首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influences of various cortical areas in the mechanisms of feeding motivation, forming a directed response, were investigated in chronic experiments on rabbits. Electric stimulation of the frontal and antero-temporal cortical areas inhibited the feeding response elicited by the hypothalamic feeding centre stimulation. Inhibition of the frontal cortex proved to be more expressed. Stimulation of the postero-temporal and occipital cortical areas decreased the threshold of an evoked feeding response or elicited this response in the satiated animals.  相似文献   

2.
EPs recording under Nembutal anaesthesia during stimulation of the medial section of the horizontal part of the diagonal band nucleus (HNDB) shows a wide spreading of HNDB afferentation over the neocortex: from the frontal area to the medial and some posterior parts of the auditory, parietal areas and Ep zone, with the least activation of the latter three regions and activation increasing intensity correspondingly in the somatic zones II, I (SII, SI), motor and frontal cortex. Such reduction of signals flow intensity oriented both in caudal and ventral directions of the cortex goes with foci of maximal activity of these signals in the motor, parietal areas and zones of representation of various body parts in SI and SII. Traits of similarity and differences of signal's projections in the neocortex from HNDB and thalamic relay nuclei have been revealed. A hypothesis is substantiated on different mechanisms underlying peculiarities of influences of these subcortical nuclei on the cortex depending on the type of their afferent-neuronal links in the latter and their functional role in the brain activity.  相似文献   

3.
A study was carried out on 8 adult cats of functional role of the frontal, parietal and occipital parts of the neocortex, and also of the dorsal hippocampus, mediodorsal thalamic nucleus and caudate nucleus head, in realization of a delayed spatial choice (DSCh) before and after compensatory reorganizations of the brain activity caused by multiple electrical stimulation of the frontal part of the cerebral cortex. Compensatory reorganization led to a change of functional significance of these structures. While before this change the frontal cortex, hippocampus and mediodorsal thalamic nucleus were critically necessary brain areas for the realization of the DSCh, after it parietal and occipital cortical areas acquired such significance. The obtained data are discussed proceeding from the principle of the integrity in the brain activity.  相似文献   

4.
Individual features of the regional interhemispheric relations in the brain were studied in dogs during alimentary conditioning. The electrical activity was recorded from symmetrical anterior (frontal and motor cortices) and posterior (visual and auditory cortices) areas of the neocortex. Comparison between the averaged left and right intrahemispheric EEG coherences revealed a dynamic character of interhemispheric relations dependent on the stage of conditioning. Individual features were shown. In a dog with strong type of the nervous system, in the anterior brain regions, the EEG coherence was higher in the left hemisphere than in the right one, whereas, on the contrary, in the posterior regions, the values were higher in the right than in the left hemisphere. In dogs with weak type of the nervous system, there was an inverse relationship. Thus, the spatial organization of the cortical electrical activity in the associative and projection brain areas was different.  相似文献   

5.
The distribution of the evoked cortical potentials recorded during stereotactic pulvinectomy is analyzed. The evoked cortical potential shows maximal amplitude in the precentral area, with decreasing amplitude in the parietal and anterior temporal area, and minimal amplitude in the occipital area. The pulvinar has been histologically considered to have dense connections with the parietal lobe and no connection with the frontal lobe. However, our results suggest that the pulvinar has a dense functional connection with the frontal cortex, through which the pulvinar plays a role in motor function.  相似文献   

6.
The character of motor responses of the facial muscles evoked by stimulation of various regions of the frontal neocortex and of the nucleus of the facial nerve was studied in outbred mice. Motor responses of the vibrissae, of the upper lip and the jaw to monopolar microstimulation in the frontal cortical areas in 55 per cent of the cases had the latencies from 5 to 15 ms. The latencies of the responses to the facial nucleus stimulation ranged from 3 to 12 ms with maximal expressed interval of 4-6 ms. Excitation conduction velocities of the facial nerve estimated on the basis of latencies measurements, were from 1.5 to 12 m/s.  相似文献   

7.
In awake cats single realizations of acoustic evoked responses (AER) from temporal, parietal and frontal cortex were registered and compared with averaged responses obtained by means of optic superposition of the same realizations. It is shown that the composition of these different realizations considerably varies due to inconstancy of manifestation of each component. The fact that the preceding component falls out does not exclude manifestation of the following one, which proves the functional independence of the mechanisms producing each component. The simultaneous registration of single realizations of AERs of different cortical areas shows that the reactions of frontal and parietal areas are independent of AERs of the temporal cortex.  相似文献   

8.
Effects of stimulation of the claustrum and caudate nucleus in the neocortex and various deep brain structures were studied in acute experiments on unanesthetized cats immobilized with tubocurarine. A rhythmic after discharge appeared in neocortical areas 4–7 and 18 (according to Reinoso-Suarez' atlas), and also in the caudate nucleus and various parts of the thalamus. A similar discharge also was observed in the claustrum itself. Diencephalic brain section at the level of the ventral anterior nucleus weakened but did not completely abolish the cortical rhythmic after-discharge in the anterior regions of the neocortex evoked by stimulation of the claustrum. This discharge was completely blocked after sagittal brain section between the claustrum and the rest of the thalamus.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 15, No. 2, pp. 121–127, March–April, 1983.  相似文献   

9.
Unit activity was recorded from two parietal areas of the cat neocortex in semichronic experiments. Cell responses to presentation of adequate stimuli of different modalities and to direct electrical stimulation of various cortical zones were studied. About 4% of neurons of the Clare-Bishop area did not respond to visual stimulation. Cells responding to stimuli of different modalities were found in the Clare-Bishop area. A high percentage of cells in this area responded to direct electrical stimulation of area 17. In the association area (area 7) 27% of neurons tested responded to visual stimuli, but only a very small relative number of cells (compared with responding neurons of the Clare-Bishop area) responded to stimulation of the primary sensory areas. Electrical stimulation of area 7 inhibited evoked and spontaneous unit activity in the Clare-Bishop area. The hypothesis that these areas are the association representation of two different sections of the visual system — retino-geniculocortical and retino-tecto-thalamocortical — is discussed.Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 612–620, November–December, 1981.  相似文献   

10.
Magnetoencephalography (MEG) is a totally non-invasive research method which provides information about cortical dynamics on a millisecond time-scale. Whole-scalp magnetic field patterns following stimulation of different peripheral nerves indicate activation of an extensive cortical network. At the SI cortex, the responses reflect mainly the activity of area 3b, with clearly somatotopical representations of different body parts. The SII cortex is activated bilaterally and it also receives, besides tactile input, nociceptive afference. Somatically evoked MEG signals may also be detected from the posterior parietal cortex, central mesial cortex and the frontal lobe. The serial versus parallel processing in the cortical somatosensory network is still under debate.  相似文献   

11.
Sensory gating is a process in which the brain’s response to a repetitive stimulus is attenuated; it is thought to contribute to information processing by enabling organisms to filter extraneous sensory inputs from the environment. To date, sensory gating has typically been used to determine whether brain function is impaired, such as in individuals with schizophrenia or addiction. In healthy subjects, sensory gating is sensitive to a subject’s behavioral state, such as acute stress and attention. The cortical response to sensory stimulation significantly decreases during sleep; however, information processing continues throughout sleep, and an auditory evoked potential (AEP) can be elicited by sound. It is not known whether sensory gating changes during sleep. Sleep is a non-uniform process in the whole brain with regional differences in neural activities. Thus, another question arises concerning whether sensory gating changes are uniform in different brain areas from waking to sleep. To address these questions, we used the sound stimuli of a Conditioning-testing paradigm to examine sensory gating during waking, rapid eye movement (REM) sleep and Non-REM (NREM) sleep in different cortical areas in rats. We demonstrated the following: 1. Auditory sensory gating was affected by vigilant states in the frontal and parietal areas but not in the occipital areas. 2. Auditory sensory gating decreased in NREM sleep but not REM sleep from waking in the frontal and parietal areas. 3. The decreased sensory gating in the frontal and parietal areas during NREM sleep was the result of a significant increase in the test sound amplitude.  相似文献   

12.
Dynamic changes in the amplitude of component P300 of the evoked potentials in different cortical areas were studied as an index of activity of cortical structures responsible for actualization of a computer game with aggressive content with regard for the level of initial aggression and conflict in behavior of adolescent subjects. Dynamic changes in anxiety and aggression evoked by playing an "aggressive" computer game were shown to be dependent on the initial level of aggression and conflict. An increase in P300 in the frontal and orbitofrontal areas of both hemispheres was observed in adolescents with initially high level of aggression and conflict. In adolescents with initially low aggression and conflict, P300 decreased bilaterally in the frontal areas and did not change significantly in the orbitofrontal areas. These findings testify to the bilateral frontal top-down control over negative emotions.  相似文献   

13.

Objectives

Two parallel pathways have been proposed between the hippocampus and neocortex. Recently, the anterior and posterior hippocampus showed distinct connectivity with different cortical areas in an fMRI study. We investigated whether the two parallel pathways could be confirmed in patients with transient global amnesia (TGA) which is a natural lesion model of a perturbation of the hippocampus. In addition, we evaluated the relationship between the location of the hippocampal lesion and various clinical variables.

Methods

A consecutive series of 37 patients were identified from the TGA registry database of Seoul National University Bundang Hospital. Based on the location of the diffusion-weighted imaging (DWI) lesion along the anterior-posterior axis of the hippocampus, they were divided into the following three groups: head (n = 15), body (n = 15) or tail (n = 7). To evaluate which cortical regions showed hypoperfusion according to the location of the DWI lesion, their SPECT images were compared between two groups using statistical parametric mapping. We performed hierarchical cluster analysis to group demographic and clinical variables, including the location of the DWI lesion, into clusters.

Results

Statistical parametric mapping analyses revealed that more anterior DWI lesions were associated with hypoperfusion of the anterior temporal and frontal areas, whereas more posterior lesions were associated with hypoperfusion of the posterior temporal, parietal, occipital and cerebellar areas. The difference was most prominent between the group of hippocampal lesions on the head and tail. Hierarchical cluster analysis demonstrated that vomiting was related to female gender and hippocampal head lesions, whereas vascular risk factors were related to male gender and hippocampal body lesions.

Conclusions

We confirmed the parallel pathways between the hippocampus and neocortex with DWI and SPECT images of patients with TGA. Patients with hippocampal head lesions and body lesions were clustered within different groups of clinical variables.  相似文献   

14.
Origin of the frontal somatosensory evoked potential (SEP) by median nerve stimulation was investigated in normal volunteers and in patients with localized cerebrovascular diseases, and the following results were obtained.
  • 1.(1) In normal subjects, SEPs recorded at F3 (or F4) contralateral to the stimulating median nerve were composed of P12, N15, P18.5 and N26. Similar components were recognized in SEP recorded at Fz.
  • 2.(2) In patients in whom putaminal or thalamic hemorrhages had destroyed the posterior limbs of the internal capsules, frontal N15 and parietal N18 (N20) disappeared. These components were also absent in patients with cortical (parietal) infarctions. Among these patients, the thalamus was not affected in cases with putaminal hemorrhages and cortical infarctions.
These facts indicate that the generator of the frontal N15 does not exist in the thalamus but that it originates from the neural structure central to the internal capsule, which suggests a similarity to the generator of the parietal N18.Because N15 was recorded in the midline of the frontal region with shorter latency than parietal N18, the frontal N15 might represent a response to the sensory input of the frontal lobe via the non-specific sensory system.  相似文献   

15.
In acute experiments in rabbits immobilized by d-tubocurarine, stimulation of the entorhinal area with rectangular electric impulses led to the appearance of evoked potentials (EP) with a latent period of 6–12 msec in the occipital, temporal, parietal, and cingular areas of the neocortex. The amplitude of the positive response component was 500 µV, and its duration 25–50 msec. The negative component was not always discernible. When rhythmic stimulation was used, these EPs followed stimulation frequencies not exceeding 20 per sec. Stimulation of the medial parts of the entorhinal area with a frequency of one to three per sec was accompanied by recruitment of the EP in the occipital and temporal neocortex areas. Nembutal depressed the amplitude of the neocortex EP appearing in response to stimulation of the entorhinal cortex. With the aid of double stimulation it could be established that, after conditioning stimulation of the entorhinal area, the positive component of the primary response (PR) evoked by stimulation of the contralateral sciatic nerve in the projection zone of the somatosensory cortex is strengthened during the first 50 msec, and subsequently after 80–120 msec. In these cases, the negative component was depressed. These findings are discussed with a view to the influence of limbic structures on the neocortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 73–78, January–February, 1970.  相似文献   

16.
The homologues of the two distinct architectonic areas 44 and 45 that constitute the anterior language zone (Broca's region) in the human ventrolateral frontal lobe were recently established in the macaque monkey. Although we know that the inferior parietal lobule and the lateral temporal cortical region project to the ventrolateral frontal cortex, we do not know which of the several cortical areas found in those regions project to the homologues of Broca's region in the macaque monkey and by means of which white matter pathways. We have used the autoradiographic method, which permits the establishment of the cortical area from which axons originate (i.e., the site of injection), the precise course of the axons in the white matter, and their termination within particular cortical areas, to examine the parietal and temporal connections to area 44 and the two subdivisions of area 45 (i.e., areas 45A and 45B). The results demonstrated a ventral temporo-frontal stream of fibers that originate from various auditory, multisensory, and visual association cortical areas in the intermediate superolateral temporal region. These axons course via the extreme capsule and target most strongly area 45 with a more modest termination in area 44. By contrast, a dorsal stream of axons that originate from various cortical areas in the inferior parietal lobule and the adjacent caudal superior temporal sulcus was found to target both areas 44 and 45. These axons course in the superior longitudinal fasciculus, with some axons originating from the ventral inferior parietal lobule and the adjacent superior temporal sulcus arching and forming a simple arcuate fasciculus. The cortex of the most rostral part of the inferior parietal lobule is preferentially linked with the ventral premotor cortex (ventral area 6) that controls the orofacial musculature. The cortex of the intermediate part of the inferior parietal lobule is linked with both areas 44 and 45. These findings demonstrate the posterior parietal and temporal connections of the ventrolateral frontal areas, which, in the left hemisphere of the human brain, were adapted for various aspects of language production. These precursor circuits that are found in the nonlinguistic, nonhuman, primate brain also exist in the human brain. The possible reasons why these areas were adapted for language use in the human brain are discussed. The results throw new light on the prelinguistic precursor circuitry of Broca's region and help understand functional interactions between Broca's ventrolateral frontal region and posterior parietal and temporal association areas.  相似文献   

17.
An EEG cross-correlation analysis has shown that in children aged four to five years higher sensory analysis of verbal commands and their meaning was reflected in the nature of synchronous interactions between oscillatory processes and their spatial-temporal patterns. At the moment of perception of the command "listen" highly synchronous synphasic relations were recorded between biopotentials in the associative infero-parietal cortex and projection temporal centres of the left hemisphere. Oscillations of the parietal areas preceded the rhythms of the occipital, motor and frontal lobes in the left hemisphere; slow oscillations with a 3 osc/sec frequency predominated, and the intensity of the periodic processes increased. The command "look" evoked a high degree of synchronous synphasic relations of biopotentials in the parietal-occipital cortical parts of both hemispheres; oscillations with 6 osc/sec frequency predominated; their intensity rose; synphasic relations of oscillations in parietal and motor and temporal centres grew more manifest, while the rhythmic activity in the parietal zones preceded the potentials in the frontal lobes of both hemispheres.  相似文献   

18.
In 10 cats with aseptically extirpated frontal and parietal areas of the brain cortex, efferent connections of the areas in question with the nucleus caudatus were experimentally studied by means of morphological methods. The preparations were stained according the methods of Nauta, Knuck, Finck-Haimer, and Kawamura-Niimi. The results of the investigations performed demonstrate a perfect topically organized caudal projection of the "associative" cortical areas. The frontal area is projected on the oral ventro-medial parts of the nucleus caudatus head, while the parietal area--on the central and lateral parts at the medial and more caudal levels.  相似文献   

19.
(1) Field potential study in conscious rats provides a convenient and effective animal model for pain mechanism and pharmacological research. However, the spatial-temporal character of nociception processing in cortex revealed by field potential technique in conscious rats remains unclear. (2) In the present study, multi-channel field potentials evoked by noxious laser stimulation applied to the hind paw of conscious rats were recorded through 12 chronically implanted skull electrodes. Independent component analysis (ICA) was used to remove possible artifacts and to extract the specific nociception-related component. (3) Two fast sharp responses and one slow blunt response were evoked by noxious laser stimulation. Systemic morphine (5 mg/kg, i.p.) preferentially attenuated the amplitude of the slow blunt response while had no significant effect on the first two sharp responses. ICA revealed that those responses came from activities of contralateral anterior parietal area, medial frontal area and posterior parietal area. A movement artifact was also detected in this study. Partial directed coherence (PDC) analysis showed that there were changes of information flows from medial frontal and posterior parietal area to anterior parietal area after noxious laser stimulation. (4) Characterization of the spatio-temporal responses to noxious laser stimulation may be a valuable model for the study of pain mechanisms and for the assessment of analgesia.  相似文献   

20.
Changes in frequency and space parameters of the EEG coherence evoked by cognitive performance were analyzed in 13 healthy subjects and participants of the Chemobyl clean-up. In healthy subjects, the EEG coherences in the alpha and beta frequency bands were significantly increased during arithmetic count and during visuospatial performance. Each test was characterized by regionally-specific features. Chemobyl patients demonstrated a global decrease in the EEG coherence predominantly in the alpha and beta frequency bands, especially in the frontal cortical areas. Patients with various pathological EEG patterns demonstrated specific impairment of EEG parameters. In patients with a "flat" EEG pattern, the EEG coherence predominantly decreased in the frontal associative areas, especially during arithmetic calculation. In patients with a "hypersynchronous" EEG pattern, the decrease in the EEG coherence was most pronounced in the parietal associative areas, especially during the visuospatial performance. The revealed impairments of the EEG coherence reactivity may be a reflection of disorders of the intracortical and corticosubcortical interaction and can result from the remote postradiation brain atrophy, especially, of cortical structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号