X 10(-7) cm/s. When membrane potential is reduced to 40 mV by changes in internal ions, the conductance changes are initially small. This suggests that resting channel conductances depend also on ion environments seen by each membrane surface in addition to membrane potential. In elevated potassium, K, Na, and Cl conductances and permeabilities were measured from pH 3.8 to 11 in 0.2 pH increments. Here a cooperative transition in membrane conductance or permeability occurs when pH is altered through the imidazole pK (approximately pH 6.3) region. This cooperative conductance transition involves changes in Na and Cl but not K permeabilities. A Hill coefficient n of near 4 was found for the cooperative conductance transition of both the Na and Cl ionic channel which could be interpreted as resulting from 4 protein molecules forming each of the Na and Cl ionic channels. Tetrodotoxin reduces the Hill coefficient n to near 2 for the Na channel but does not affect the Cl channel. In the resting or depolarized axon, crosslinking membrane amino groups with DIDS reduces Cl and Na permeability. Following potassium depolarization, buried amino groups appear to be uncovered. The data here suggest that potassium depolarization produces a membrane conformation change in these ionic permeability regulatory components. A model is proposed where membrane protein, which forms the membrane ionic channels, is oriented with an accessible amino terminal group on the axon exterior. In this model the ionizable groups on protein and phospholipid have varied associations with the different ionic channel access sites for K, Na, and Cl, and these groups exert considerable control over ion permeation through their surface potentials.  相似文献   

19.
Summary Patch-clamp studies of single ion channel currents in freshly isolated murine B lymphocytes are characterized here according to their respective unitary conductances, ion selectivities, regulatory factors, distributions and kinetic behavior. The most prevalent ion channel in murine B lymphocytes is a large conductance (348 pS) nonselective anion channel. This report characterizes additional conductances including: two chloride channels (40 and 128 pS), a calcium-activated potassium channel (93 pS), and an outwardly rectifying potassium channel which displays two distinct conductances (18 and 30 pS). Like the anion channel, both chloride channels exhibit little activity in the cellattached patch configuration. The kinetic behavior of all of these channels is complex, with variable periods of bursting and flickering activity interspersed between prolonged closed/open intervals (dwell times). It is likely that some of these channels play an important role in the signal transduction of B cell activation.  相似文献   

20.
Amiloride-sensitive cationic channels are present in the apical membrane of porcine thyroid cells in primary culture. An amiloride-sensitive (K0.5 = 150 +/- 28 nM where K0.5 is the concentration of unlabelled ligand which reduces the specific binding of the same labelled ligand by 50%) 22Na+-flux component (Km for Na+ at 18 mM) has been identified which was also blocked by the potent amiloride derivative phenamil (K0.5 = 47 +/- 21 nM). The most potent inhibitor of Na+/H+ exchange, ethylisopropyl-amiloride, hardly inhibited this 22Na+-influx component at a concentration of 21 microM. Amiloride binding sites were characterized using [3H]phenamil. The tritiated ligand binds to a single family of binding sites in thyroid membranes with a Kd value of 50 +/- 10 nM and a maximal binding capacity of 5 +/- 1 pmol/mg protein. Patch-clamp experiments have directly demonstrated the existence of a phenamil- and amiloride-sensitive cationic channel, with a conductance of 2.6 pS, which is permeable to sodium, but not very selective (PNa+/PK+ = 1.2). This channel is an important element in the regulation of the resting membrane potential of thyroid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号