首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Medium-chain dehydrogenases/reductases (MDR) alcohol dehydrogenases exhibit multiple forms through a number of gene duplications. A crucial duplication was the one leading from the glutathione-dependent formaldehyde dehydrogenase line to the liver alcohol dehydrogenase (ADH) lines of vertebrates, the first duplication of which can now be further positioned at early vertebrate times. Similarly, screening of MDR forms in recently completed eukaryotic genomes of Caenorhabditis elegans and Drosophila melanogaster suggest that the MDR family may constitute a moderately sized protein family centered around a limited number of enzyme activities of five different structural types.  相似文献   

2.
Alcohol dehydrogenase activities were examined in cell-free extracts of 10 representative wine yeast strains having various productivities of higher alcohols (fusel oil). The amount of fusel alcohols (n-propanol, isobutanol, active pentanol, and isopentanol) produced by the different yeasts and the specific alcohol dehydrogenase activities with the corresponding alcohols as substrates were found to be significantly related. No such relationship was found for ethanol. The amounts of higher alcohols formed during vinification could be predicted from the specific activities of the alcohol dehydrogenases with high accuracy. The results suggest a close relationship between the control of the activities of alcohol dehydrogenase and the formation of fusel oil alcohols. Also, new procedures for the prediction of higher alcohol formation during alcoholic beverage fermentation are suggested.  相似文献   

3.
The NAD-dependent oxidation of ethanol, 2,3-butanediol, and other primary and secondary alcohols, catalyzed by alcohol dehydrogenases derived from Penicillium charlesii, was investigated. Alcohol dehydrogenase, ADH-I, was purified to homogeneity in a yield of 54%. The enzyme utilizes several primary alcohols as substrates, with Km values of the order of 10?4m. A Km value of 60 mm was obtained for R,R,-2,3-butanediol. The stereospecificity of the oxidation of 2-butanol was investigated, and S-(+)-2-butanol was found to be oxidized 2.4 times faster than was R-(?)-2-butanol. The reduction of 2-butanone was shown to produce S-(+)-2-butanol and R-(?)-butanol in a ratio of 7:3. ADH-I is the primary isozyme of alcohol dehydrogenase present in cultures utilizing glucose as the sole carbon source. The level of alcohol dehydrogenase activity increased 7.6-fold in mycelia from cultures grown with glucose and 2,3-butanediol (0.5%) as carbon sources compared with the activity in cultures grown on only glucose. Two additional forms of alcohol dehydrogenase, ADH-II and ADH-III, were present in the cultures supplemented with 2,3-butanediol. These forms of alcohol dehydrogenase catalyze the oxidation of ethanol and 2,3-butanediol. These data suggest that P. charlesii carries out an oxidation of 2,3-butanediol which may constitute the first reaction in the degradation of 2,3-butanediol as well as the last reaction in the mixed-acid fermentation. Alcohol dehydrogenase activities in P. charlesii may be encoded by multiple genes, one which is expressed constitutively and others whose expression is inducible by 2,3-butanediol.  相似文献   

4.
The solubilization and subsequent separation of the hepatic microsomal ethanol-oxidizing system from alcohol dehydrogenase and catalase activities by DEAE-cellulose column chromatography is described. Absence of alcohol dehydrogenase in the column eluates exhibiting microsomal ethanol-oxidizing system activity was demonstrated by the failure of NAD+ to promote ethanol oxidation at pH 9.6. Differentiation of the microsomal ethanol-oxidizing system from alcohol dehydrogenase was further shown by the apparent Km for ethanol (7.2 mm, insensitivity of the microsomal ethanol-oxidizing system to the alcohol dehydrogenase inhibitor pyrazole (0.1 mm) and by the failure of added alcohol dehydrogenase to increase the ethanol oxidation. Absence of catalatic activity in these fractions was demonstrated by spectrophotometric and polarographic assay. Differentiation of the microsomal ethanol-oxidizing system from the peroxidatic activity of catalase was shown by the apparent Km for oxygen (8.3 μm), insensitivity of the microsomal ethanol-oxidizing system to the catalase inhibitors azide and cyanide, and by the lack of a H2O2-generating system (glucose-glucose oxidase) to sustain ethanol oxidation in the eluates. The oxidation of ethanol to acetaldehyde by the alcohol dehydrogenase- and catalase-free fractions required NADPH and oxygen and was inhibited by CO. The column eluates showing microsomal ethanol-oxidizing system activity contained cytochrome P-450, NADPH-cytochrome c reductase, and phospholipids and also metabolized aminopyrine, benzphetamine, and aniline.  相似文献   

5.
A mutant strain (39E H8) of Thermoanaerobacter ethanolicus that displayed high (8% [vol/vol]) ethanol tolerance for growth was developed and characterized in comparison to the wild-type strain (39E), which lacks alcohol tolerance (<1.5% [vol/vol]). The mutant strain, unlike the wild type, lacked primary alcohol dehydrogenase and was able to increase the percentage of transmembrane fatty acids (i.e., long-chain C30 fatty acids) in response to increasing levels of ethanol. The data support the hypothesis that primary alcohol dehydrogenase functions primarily in ethanol consumption, whereas secondary alcohol dehydrogenase functions in ethanol production. These results suggest that improved thermophilic ethanol fermentations at high alcohol levels can be developed by altering both cell membrane composition (e.g., increasing transmembrane fatty acids) and the metabolic machinery (e.g., altering primary alcohol dehydrogenase and lactate dehydrogenase activities).  相似文献   

6.
The alcohol dehydrogenase genes make up one of the best studied gene families in Drosophila, both in terms of expression and evolution. Moreover, alcohol dehydrogenase genes constitute potential versatile markers in insect transformation experiments. However, due to their rapid evolution, these genes cannot be cloned from other insect genera by DNA hybridization or PCR-based strategies. We have therefore explored an alternative strategy: cloning by functional complementation of appropriate yeast mutants. Here we report that two alcohol dehydrogenase genes from the medfly Ceratitis capitata can functionally replace the yeast enzymes, even though the medfly and yeast genes have evolved independently, acquiring their enzymatic function convergently. Using this method, we have cloned an alcohol dehydrogenase gene from the olive pest Bactrocera oleae. We conclude that functional complementation in yeast can be used to clone alcohol dehydrogenase genes that are unrelated in sequence to those of yeast, thus providing a powerful tool for isolation of dominant insect transformation marker genes.  相似文献   

7.
8.
In a marked-inversion balanced lethal system of the second chromosome of Drosophila melanogaster, mutations were accumulated under minimum pressure of natural selection in 1000 individual lines that originated essentially from two individuals. After about 300 generations, the specific activities of alcohol dehydrogenase of 69 randomly selected individual lines were measured with replications using four replicated vials (on 2 days—two replications per day) by observing the reduction of NAD+ to NADH at 340 nm. Total soluble protein as the basis of standardization of enzyme activity was measured by the Lowry method for each vial. A control experiment was made immediately after the establishment of 20 individual lines from a single genotype. A significant increase in genetic variance was observed among the mutation-accumulating lines but was not detected in the control experiment. The statistical analysis of the data on the basis of the one-band/one-gene hypothesis suggests that many mutations controlling the activity of alcohol dehydrogenase occurred in regions different from the alcohol dehydrogenase locus itself, mainly in the noncoding DNA. Furthermore, it is suggested that transposon-like elements are related to the induction of these changes in alcohol dehydrogenase specific activities. Additional experimental evidence supporting this conclusion is also given.  相似文献   

9.
Flood tolerant Glyceria maxima and intolerant Pisum sativum were compared in respect of the effects of anoxia and flooding on the maximum catalytic activities of alcohol dehydrogenase in their roots. Small (<73%) increases in enzyme activity occurred when excised roots of both species were incubated in nitrogen for up to 2 days. Further incubation in nitrogen rapidly and permanently damaged the roots of both species. Enzyme activity in flooded roots of Glyceria was about double that in corresponding non-flooded roots. A marginally greater difference was found for roots of Pisum. It was concluded that the two species respond so similarly to the above treatments that variation in the extent of induction of alcohol dehydrogenase is unlikely to be a significant factor in determining their ability to tolerate flooding.  相似文献   

10.
The gene encoding the 45 kilodalton subunit of alcohol dehydrogenase from Acetobacter aceti was found to exist in the 3′ flanking region of adhA which encodes the dehydrogenase subunit of the alcohol dehydrogenase. The amino acid sequence of the 45-kilodalton subunit, which was deduced from the DNA sequence, seemed to consist of three mono-heme cytochrome c polypeptide chains joined to form a single tri-heme cytochrome c. The cytochrome c-552 from Thermus aquaticus, which had been reported to be a unique mono-heme cytochrome c, and the 45-kilodalton subunit were found to have considerable similarity in their amino acid sequences.  相似文献   

11.
Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter−1 acetate during fermentation of 114 g liter−1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter−1 and raised the ethanol yield to 7% above the wild-type level.  相似文献   

12.
Non-covalent interaction of alcohol dehydrogenase with polysaccharides was studied using three neutral and three anionic polysaccharides. The process of interaction of alcohol dehydrogenase with gum Arabic was optimized with respect to the ratio of enzyme to gum Arabic, pH, and molarity of buffer. Alcohol dehydrogenase–gum Arabic complex formed under optimized conditions showed 93 % retention of original activity with enhanced thermal and pH stability. Lower inactivation rate constant of alcohol dehydrogenase–gum Arabic complex within the temperature range of 45 to 60 °C implied its better stability. Half-life of alcohol dehydrogenase–gum Arabic complex was higher than that of free alcohol dehydrogenase. A slight increment was observed in kinetic constants (K m and V max) of gum Arabic-complexed alcohol dehydrogenase which may be due to interference by gum Arabic for the binding of substrate to the enzyme. Helix to turn conversion was observed in complexed alcohol dehydrogenase as compared to free alcohol dehydrogenase which may be responsible for observed stability enhancement.  相似文献   

13.
Ethanol oxidation by the soluble fraction of a rat hepatoma was compared to that of the liver. Ethanol oxidation by the hepatoma was NAD+-dependent and sensitive to pyrazole, suggesting the presence of alcohol dehydrogenase. At low concentrations of ethanol (10.8 mm) the alcohol dehydrogenase activities of hepatoma and liver supernatant fractions were comparable. When the concentration of ethanol was raised to 108 mm, the activity of the liver enzyme decreased, whereas the activity in hepatoma supernatant fractions was strikingly elevated. m-Nitrobenzaldehyde-reducing activity was also conspicuously higher in hepatoma supernatant fractions. By contrast the ability to metabolize steroids and cyclohexanone was less than that in supernatant fractions of the liver.Electrophoresis of the liver supernatant fractions on ionagar at pH 7.0 revealed only one component that oxidized ethanol. On the other hand, hepatoma supernatant fractions contained two components with alcohol dehydrogenase activity; one with the same electrophoretic mobility as the liver enzyme, the other showing a slower rate of migration. The latter component, which is absent in the liver, is referred to as hepatoma alcohol dehydrogenase. By electrophoresis on starch gels at pH 8.5, it could be demonstrated that the liver and hepatoma enzymes moved in opposite directions.The liver and hepatoma enzymes differ in electrophoretic mobility, susceptibility to heat treatment, pH activity optimum and some catalytic properties. The substrate specificity of the hepatoma enzyme is narrower than that of liver alcohol dehydrogenase; cyclohexanone or 3β-hydroxysteroids of A/B cis configuration and the corresponding 3-ketones are not substrates for the hepatoma enzyme. The overall substrate specificity characteristics are, however, similar to those of the liver enzyme in that the effectiveness of substrates increases with an increase in chain length and introduction of unsaturation or an aromatic group. Both liver and hepatoma alcohol dehydrogenase cross-react with antibody to horse liver alcohol dehydrogenase EE. The Michaelis constant for ethanol with the hepatoma enzyme is 223 mm, compared to 0.3 mm for liver alcohol dehydrogenase; at 1.0 m ethanol the hepatoma enzyme is not fully saturated with substrate. The Michaelis constant for 2-hexene-1-ol is 0.3 mm, indicating that the hepatoma enzyme is better suited for dehydrogenation of longer chain alcohols. Stomach alcohol dehydrogenase has kinetic properties comparable to those of the hepatoma enzyme, as well as similar electrophoretic mobility. The hepatoma enzyme can be detected in the serum of rats bearing hepatomas.  相似文献   

14.
An enzyme capable of reducing acetoin in the presence of NADH was purified from Mycobacterium sp. B-009, a non-clinical bacterial strain of soil origin. The enzyme is a homotetramer and can be classified as a medium-chain alcohol dehydrogenase/reductase based on the molecular weight of the monomer. Identification of the structural gene revealed a limited distribution of homologous genes only among actinomycetes. In addition to its activity as a reductase specific for (S)-acetoin (EC 1.1.1.76), the enzyme showed both diacetyl reductase (EC 1.1.1.304) and NAD+-dependent alcohol dehydrogenase (EC 1.1.1.1) activities. (S)-Acetoin and diacetyl reductases belong to a group of short-chain alcohol dehydrogenase/reductases but do not have superior abilities to dehydrogenate monoalcohols. Thus, the purified enzyme can be readily distinguished from other enzymes. We used the dual functionality of the enzyme to effectively reduce diacetyl to (S)-acetoin, coupled with the oxidation of 1-butanol.  相似文献   

15.
The saturated and 2-enoic primary alcohols and aldehydes, ethanol, 1-propanol, 1-butanol, 3-methyl-1-butanol, 1-hexanol, phenylmethanol, 3-phenyl-1-propanol, 2-propen-1-ol, 2-buten-1-ol, 3-methyl-2-buten-1-ol, 2-hexen-1-ol, 3-phenyl-2-propen-1-ol, ethanal, 1-propanal, 1-butanal, 1-hexanal, phenylmethanal, 3-phenyl-1-propanal, 2-propen-1-al, 2-buten-1-al, 2-hexen-1-al, and 3-phenyl-2-propen-1-al, have been compared under uniform conditions as substrates for the alcohol dehydrogenase enzymes from horse and human liver and from yeast. Kinetic constants (Km arid V) have been measured for each of the substrates with each of the enzymes; equilibrium constants for the various alcohol-aldehyde pairs have also been estimated. The results obtained emphasize the similarities of yeast alcohol dehydrogenase to horse and human liver alcohol dehydrogenase, showing the specificity of yeast alcohol dehydrogenase to be less restricted than formerly believed. In general, the 2-enoic alcohols are better substrates for all three alcohol dehydrogenases than their saturated analogs; on the other hand, saturated aldehydes are better substrates than the 2-enoic aldehydes. Based on these various findings, it is suggested that a more likely candidate than ethanol for the physiological substrate of alcohol dehydrogenase in mammalian systems may well be an unsaturated alcohol, although the wide variety of substrates catalyzed at high rates is not incompatible with a general detoxifying function for alcohols or aldehydes, or both, by alcohol dehydrogenase.  相似文献   

16.
The gene xylBADP1 from Acinetobacter baylyi ADP1 (gene annotation number ACIAD1578), coding for a putative aryl alcohol dehydrogenase, was heterologously expressed in Escherichia coli BL21(DE3). The respective aryl alcohol dehydrogenase was purified by fast protein liquid chromatography to apparent electrophoretic homogeneity. The predicted molecular weight of 39,500 per subunit was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. According to the native Mw as determined by gel filtration, the enzyme forms dimers and therefore seems to be XylB related. The enzyme showed the highest activity at 40°C. For both the reduction and the oxidation reactions, the pH for optimum activity was 6.5. The enzyme was NADH dependent and able to reduce medium- to long-chain n-alkylaldehydes, methyl-branched aldehydes, and aromatic aldehydes, with benzaldehyde yielding the highest activity. The oxidation reaction with the corresponding alcohols showed only 2.2% of the reduction activity, with coniferyl alcohol yielding the highest activity. Maximum activities for the reduction and the oxidation reaction were 104.5 and 2.3 U mg−1 of protein, respectively. The enzyme activity was affected by low concentrations of Ag+ and Hg2+ and high concentrations of Cu2+, Zn2+, and Fe2+. The gene xylBADP1 seems to be expressed constitutively and an involvement in coniferyl alcohol degradation is suggested. However, the enzyme is most probably not involved in the degradation of benzyl alcohol, anisalcohol, salicyl alcohol, vanillyl alcohol, cinnamyl alcohol, or aliphatic and isoprenoid alcohols.  相似文献   

17.
Thermoanaerobacter ethanolicus (ATCC 31550) has primary and secondary alcohol dehydrogenases. The two enzymes were purified to homogeneity as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The apparent Mrs of the primary and secondary alcohol dehydrogenases are 184,000 and 172,000, respectively. Both enzymes have high thermostability. They are tetrameric with apparently identical subunits and contain from 3.2 to 5.5 atoms of Zn per subunit. The two dehydrogenases are NADP dependent and reversibly convert ethanol and 1-propanol to the respective aldehydes. The Vm values with ethanol as a substrate are 45.6 μmol/min per mg for the primary alcohol dehydrogenase and 13 μmol/min per mg for the secondary alcohol dehydrogenase at pH 8.9 and 60°C. The primary enzyme oxidizes primary alcohols, including up to heptanol, at rates similar to that of ethanol. It is inactive with secondary alcohols. The secondary enzyme is inactive with 1-pentanol or longer chain alcohols. Its best substrate is 2-propanol, which is oxidized 15 times faster than ethanol. The secondary alcohol dehydrogenase is formed early during the growth cycle. It is stimulated by pyruvate and has a low Km for acetaldehyde (44.8 mM) in comparison to that of the primary alcohol dehydrogenase (210 mM). The latter enzyme is formed late in the growth cycle. It is postulated that the secondary alcohol dehydrogenase is largely responsible for the formation of ethanol in fermentations of carbohydrates by T. ethanolicus.  相似文献   

18.
Soybean (Glycine max) nodules formed by inoculation with either an effective strain or an ineffective (noninvasive, nodule-forming) strain of Bradyrhizobium japonicum were assayed for changes in developmental patterns of carbon metabolic enzymes of the plant nodule cells. Of the enzyme activities measured, only sucrose synthase, glutamine synthetase, and alcohol dehydrogenase were altered in the ineffective nodules relative to the effective nodules. Sucrose synthase and glutamine synthetase activities were greatly reduced, whereas alcohol dehydrogenase activity was elevated. Dark-induced senescence severely affected sucrose synthase but had little, if any, effect on the other enzymes measured. The developmental patterns of the anaerobically induced enzymes, aldolase and alcohol dehydrogenase, were different from those expected, implying that their development is not regulated solely by oxygen deprivation. However, anaerobic treatment of nodules resulted in responses similar to those enzymes in maize. The developmental profiles of the carbon metabolic enzymes suggest that carbohydrates are metabolized via the sucrose synthase and pentose phosphate pathways. This route of carbon metabolism, compared to glycolysis, would reduce the requirement of ATP for carbohydrate catabolism, generate NADPH for biosynthetic reactions, and provide intermediates for plant secondary metabolism.  相似文献   

19.
Differential centrifugation and Percoll-gradient centrifugation of protoplast lysates of suspension-cultured cells of sycamore (Acer pseudoplatanus L.) yielded pure amyloplasts. Contamination of the final amyloplast preparation by foreign compartments was assessed by measuring marker enzyme activities. The activity of alkaline pyrophosphatase was taken as a 100% plastid marker; relative to this marker, mitochondria (cytochrome c oxidase) averaged 0.34%, microbodies (catalase) 0.61%, and cytosol (alcohol dehydrogenase) 0.09%. Enzymatic activities of the glycolytic, gluconeogenic, pentose phosphate and the starch degradation pathways were found to be present in these amyloplast extracts in appreciable amounts. But the pyrophosphate-dependent phosphofructokinase and phosphoglyceromutase were judged to be essentially absent from amyloplasts because the activities of these enzymes were not enriched above the level of contaminating enzymatic activities in the amyloplast fractions. Additionally, the in vitro activities of starch phosphorylase, ATP dependent phosphofructokinase, NAD dependent glyceraldehyde-3 phosphate dehydrogenase, and glucose-6 phosphate dehydrogenase did not seem to support carbon fluxes from starch to triose phosphates as calculated from the rate of starch disappearance during carbon starvation of the cells. These results provide additional, indirect evidence for the recently emerged view that, in addition to the well known phosphate-triosephosphate translocator, another hexose phosphate and possibly also an ATP/ADP translocating system play major roles in nongreen plastids.  相似文献   

20.
The alcohol dehydrogenase from horse liver is able to catalyze the oxidation of a number of 1,2-diols and α-aminoalcohols enantioselectively to l-α-hydroxyaldehydes and l-α-amino aldehydes. A decrease of enantioselectivity was found in reactions with 1,3-diols and substrates with hydrophobic substituent at position 3. α-Aminoalcohols are not substrates for yeast alcohol dehydrogenase, but the enzyme can catalyze the oxidation of most of the diols to l-hydroxyaldehydes. New methods for determination of the optical purity of α-hydroxy-and α-aminoaldehydes via converting them in situ to the corresponding acids, catalyzed by the aldehyde dehydrogenase from yeast, have been developed. The coupled alcohol dehydrogenase/aldehyde dehydrogenase has been extended to preparatory scale synthesis of optically pure l-α-hydroxyacids in the presence of a cofactor regeneration system. The active-site cubic-space section model has been shown not to be applicable to all substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号