首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
RecA protein first forms filament on single-stranded (ss) DNA forming the first DNA-binding site for interaction with this ssDNA a formation of the second site for interaction with double-stranded DNA occurs in parallel. Then the formed nucleoprotein filament interacts with molecules of double-stranded (ds) DNA but can also recognize ssDNA. The formed complex realizes a search of homology and exchange of homologous strands. We have studied recently the mechanism of RecA filamentation on ssDNA. Here a study of interaction of different DNAs with the second site of RecA filament using a method of stepwise increase of the ligand complicity was performed. The second site under recognition interacts with every nucleotide units of DNA-ligand forming contact with both internucleotide phosphate groups and bases of DNA. Pyrimidinic d(pC)n [Russian character: see text d(pT)n oligonucleotides interact with the second site of the RecA filament more effectively than with d(pA)n oligonucleotides. This occurs due to a more effective interaction of the RecA filament with 5'-terminal unit of pyrimidinic DNAs and to a difference in specific conformational changes of nucleoprotein filaments in the complex with purinic and pyrimidinic DNAs. A comparison of thermodynamic characteristics of DNA recognition by the first and the second sites of DNA recognition is carried out. It was shown that at n >10 d(pC)n d(pN)n interact with the second site weaker, that with the first site. The complexation of the second site with d(pA)n at n >20 is more effective than with the first site. The difference in the affinity of d(pA)n to the fist and second sites is increased monotonically with the enhancement of their length. Possible mechanisms of RecA-dependent search of homology and strand exchange are discussed.  相似文献   

2.
RecA first forms a filament on single-stranded DNA (ssDNA), thereby forming the first site for ssDNA binding and, simultaneously, the second site for binding double-stranded DNA (dsDNA). Then, the nucleoprotein filament interacts with dsDNA, although it can bind ssDNA as well. The resulting complex searches for homology sites and performs strand exchange between homologous DNA molecules. The interaction of various ssDNAs with the second DNA-recognizing site of RecA was studied by gradually increasing the structural complexity of the DNA ligand. Recognizing ssDNA with the second site, the protein interacts with each nucleotide of the ligand, forming contacts with both internucleotide phosphate groups and nitrogen bases. Pyrimidine oligonucleotides d(pC) n and d(pT) n interacted with the second site of the RecA filament more efficiently than d(pA) n did. This was due to a more efficient interaction of the RecA filament with the 5′-terminal nucleotide of pyrimidinic DNA and to the difference in specific conformational changes of the nucleoprotein filament in the presence of purinic and pyrimidinic DNAs. A comparison of thermodynamic characteristics of DNA recognition at the first and second DNA-binding sites of the filament showed that, at n > 10, d(pC) n and d(pN) n were bound at the second site less tightly than at the first site. At n > 20, the second site bound d(pA) n more efficiently than the first site. The difference in d(pN) n affinity for the first and second sites increased monotonically with increasing n. Possible mechanisms of a RecA-dependent search for homology and DNA strand exchange are discussed.  相似文献   

3.
C-terminal fragment of Escherichia coli RecA protein 150 amino acids residues in length--the product of RecA protein BrCN-hydrolysis--was isolated by single stranded DNA-cellulose chromatography. In low salt buffer this fragment tightly bounds with single and double stranded DNAs. Aggregational properties of the fragment are similar to such of native protein: the fragment oligomerises in low salt buffer and precipitates in the presence of Mg2+. Double stranded DNA in the last case coprecipitates with the fragment, forming a complex which is stable at higher salt concentration, like the complexes with a native RecA protein. These results indicate that the C-terminal half of RecA protein participates in DNA binding and intersubunits interaction of RecA protein.  相似文献   

4.
The recA protein from Escherichia coli can homologously align two duplex DNA molecules; however, this interaction is much less efficient than the alignment of a single strand and a duplex. Three strand paranemic joints are readily detected. In contrast, duplex-duplex pairing is detected only when the incoming (second) duplex is negatively supercoiled, and even here the pairing is inefficient. The recA protein-promoted four strand exchange reaction is initiated in a three strand region, with efficiency increasing with the length of potential three strand pairing available for initiation. This indicates that a paranemic joint involving three DNA strands may be an important intermediate in all recA protein-mediated DNA strand exchange reactions and that the presence of three strands rather than four is a fundamental structural parameter of paranemic joints.  相似文献   

5.
The RecA protein of Escherichia coli binds specifically to acidic phospholipids such as cardiolipin and phosphatidylglycerol. This binding appears to be affected by the presence of divalent cations such as Ca2+ and Mg2+. The interaction leads to the inhibition of RecA binding to at least two different conformations of DNA, single-stranded DNA and left-handed Z-DNA, thus suggesting that the phospholipids interact at the DNA-binding site of the RecA protein. Inclusion of a nucleotide cofactor [adenosine 5'-O-(gamma-thiotriphosphate)] in the reactions did not prevent the inhibition of DNA-binding activities of RecA protein by the phospholipids. The interaction of RecA protein with cardiolipin and phosphatidylglycerol, which represent two of the three major phospholipids of the E. coli membrane, may be physiologically important, as it provides a possible mechanism for the RecA-membrane association during the SOS response. These observations raise the possibility that the Z-DNA-binding activity of RecA protein is merely a manifestation of its phospholipid-binding property.  相似文献   

6.
Studies of the interaction of RecA protein with DNA   总被引:1,自引:0,他引:1       下载免费PDF全文
Ethidium fluorescence assays were adapted for the rapid and sensitive detection of precA; in addition, fluorescence measurements on binding precA to linear, OC and CCC PM2 DNAs have enabled the stoichiometry of precA binding as well as the precA-induced unwinding angle of DNA to be determined. The stoichiometry of binding was independently confirmed by sedimentation analysis to be one precA molecule per 3 bp. The unwinding angle was also independently confirmed by measurements of fluorescence changes induced by the binding of precA to CCC DNA which was relaxed by topoisomerase to give a precA-induced unwinding angle of 51 degrees. Electron microscopy of OC DNA molecules which bound nonsaturating amounts of precA revealed that the length increase in DNA due to precA was approximately 55%. Finally, examination of negatively stained precA complexes with a variety of linear DNAs showed that the minor groove is the primary site of interaction for this protein.  相似文献   

7.
Homologous recombination consists of exchanging DNA strands of identical or almost identical sequence. This process is important for both DNA repair and DNA segregation. In prokaryotes, it involves the formation of long helical filaments of the RecA protein on DNA. These filaments incorporate double-stranded DNA from the cell's genetic material, recognize sequence homology and promote strand exchange between the two DNA segments. DNA processing by these nucleofilaments is characterized by large amplitude deformations of the double helix, which is stretched by 50% and unwound by 40% with respect to B-DNA. In this article, information concerning the structure and interactions of the RecA, DNA and ATP molecules involved in DNA strand exchange is gathered and analyzed to present a view of their possible arrangement within the filament, their behavior during strand exchange and during ATP hydrolysis, the mechanism of RecA-promoted DNA deformation and the role of DNA deformation in the process of homologous recombination. In particular, the unusual characteristics of DNA within the RecA filament are compared to the DNA deformations locally induced by architectural proteins which bind in the DNA minor groove. The possible role and location of two flexible loops of RecA are discussed.  相似文献   

8.
RecA protein recognises two complementary DNA strands for homologous recombination. To gain insight into the molecular mechanism, the thermodynamic parameters of the DNA binding have been characterised by isothermal calorimetry. Specifically, conformational changes of protein and DNA were searched for by measuring variations in enthalpy change (DeltaH) with temperature (heat capacity change, DeltaC(p)). In the presence of the ATP analogue ATPgammaS, the DeltaH for the binding of the first DNA strand depends upon temperature (large DeltaC(p)) and the type of buffer, in a way that is consistent with the organisation of disordered parts and the protonation of RecA upon complex formation. In contrast, the binding of the second DNA strand occurs without any pronounced DeltaC(p), indicating the absence of further reorganisation of the RecA-DNA filament. In agreement with these findings, a significant change in the CD spectrum of RecA was observed only upon the binding of the first DNA strand. In the absence of nucleotide cofactor, the DeltaH of DNA binding is almost independent of temperature, indicating a requirement for ATP in the reorganisation of RecA. When the second DNA strand is complementary to the first, the DeltaH is larger than that for non-complementary DNA strand, but less than the DeltaH of the annealing of the complementary DNA without RecA. This small DeltaH could reflect a weak binding that may facilitate the dissociation of only partly complementary DNA and thus speed the search for complementary DNA. The DeltaH of binding DNA sequences displaying strong base-base stacking is small for both the first and second binding DNA strand, suggesting that the second is also stretched upon interaction with RecA. These results support the proposal that the RecA protein restructures DNA, preparing it for the recognition of a complementary second DNA strand, and that the recognition is due mainly to direct base-base contacts between DNA strands.  相似文献   

9.
The RecA protein of Escherichia coli performs a number of ATP-dependent, in vitro reactions and is a DNA-dependent ATPase. Small oligodeoxyribonucleotides were used as DNA cofactors in a kinetic analysis of the ATPase reaction. Polymers of deoxythymidilic acid as well as oligonucleotides of mixed base composition stimulated the RecA ATPase activity in a length-dependent fashion. Both the initial rate and the extent of the reaction were affected by chain length. Full activity was seen with chain lengths > or = 30 nt. Partial activity was seen with chain lengths of 15-30 nt. The lower activity of shorter oligonucleotides was not simply due to a reduced affinity for DNA, since effects of chain length on KmATP and the Hill coefficient for ATP hydrolysis were also observed. The results also suggested that single-stranded DNA secondary structure frequently affects the ATPase activity of RecA protein with oligodeoxyribonucleotides.  相似文献   

10.
Underwinding of DNA associated with duplex-duplex pairing by RecA protein   总被引:3,自引:0,他引:3  
Homologous pairing between gapped circular and partially homologous form I DNA, catalyzed by Escherichia coli RecA protein, leads to the formation of nascent synaptic joints between regions of duplex DNA. These duplex-duplex interactions result in underwinding of the form I DNA, as detected by a topoisomerase assay. Underwound DNA species have been studied with regard to their formation, stability, and topological requirements. The synaptic joints are short-lived and of low frequency compared with those formed between single-stranded and duplex DNA. Measurement of the degree of underwinding indicates joints 300-400 base pairs in length, in which the two DNA molecules are presumed to be interwound within the RecA-nucleoprotein filament. Underwound DNA was not detected in reactions between gapped DNA and partially homologous nicked circular or relaxed covalently closed DNA. We have also investigated the requirements for the initiation of strand exchange. Previous results have shown that strand exchange requires a homologous 3'-terminus complementary to the gapped region. We now show that the minimum length of overlap required for efficient initiation of strand exchange is one to two turns of DNA within the RecA-DNA nucleoprotein filament.  相似文献   

11.
12.
Interaction of RecA protein of Escherichia coli with pBR322 DNA modified by N-hydroxy-2-acetylaminofluorene (N-OH-AAF) and 4-hydroxyaminoquinoline 1-oxide (4HAQO) was investigated. RecA protein bound more efficiently to modified DNA than to unmodified DNA as judged by filter-binding and gel electrophoresis assay. The binding of RecA protein with modified DNA resulted in the stimulation of ATPase activity and the activation for RecA protein to stimulate the repressor cleavage. These abilities of RecA protein were increased proportionally to the number of adducts in the plasmid DNA (0-5 adducts). Apurinic and alkylated DNA did not activate RecA protein. We suggest that modification of DNA by N-OH-AAF and 4HAQO provides binding sites for RecA protein and may act as an activation signal for SOS response.  相似文献   

13.
Formation of nascent heteroduplex structures by RecA protein and DNA   总被引:13,自引:0,他引:13  
A M Wu  R Kahn  C DasGupta  C M Radding 《Cell》1982,30(1):37-44
E. coli RecA protein promotes homologous pairing in two distinguishable phases: synapsis and strand exchange. With circular single strands (plus strand only) and linear duplex DNA, polarized or unidirectional strand exchange appeared to cause heteroduplex joints to form and grow from a unique end of the duplex DNA. However, a variety of other pairs of substrates appeared to form joint molecules without regard to the polarity of the strands involved. This paradox has been resolved by observations that show that synapsis is fast, nonpolar and sensitive to inhibition by ADP, whereas strand exchange is slow, directional and relatively insensitive to inhibition by ADP. Thus a heteroduplex joint initiated at one end of the duplex DNA grows by continued strand exchange, whereas a joint initiated at the other end dissociates and is unable to start again because accumulating ADP inhibits synapsis. RecA protein appears to form a nascent protein-DNA structure, the RecA synaptic structure, in which at least 100-300 bp in the duplex molecule are held in an unwound configuration and in which the incoming strand is aligned with its complement.  相似文献   

14.
Structure of the RecA x ADP(ATP) and recA x ADP x cation(+2) complexes was studied by methods of ESR, NMR and near-ultraviolet spectroscopy. The strong hypochromism in the adenine absorption band occurs. The complexes of nucleotide with cation and with protein were independently involved in the triple recA x ADP x cation(+2) complex. The triple complex can be treated as a three-link chain with the ADP localized in the middle.  相似文献   

15.
Cryptography with DNA binary strands   总被引:13,自引:0,他引:13  
Biotechnological methods can be used for cryptography. Here two different cryptographic approaches based on DNA binary strands are shown. The first approach shows how DNA binary strands can be used for steganography, a technique of encryption by information hiding, to provide rapid encryption and decryption. It is shown that DNA steganography based on DNA binary strands is secure under the assumption that an interceptor has the same technological capabilities as sender and receiver of encrypted messages. The second approach shown here is based on steganography and a method of graphical subtraction of binary gel-images. It can be used to constitute a molecular checksum and can be combined with the first approach to support encryption. DNA cryptography might become of practical relevance in the context of labelling organic and inorganic materials with DNA 'barcodes'.  相似文献   

16.
Thermostable RecA protein (ttRecA) from Thermus thermophilus HB8 showed strand exchange activity at 65 degrees C but not at 37 degrees C, although nucleoprotein complex was observed at both temperatures. ttRecA showed single-stranded DNA (ssDNA)-dependent ATPase activity, and its activity was maximal at 65 degrees C. The kinetic parameters, K(m) and kcat, for adenosine triphosphate (ATP) hydrolysis with poly(dT) were 1.4 mM and 0.60 s-1 at 65 degrees C, and 0.34 mM and 0.28 s-1 at 37 degrees C, respectively. Substrate cooperativity was observed at both temperatures, and the Hill coefficient was about 2. At 65 degrees C, all tested ssDNAs were able to stimulate the ATPase activity. The order of ATPase stimulation was: poly(dC) > poly(dT) > M13 ssDNA > poly(dA). Double-stranded DNAs (dsDNA), poly(dT).poly(dA) and M13 dsDNA, were unable to activate the enzyme at 65 degrees C. At 37 degrees C, however, not only dsDNAs but also poly(dA) and M13 ssDNA showed poor stimulating ability. At 25 degrees C, poly(dA) and M13 ssDNA gave circular dichroism (CD) peaks at around 192 nm, which reflect a particular structure of DNA. The conformation was changed by an upshift of temperature or binding to Escherichia coli RecA protein (ecRecA), but not to ttRecA. The dissociation constant between ecRecA and poly(dA) was estimated to be 44 microM at 25 degrees C by the change in the CD. These observations suggest that the capability to modify the conformation of ssDNA may be different between ttRecA and ecRecA. The specific structure of ssDNA was altered by heat or binding of ecRecA. After this alteration, ttRecA and ecRecA can express their activities at each physiological temperature.  相似文献   

17.
DNA sequence dependence of ATP hydrolysis by RecA protein   总被引:1,自引:0,他引:1  
The DNA sequence dependence of the ATPase activity of RecA protein has been investigated for a variety of single strand octamer and hexadecamer homopolymers and alternating copolymers. Under assay conditions where the single strand DNA concentration exceeds the RecA protein concentration, significant differences in the rates of ATP hydrolysis for the various single strand DNA oligomer cofactors are observed. Under the conditions examined, the order of efficiency of the DNA cofactors in inducing RecA mediated ATPase activity is found to be: dA16 greater than dT16 greater than d(TC)16 greater than dT8 greater than dC16 greater than dA8 = dG8 greater than dG16 greater than dC8 greater than d(AG)16. These results demonstrate not only a dependence of RecA ATPase activity on the sequence composition of short single strand DNA they further reveal ATPase activity can be affected by the nearest neighbor nucleotide sequence of short DNA cofactors.  相似文献   

18.
The RecA protein of Escherichia coli is required for SOS-induced mutagenesis in addition to its recombinational and regulatory roles. We have suggested that RecA might participate directly in targeted mutagenesis by binding preferentially to the site of the DNA damage (e.g. pyrimidine dimer) because of its partially unwound nature; DNA polymerase III will then encounter RecA-coated DNA at the lesion and might replicate across the damaged site more often but with reduced fidelity. In support of this proposal, we have found that the phenotype of wild-type and mutant RecA for mutagenesis correlates with capacity to bind to double-stranded DNA. Wild-type RecA binds more efficiently to ultraviolet (u.v.)-irradiated, duplex DNA than to non-irradiated DNA. The RecA441 (Tif) protein that is constitutive for mutagenesis binds extremely well to double-stranded DNA with no lesions, whereas the RecA430 protein that is defective in mutagenesis binds poorly even to u.v.-irradiated DNA. The RecA phenotype also correlates with capacity to use duplex DNA as a cofactor for cleavage of the LexA repressor protein for SOS-controlled operons. Wild-type RecA provides efficient cleavage of LexA only with u.v.-irradiated duplex DNA; RecA441 cleaves well with non-irradiated DNA; RecA430 gives very poor cleavage even with u.v.-irradiated DNA. We conclude that the interaction of RecA with damaged double-stranded DNA is likely to be a critical component of SOS mutagenesis and to define a pathway for the LexA cleavage reaction as well.  相似文献   

19.
To investigate the DNA binding site of RecA protein, we constructed 15 recA mutants having alterations in the regions homologous to the other ssDNA binding proteins. The in vivo analyses showed that the mutational change at Arg243, Lys248, Tyr264, or simultaneously at Lys6 and Lys19, or Lys6 and Lys23 caused severe defects in the recA functions, while other mutational changes did not. Purified RecA-K6A-K23A (Lys6 and Lys23 changed to Ala and Ala, respectively) protein was indistinguishable from the wild-type RecA protein in its binding to DNA. However, the RecA-R243A (Arg243 changed to Ala) and RecA-Y264A (Tyr264 changed to Ala) proteins were defective in binding to both ss- and ds-DNA. In self-oligomerization property, RecA-R243A was proficient but RecA-Y264A was deficient, suggesting that the RecA-R243A protein had a defect in DNA binding site and the RecA-Y264A protein was defective in its interaction with the adjacent RecA molecule. The region of residues 243–257 including the Arg243 is highly homologous to the DNA binding motif in the ssDNA binding proteins, while the eukaryotic RecA homologues have a similar structure at the amino-terminal side proximal to the nucleotide binding core. The region of residues 243–257 would be a part of the DNA binding site. The other parts of this site would be the Tyr103 and the region of residues 178–183, which were cross-linked to ssDNA. These three regions lie in a line in the crystal structure.  相似文献   

20.
General mechanism for RecA protein binding to duplex DNA   总被引:6,自引:0,他引:6  
RecA protein binding to duplex DNA occurs by a multi-step process. The tau analysis, originally developed to examine the binding of RNA polymerase to promoter DNA, is adapted here to study two kinetically distinguishable reaction segments of RecA-double stranded (ds) DNA complex formation in greater detail. One, which is probably a rapid preequilibrium in which RecA protein binds weakly to native dsDNA, is found to have the following properties: (1) a sensitivity to pH, involving a net release of approximately one proton; (2) a sensitivity to salts; (3) little or no dependence on temperature; (4) little or no dependence on DNA length. The second reaction segment, the rate-limiting nucleation of nucleoprotein filament formation accompanied by partial DNA unwinding, is found to have the following properties: (1) a sensitivity to pH, involving a net uptake of approximately three protons; (2) a sensitivity to salts; (3) a relatively large dependence on temperature, with an Arrhenius activation energy of 39 kcal mol(-1); (4) a sensitivity to DNA topology; (5) a dependence on DNA length. These results contribute to a general mechanism for RecA protein binding to duplex DNA, which can provide a rationale for the apparent preferential binding to altered DNA structures such as pyrimidine dimers and Z-DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号