首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The cytosolic acyl-coenzyme A thioesterase I (Acot1) is an enzyme that hydrolyzes long-chain acyl-CoAs of C(12)-C(20)-CoA in chain length to the free fatty acid and CoA. Acot1 was shown previously to be strongly upregulated at the mRNA and protein level in rodents by fibrates. In this study, we show that Acot1 mRNA levels were increased by 90-fold in liver by treatment with Wy-14,643 and that Acot1 mRNA was also increased by 15-fold in the liver of hepatocyte nuclear factor 4alpha (HNF4alpha) knockout animals. Our study identified a direct repeat 1 (DR1) located in the Acot1 gene promoter in mouse, which binds the peroxisome proliferator-activated receptor alpha (PPARalpha) and HNF4alpha. Chromatin immunoprecipitation (ChIP) assay showed that the identified DR1 bound PPARalpha/retinoid X receptor alpha (RXRalpha) and HNF4alpha, whereas the binding in ChIP was abrogated in the PPARalpha and HNF4alpha knockout mouse models. Reporter gene assays showed activation of the Acot1 promoter in cells by the PPARalpha agonist Wy-14,643 after cotransfection with PPARalpha/RXRalpha. However, transfection with a plasmid containing HNF4alpha also resulted in an increase in promoter activity. Together, these data show that Acot1 is under regulation by an interplay between HNF4alpha and PPARalpha.  相似文献   

6.
7.
8.
PPARalpha agonists have been characterized largely in terms of their effects on lipids and glucose metabolism, whereas little has been reported about effects on amino acid metabolism. We studied responses to the PPARalpha agonist WY 14,643 (30 micromol x kg(-1) x day(-1) for 4 wk) in rats fed a saturated fat diet. Plasma and urine were analyzed with proton NMR. Plasma amino acids were measured using HPLC, and hepatic gene expression was assessed with DNA arrays. The high-fat diet elevated plasma levels of insulin and triglycerides (TG), and WY 14,643 treatment ameliorated this insulin resistance and dyslipidemia, lowering plasma insulin and TG levels. In addition, treatment decreased body weight gain, without altering cumulative food intake, and increased liver mass. WY 14,643 increased plasma levels of 12 of 22 amino acids, including glucogenic and some ketogenic amino acids, whereas arginine was significantly decreased. There was no alteration in branched-chain amino acid levels. Compared with the fat-fed control animals, WY 14,643-treated animals had raised plasma urea and ammonia levels as well as raised urine levels of N-methylnicotinamide and dimethylglycine. WY 14,643 induced changes in a number of key genes involved in amino acid metabolism in addition to expected effects on hepatic genes involved in lipid catabolism and ketone body formation. In conclusion, the present results suggest that, in rodents, effects of pharmacological PPARalpha activation extend beyond control of lipid metabolism to include important effects on whole body amino acid mobilization and hepatic amino acid metabolism.  相似文献   

9.
10.
11.
12.
13.
14.
15.
WY14,643 is a specific peroxisome proliferator-activated receptor alpha (PPARalpha) agonist with strong hypolipidemic effects. Here we have examined the effect of WY14,643 in the A-ZIP/F-1 mouse, a model of severe lipoatrophic diabetes. With 1 week of treatment, all doses of WY14,643 that were tested normalized serum triglyceride and fatty acid levels. Glucose and insulin levels also improved but only with high doses and longer treatment duration. WY14,643 reduced liver and muscle triglyceride content and increased levels of mRNA encoding fatty acid oxidation enzymes. In liver, the elevated lipogenic mRNA profile (including PPARgamma) in A-ZIP/F-1 mice remained unchanged. These results suggest that WY14,643 acts by increasing beta-oxidation rather by than decreasing lipogenesis or lipid uptake. Hyperinsulinemic euglycemic clamp studies indicated that WY14,643 treatment improved liver more than muscle insulin sensitivity and that hepatic mRNA levels of gluconeogenic enzymes were reduced. Combination treatment with both WY14,643 and a PPARgamma ligand, rosiglitazone, did not lower glucose levels more effectively than did treatment with WY14,643 alone. These data support the hypothesis that reducing intracellular triglycerides in non-adipose tissues improves insulin sensitivity and suggest that further investigation of the role of PPARalpha agonists in the treatment of lipoatrophic diabetes is warranted.  相似文献   

16.
17.
18.
19.
20.
Peroxisome proliferator-activated receptor (PPAR)-alpha mediates an adaptive response to fasting by up-regulation of genes involved in fatty acid oxidation and ketone body synthesis. Ketone bodies are transferred in and out of cells by monocarboxylate transporter (MCT)-1. In this study we observed for the first time that activation of PPARalpha in rats by clofibrate treatment or fasting increased hepatic mRNA concentration of MCT1. In Fao rat hepatoma cells, incubation with the PPARalpha agonist WY 14,643 increased mRNA concentration of MCT1 whereas the PPARgamma agonist troglitazone did not. To elucidate whether up-regulation of MCT1 is indeed mediated by PPARalpha we treated wild-type and PPARalpha-null mice with WY 14,643. In wild-type mice, treatment with WY 14,643 increased mRNA concentrations of MCT1 in liver, kidney and small intestine whereas no up-regulation was observed in PPARalpha-null mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号