首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A variety of 2-oxoamides and related amides based on natural and non-natural amino acids were synthesized. Their activity on two human intracellular phospholipases (GIVA cPLA(2) and GVIA iPLA(2)) and one human secretory phospholipase (GV sPLA(2)) was evaluated. We show that an amide based on (R)-gamma-norleucine is a highly selective inhibitor of GV sPLA(2).  相似文献   

2.
Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) is a prototypic sPLA(2) enzyme that may play roles in modification of eicosanoid biosynthesis as well as antibacterial defense. In several cell types, inducible expression of sPLA(2) by pro-inflammatory stimuli is attenuated by group IVA cytosolic PLA(2) (cPLA(2)alpha) inhibitors such as arachidonyl trifluoromethyl ketone, leading to the proposal that prior activation of cPLA(2)alpha is required for de novo induction of sPLA(2). However, because of the broad specificity of several cPLA(2)alpha inhibitors used so far, a more comprehensive approach is needed to evaluate the relevance of this ambiguous pathway. Here, we provide evidence that the induction of sPLA(2)-IIA by pro-inflammatory stimuli requires group VIB calcium-independent PLA(2) (iPLA(2)gamma), rather than cPLA(2)alpha, in rat fibroblastic 3Y1 cells. Results with small interfering RNA unexpectedly showed that the cytokine induction of sPLA(2)-IIA in cPLA(2)alpha knockdown cells, in which cPLA(2)alpha protein was undetectable, was similar to that in replicate control cells. By contrast, knockdown of iPLA(2)gamma, another arachidonyl trifluoromethyl ketone-sensitive intracellular PLA(2), markedly reduced the cytokine-induced expression of sPLA(2)-IIA. Supporting this finding, the R-enantiomer of bromoenol lactone, an iPLA(2)gamma inhibitor, suppressed the cytokine-induced sPLA(2)-IIA expression, whereas (S)-bromoenol lactone, an iPLA(2)beta inhibitor, failed to do so. Moreover, lipopolysaccharide-stimulated sPLA(2)-IIA expression was also abolished by knockdown of iPLA(2)gamma. These findings open new insight into a novel regulatory role of iPLA(2)gamma in stimulus-coupled sPLA(2)-IIA expression.  相似文献   

3.
Evidence that brain edema and aquaporin-4 (AQP4) water channels have roles in experimental binge ethanol-induced neurodegeneration has stimulated interest in swelling/edema-linked neuroinflammatory pathways leading to oxidative stress. We report here that neurotoxic binge ethanol exposure produces comparable significant effects in vivo and in vitro on adult rat brain levels of AQP4 as well as neuroinflammation-linked enzymes: key phospholipase A2 (PLA2) family members and poly (ADP-ribose) polymerase-1 (PARP-1). In adult male rats, repetitive ethanol intoxication (3 gavages/d for 4 d, ∼9 g/kg/d, achieving blood ethanol levels ∼375 mg/dl; “Majchrowicz” model) significantly increased AQP4, Ca+2-dependent PLA2 GIVA (cPLA2), phospho-cPLA2 GIVA (p-cPLA2), secretory PLA2 GIIA (sPLA2) and PARP-1 in regions incurring extensive neurodegeneration in this model—hippocampus, entorhinal cortex, and olfactory bulb—but not in two regions typically lacking neurodamage, frontal cortex and cerebellum. Also, ethanol reduced hippocampal Ca+2-independent PLA2 GVIA (iPLA2) levels and increased brain “oxidative stress footprints” (4-hydroxynonenal-adducted proteins). For in vitro studies, organotypic cultures of rat hippocampal-entorhinocortical slices of adult age (∼60 d) were ethanol-binged (100 mM or ∼450 mg/dl) for 4 d, which augments AQP4 and causes neurodegeneration (Collins et al. 2013). Reproducing the in vivo results, cPLA2, p-cPLA2, sPLA2 and PARP-1 were significantly elevated while iPLA2 was decreased. Furthermore, supplementation with docosahexaenoic acid (DHA; 22:6n-3), known to quell AQP4 and neurodegeneration in ethanol-treated slices, blocked PARP-1 and PLA2 changes while counteracting endogenous DHA reduction and increases in oxidative stress footprints (3-nitrotyrosinated proteins). Notably, the PARP-1 inhibitor PJ-34 suppressed binge ethanol-dependent neurodegeneration, indicating PARP upstream involvement. The results with corresponding models support involvement of AQP4- and PLA2-associated neuroinflammatory pro-oxidative pathways in the neurodamage, with potential regulation by PARP-1 as well. Furthermore, DHA emerges as an effective inhibitor of these binge ethanol-dependent neuroinflammatory pathways as well as associated neurodegeneration in adult-age brain.  相似文献   

4.
Group IIA secreted phospholipase A? (GIIA sPLA?) is a member of the mammalian sPLA? enzyme family and is associated with various inflammatory conditions. In this study, the synthesis of 2-oxoamides based on α-amino acids and the in vitro evaluation against three secreted sPLA?s (GIIA, GV and GX) are described. The long chain 2-oxoamide GK126 based on the amino acid (S)-leucine displayed inhibition of human and mouse GIIA sPLA?s (IC?? 300nM and 180nM, respectively). It also inhibited human GV sPLA? with similar potency, while it did not inhibit human GX sPLA?. The elucidation of the stereoelectronic characteristics that affect the in vitro activity of these compounds was achieved by using a combination of simulated annealing to sample low-energy conformations before the docking procedure, and molecular docking calculations.  相似文献   

5.
P388D(1) cells exposed to bacterial lipopolysaccharide (LPS) mobilize arachidonic acid (AA) for prostaglandin synthesis in two temporally distinct pathways. The "immediate pathway" is triggered within minutes by receptor agonists such as platelet-activating factor (PAF) but only if the cells have previously been primed with LPS for 1 h. The "delayed pathway" occurs in response to LPS alone over the course of several hours. We have now investigated the subcellular localization of both the Group IV cytosolic phospholipase A(2) (cPLA(2)) and the Group V secreted PLA(2) (sPLA(2)) during these two temporally distinct routes of AA release. We have prepared cells overexpressing fusion proteins of sPLA(2)-GFP and cPLA(2)-RFP. In the resting cells, cPLA(2)-RFP was uniformly located throughout the cytoplasm, and short-term treatment with LPS did not induce translocation to perinuclear and/or Golgi membranes. However, such a translocation occurred almost immediately after the addition of PAF to the cells. Long-term exposure of the cells to LPS led to the translocation of cPLA(2)-RFP to intracellular membranes after 3 h, and correlates with a significant release of AA in a cPLA(2)-dependent manner. At the same time period that the delayed association of cPLA(2) with perinuclear membranes is detected, an intense fluorescence arising from the sPLA(2)-GFP was found around the nucleus in the sPLA(2)-GFP stably transfected cells. In parallel with these changes, significant AA release was detected from the sPLA(2)-GFP transfectants in a cPLA(2)-dependent manner, which may reflect cross-talk between sPLA(2) and cPLA(2). The subcellular localization of the Group VIA Ca(2+)-independent PLA(2) (iPLA(2)) was also investigated. Cells overexpressing iPLA(2)-GFP showed no fluorescence changes under any activation condition. However, the iPLA(2)-GFP-expressing cells showed relatively high basal AA release, confirming a role for iPLA(2) in basal deacylation reactions. These new data illustrate the subcellular localization changes that accompany the distinct roles that each of the three kinds of PLA(2) present in P388D(1) macrophages play in AA mobilization.  相似文献   

6.
Neutrophils and differentiated PLB-985 cells contain various types of PLA(2)s including the 85 kDa cytosolic PLA(2) (cPLA(2)), Ca(2+)-independent PLA(2) (iPLA(2)) and secreted PLA(2)s (sPLA(2)s). The present study focuses on the behavior of sPLA(2)s in neutrophils and PLB cells and their relationship to cPLA(2)alpha. The results of the present research show that the two types of sPLA(2) present in neutrophils, sPLA(2)-V and sPLA(2)-X, which are located in the azurophil granules, are differentially affected by physiological stimuli. While sPLA(2)-V is secreted to the extacellular milieu, sPLA(2)-X is detected on the plasma membranes after stimulation. Stimulation of neutrophils with formyl-Met-Leu-Phe (fMLP), opsonized zymosan (OZ) or A23187 resulted in a different kinetics of sPLA(2) secretion as detected by its activity in the neutrophil supernatants. Neutrophil priming by inflammatory cytokines or LPS enhanced sPLA(2) activity detected in the supernatant after stimulation by fMLP. This increased activity was due to increased secretion of sPLA(2)-V to the supernatant and not to release of sPLA(2)-X. sPLA(2) in granulocyte-like PLB cells exhibit identical characteristics to neutrophil sPLA(2), with similar activity and optimal pH of 7.5. Granulocyte-like cPLA(2)alpha-deficient PLB cells serve as a good model to study whether sPLA(2) activity is regulated by cPLA(2)alpha. Secretion and activity of sPLA(2) were found to be similar in granulocyte-like PLB cells expressing or lacking cPLA(2)alpha, indicating that they are not under cPLA(2)alpha regulation.  相似文献   

7.
The superfamily of phospholipase A(2) (PLA(2)) enzymes currently consists of 15 Groups and many subgroups and includes five distinct types of enzymes, namely the secreted PLA(2)s (sPLA(2)), the cytosolic PLA(2)s (cPLA(2)), the Ca(2+) independent PLA(2)s (iPLA(2)), the platelet-activating factor acetylhydrolases (PAF-AH), and the lysosomal PLA(2)s. In 1994, we established the systematic Group numbering system for these enzymes. Since then, the PLA(2) superfamily has grown continuously and over the intervening years has required several updates of this Group numbering system. Since our last update, a number of new PLA(2)s have been discovered and are now included. Additionally, tools for the investigation of PLA(2)s and approaches for distinguishing between the different Groups are described.  相似文献   

8.
Antibacterial properties of secreted phospholipases A2 (PLA2) have emerged gradually. Group (G) IIA PLA2 is the most potent among mammalian secreted (s) PLA2s against Gram-positive bacteria, but additional antibacterial compounds, e.g. the bactericidal/permeability-increasing protein, are needed to kill Gram-negative bacteria. The mechanisms of binding to the bacterial surface and the killing of bacteria by sPLA2s are based on the positive charge of the PLA2 protein and its phospholipolytic enzymatic activity, respectively. The concentration of GIIA PLA2 is highly elevated in serum of patients with bacterial sepsis, and overexpression of GIIA PLA(2) protects transgenic mice against experimental Gram-positive infection. The synthesis and secretion of GIIA PLA2 are stimulated by the cytokines TNF-alpha, IL-1 and IL-6. Secreted PLA2s may be potentially useful new endogenous antibiotics to combat infections including those caused by antibiotic-resistant bacteria such as methicillin-resistant staphylococci and vancomysin-resistant enterococci.  相似文献   

9.
Phospholipases A(2) (PLA(2)s) are involved in neuritogenesis but the identity of the isoforms(s) contributing to this process is still not defined. Several reports have focused on secretory PLA(2)s (sPLA(2)) as the administration of exogenous sPLA(2)s to PC12 neuronal cells stimulates neurite outgrowth. The present study demonstrates that the endogenous group IIA sPLA(2) (GIIA), constitutively expressed in mammalian neural cells, changes its subcellular localization when PC12 cells are induced to differentiate by NGF treatment. Indeed, confocal analysis showed a time-dependent accumulation of GIIA in growth cones and neurite tips. Under identical conditions the subcellular distribution of another isoform (GV) was unaffected by NGF. Contrary to GX, another sPLA(2) isoform expressed by PC12 cells, the contribution of GIIA to neuritogenesis does not require its release in the extracellular medium.  相似文献   

10.
Phospholipase A2   总被引:7,自引:0,他引:7  
Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (AA), a precursor of eicosanoids including prostaglandins (PGs) and leukotrienes (LTs). The same reaction also produces lysophosholipids, which represent another class of lipid mediators. So far, at least 19 enzymes that possess PLA2 activity have been identified in mammals. The secretory PLA2 (sPLA2) family, in which 10 isozymes have been identified, consists of low-molecular-weight, Ca2+-requiring, secretory enzymes that have been implicated in a number of biological processes, such as modification of eicosanoid generation, inflammation, host defense, and atherosclerosis. The cytosolic PLA2 (cPLA2) family consists of 3 enzymes, among which cPLA2alpha plays an essential role in the initiation of AA metabolism. Intracellular activation of cPLA2alpha is tightly regulated by Ca2+ and phosphorylation. The Ca2+-independent PLA2 (iPLA2) family contains 2 enzymes and may play a major role in membrane phospholipid remodeling. The platelet-activating factor (PAF) acetylhydrolase (PAF-AH) family represents a unique group of PLA2 that contains 4 enzymes exhibiting unusual substrate specificity toward PAF and/or oxidized phospholipids. In this review, we will overview current understanding of the properties and functions of each enzyme belonging to the sPLA2, cPLA2, and iPLA2 families, which have been implicated in signal transduction.  相似文献   

11.
The bacterial tripeptide formyl-Met-Leu-Phe (fMLP) induces the secretion of enzyme(s) with phospholipase A(2) (PLA(2)) activity from human neutrophils. We show that circulating human neutrophils express groups V and X sPLA(2) (GV and GX sPLA(2)) mRNA and contain GV and GX sPLA(2) proteins, whereas GIB, GIIA, GIID, GIIE, GIIF, GIII, and GXII sPLA(2)s are undetectable. GV sPLA(2) is a component of both azurophilic and specific granules, whereas GX sPLA(2) is confined to azurophilic granules. Exposure to fMLP or opsonized zymosan results in the release of GV but not GX sPLA(2) and most, if not all, of the PLA(2) activity in the extracellular fluid of fMLP-stimulated neutrophils is due to GV sPLA(2). GV sPLA(2) does not contribute to fMLP-stimulated leukotriene B(4) production but may support the anti-bacterial properties of the neutrophil, because 10-100 ng per ml concentrations of this enzyme lead to Gram-negative bacterial membrane phospholipid hydrolysis in the presence of human serum. By use of a recently described and specific inhibitor of cytosolic PLA(2)-alpha (group IV PLA(2)alpha), we show that this enzyme produces virtually all of the arachidonic acid used for the biosynthesis of leukotriene B(4) in fMLP- and opsonized zymosan-stimulated neutrophils, the major eicosanoid produced by these pro-inflammatory cells.  相似文献   

12.
The mammalian Golgi complex, trans Golgi network (TGN) and ER-Golgi intermediate compartment (ERGIC) are comprised of membrane cisternae, coated vesicles and membrane tubules, all of which contribute to membrane trafficking and maintenance of their unique architectures. Recently, a new cast of players was discovered to regulate the Golgi and ERGIC: four unrelated cytoplasmic phospholipase A (PLA) enzymes, cPLA(2)α (GIVA cPLA(2)), PAFAH Ib (GVIII PLA(2)), iPLA(2)-β (GVIA-2 iPLA(2)) and iPLA(1)γ. These ubiquitously expressed enzymes regulate membrane trafficking from specific Golgi subcompartments, although there is evidence for some functional redundancy between PAFAH Ib and cPLA(2)α. Three of these enzymes, PAFAH Ib, cPLA(2)α and iPLA(2)-β, exert effects on Golgi structure and function by inducing the formation of membrane tubules. We review our current understanding of how PLA enzymes regulate Golgi and ERGIC morphology and function.  相似文献   

13.
Phospolipase A2 and apoptosis   总被引:6,自引:0,他引:6  
Phospolipase A(2) (PLA(2)) is the esterase activity that cleaves the sn-2 ester bond in glycerophospholipids, releasing free fatty acids and lysophospholipids. The PLA(2) activity is found in a variety of enzymes which can be divided in several types based on their Ca(2+) dependence for their activity; Ca(2+)-dependent secretory phosholipases (sPLA(2)s) and cytosolic phospholipases (cPLA(2)s), and Ca(2+)-independent phospholipase A(2)s (iPLA(2)s). These enzymes also show diverse size and substrate specificity (i.e., in the fatty acid chain length and extent of saturation). Among the fatty acids released by PLA(2), arachidonic acid (AA) is of particular biological importance, because it is subsequently converted to prostanoids and leukotrienes by cyclooxygenases (COX) and lipoxygenases (LOX), respectively. Free AA may also stimulate apoptosis through activation of sphingomyelinase. Alternatively, it is suggested that oxidized metabolites generated from AA by LOX induce apoptosis. Although the precise mechanisms remain to be elucidated, changes are observed in glycerolipid metabolism during apoptotic processes. In some cells induced to undergo apoptosis, AA is released concomitant with loss of cell viability, caspase activation and DNA fragmentation. Such AA releases appear to be mediated by activation of cPLA(2) and/or iPLA(2). For example, tumor necrosis factor-alpha (TNF-alpha)-induced cell death is mediated by cPLA(2), whereas Fas-induced apoptosis appears to be mediated by iPLA(2). Some discrepancies among early experimental results were probably caused by differences in the experimental conditions such as the serum concentration, inhibitors used that are not necessarily specific to a single-type enzyme, or differential expression of each PLA(2) in cells employed in the experiments. Recent studies eliminated such problems, by carefully defining the experimental conditions, and using multiple inhibitors that show different specificities. Accordingly, more convincing data are available that demonstrate involvement of some PLA(2)s in the apoptotic processes. In addition to cPLA(2) and iPLA(2), sPLA(2)s were recently found to play roles in apoptosis. Moreover, new proteins that appear to control PLA(2)s are being discovered. Here, the roles of PLA(2)s in apoptosis are discussed by reviewing recent reports.  相似文献   

14.
P388D1 cells release arachidonic acid (AA) and produce prostaglandin E2 (PGE2) upon long-term stimulation with lipopolysaccharide (LPS). The cytosolic Group IVA (GIVA) phospholipase A2 (PLA2) has been implicated in this pathway. LPS stimulation also results in increased expression and secretion of a secretory PLA2, specifically GV PLA2. To test whether GV PLA2 contributes to PGE2 production and whether GIVA PLA2 activation increases the expression of GV PLA2, we utilized the specific GIVA PLA2 inhibitor pyrrophenone and second generation antisense oligonucleotides (AS-ONs) designed to specifically inhibit expression and activity of GV PLA2. Treatment of P388D1 cells with antisense caused a marked decrease in basal GV PLA2 mRNA and prevented the LPS-induced increase in GV PLA2 mRNA. LPS-stimulated cells release active GV PLA2 into the medium, which is inhibited to background levels by antisense treatment. However, LPS-induced PGE2 release by antisense-treated cells and by control cells are not significantly different. Collectively, the results suggest that the upregulation of GV PLA2 during long-term LPS stimulation is not required for PGE2 production by P388D1 cells. Experiments employing pyrrophenone suggested that GIVA PLA2 is the dominant player involved in AA release, but it appears not to be involved in the regulation of LPS-induced expression of GV PLA2 or cyclooxygenase-2.  相似文献   

15.
Previous studies have shown that reactive oxygen species (ROS) enhance arachidonic acid (AA) release and the subsequent AA metabolism in macrophages. The purpose of this study was determined the implication of phospholipases A2 (PLA2s) in these events. Our results show that oxidative stress induced by exogenous adding of hydrogen peroxide or superoxide anion in macrophage RAW 264.7 and mouse peritoneal macrophage cultures caused a marked enhancement of calcium-independent PLA2 (iPLA2) activity,whereas the increment of secreted PLA2 (sPLA2) and calcium-dependent cytosolic PLA2 (cPLA2) activities were slight. This increase of iPLA2 activity by ROS was rapid and dose-dependent. ROS also induced a significant [3H] arachidonic acid (AA) release. The iPLA2 selective inhibitor, bromoenol lactone, almost completely suppressed the mobilization of [3H]AA induced by ROS whereas antisense oligonucleotide against cPLA2 did not have any appreciable effect. Thus, our data show that iPLA2 activity is involved in the mechanism by which ROS increases the availability of free AA in macrophages RAW 264.7. Moreover, the protein kinase C (PKC) inhibitor, calphostin C, and calcium chelators had no effect on the [3H]AA release induced by ROS, suggesting this is a regulatory role of iPLA2.  相似文献   

16.
A variety of lipophilic 2-oxoamides based on gamma-aminobutyric and delta-aminovaleric analogues were synthesized. 2-oxoamides containing a tetrazole, a thioethyl or a thioacetyl group are weak inhibitors of GIVA cPLA(2), while derivatives containing a methyl tetrazole, a diethyl phosphonate or a thioethyl group are weak inhibitors of GV sPLA(2).  相似文献   

17.
We examined brain phospholipase A2 (PLA2) activity and the expression of enzymes metabolizing arachidonic acid (AA) in cytosolic PLA2 knockout () mice to see if other brain PLA2 can compensate for the absence of cPLA2 alpha and if cPLA2 couples with specific downstream enzymes in the eicosanoid biosynthetic pathway. We found that the rate of formation of prostaglandin E2 (PGE2), an index of net cyclooxygenase (COX) activity, was decreased by 62% in the compared with the control mouse brain. The decrease was accompanied by a 50-60% decrease in mRNA and protein levels of COX-2, but no change in these levels in COX-1 or in PGE synthase. Brain 5-lipoxygenase (5-LO) and cytochrome P450 epoxygenase (cyp2C11) protein levels were also unaltered. Total and Ca2+-dependent PLA2 activities did not differ significantly between and control mice, and protein levels of type VI iPLA2 and type V sPLA2, normalized to actin, were unchanged. These results show that type V sPLA2 and type VI iPLA2 do not compensate for the loss of brain cPLA2 alpha, and that this loss has significant downstream effects on COX-2 expression and PGE2 formation, sparing other AA oxidative enzymes. This suggests that cPLA2 is critical for COX-2-derived eicosanoid production in mouse brain.  相似文献   

18.
Phospholipase A(2) isoforms: a perspective   总被引:7,自引:0,他引:7  
Several new PLA(2)s have been identified based on their nucleotide gene sequences. They were classified mainly into three groups: cytosolic PLA(2) (cPLA(2)), secretary PLA(2) (sPLA(2)), and intracellular PLA(2) (iPLA(2)). They differ from each other in terms of substrate specificity, Ca(2+) requirement and lipid modification. The questions that still remain to be addressed are the subcellular localization and differential regulation of the isoforms in various cell types and under different physiological conditions. It is required to identify the downstream events that occur upon PLA(2) activation, particularly target protein or metabolic pathway for liberated arachidonic acid or other fatty acids. Understanding the same will greatly help in the development of potent and specific pharmacological modulators that can be used for basic research and clinical applications.The information of the human and other genomes of PLA(2)s, combined with the use of proteomics and genetically manipulated mouse models of different diseases, will illuminate us about the specific and potentially overlapping roles of individual phospholipases as mediators of physiological and pathological processes. Hopefully, such understanding will enable the development of specific agents aimed at decreasing the potential contribution of individual secretary phospholipases to vascular diseases.The signaling cascades involved in the activation of cPLA(2) by mitogen activated protein kinases (MAPKs) is now evident. It has been demonstrated that p44 MAPK phosphorylates cPLA(2) and increases its activity in cells and tissues. The phosphorylation of cPLA(2) at ser505 occurs before the increase in intracellular Ca(2+) that facilitate the binding of the lipid binding domain of cPLA(2) to phospholipids, promoting its translocation to cellular membranes and AA release. Recently, a negative feed back loop for cPLA(2) activation by MAPK has been proposed. If PLA(2) activation in a given model depends on PKC, PKA, cAMP, or MAPK then inhibition of these phosphorylating enzymes may alter activities of PLA(2) isoforms during cellular injury. Understanding the signaling pathways involved in the activation/deactivation of PLA(2) during cellular injury will point to key events that can be used to prevent the cellular injury. Furthermore, to date, there is limited information available regarding the regulation of iPLA(2) or sPLA(2) by these pathways.  相似文献   

19.
The sensitivity of different phospholipase A2 (PLA2)-active fractions eluted from cation-exchange chromatography to para-bromophenacylbromide (pBPB), Ca2+-EGTA, DTT, heat, and H2SO4 indicates that human cultured retinal pigment epithelial (hRPE) cells probably contain two different intracellular PLA2 enzymes. Control experiments using "back-and-forth" thin-layer chromatography confirmed that, in our assay conditions, the generation of free fatty acids originated solely from PLA2 activity. Together with immunoblot experiments where no cross-reactivity was observed between the hRPE cytosolic PLA2 enzymes and several antisera directed against secretory PLA2s (sPLA2s) and cytosolic PLA2 (cPLA2), these findings suggest that intracellular hRPE PLA2s are different from well-known sPLA2s, cPLA2, and Ca2+-independent PLA2s. We also report an additional hRPE-PLA2 enzyme that is secreted and that exhibits sensitivity to pBPB, Ca2+-EGTA, DTT, heat, and H2SO4, which is characteristic of sPLA2 enzymes. This approximately 22-kDa PLA2 cross-reacted weakly with an antiserum directed against porcine pancreatic group I sPLA2 but strongly with an antiserum directed against N-terminal residues 1-14 of human synovial group II sPLA2, suggesting that this extracellular enzyme is a member of the sPLA2 class of enzymes. We thus conclude that there are three distinct PLA2 enzymes in cultured hRPE cells, including two novel intracellular PLA2s and a 22-kDa secreted sPLA2 enzyme.  相似文献   

20.
Phospholipases A(2) (PLA(2)) are ubiquitous enzymes involved in membrane fatty acid metabolism and intracellular signalling. Recent studies have shown that PLA(2) subtypes are implicated in the modulation of pathways related to memory acquisition and retrieval. We investigated the effects of cognitive training on platelet PLA(2) activity in healthy elderly individuals. Twenty-three cognitively unimpaired older adults were randomly assigned to receive memory training or standard outpatient care only. Both groups were cognitively assessed by the same protocol, and the experimental group (EG) underwent a four-session memory training intervention. Pre- and post-test measures included prose and list recall, WAIS-III digit symbol, strategy use measures and platelet PLA(2) group activity. After cognitive training, patients in the EG group had significant increase in cytosolic, calcium-dependent PLA(2) (cPLA(2)), extracellular (or secreted), calcium-dependent PLA(2) (sPLA(2)), total platelet PLA(2) activity, and significant decrease in platelet calcium-independent PLA(2) (iPLA(2)) activity. Our results suggest that memory training may have a modulating effect in PLA(2)-mediated biological systems associated with cognitive functions and neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号