首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of fluorinated keto-β-d-5-thioxylopyranonucleosides bearing thymine as the heterocyclic base have been designed and synthesized. Deprotection of 3-deoxy-3-fluoro-5-S-acetyl-5-thio-d-xylofuranose (1) and selective acetalation gave the desired isopropylidene 5-thioxylopyranose precursor 3. Acetylation and isopropylidene removal followed by benzoylation led to 3-deoxy-3-fluoro-1,2-di-Ο-benzoyl-4-O-acetyl-5′-thio-d-xylopyranose (6). This was condensed with silylated thymine and selectively deacetylated to afford 1-(2′-Ο-benzoyl-3′-deoxy-3′-fluoro-5′-thio-β-d-xylopyranosyl)thymine (8). Oxidation of the free hydroxyl group in the 4′-position of the sugar led to the formation of the target 4′-keto compound together with the concomitant displacement of the benzoyl group by an acetyl affording, 1-(2′-O-acetyl-3′-deoxy-3′-fluoro-β-d-xylopyranosyl-4′-ulose)thymine (9). Benzoylation of 3 and removal of the isopropylidene group followed by acetylation, furnished 3-deoxy-3-fluoro-1,2-di-Ο-acetyl-4-O-benzoyl-5′-thio-d-xylopyranose (12). Condensation of thiosugar 12 with silylated thymine followed by selective deacetylation led to the 1-(4′-Ο-benzoyl-3′-fluoro-5′-thio-β-d-xylopyranosyl)thymine (14). Oxidation of the free hydroxyl group in the 2′-position and concomitant displacement of the benzoyl group by an acetyl gave target 1-(4′-O-acetyl-3′-deoxy-3′-fluoro-β-d-xylopyranosyl-2′-ulose)thymine (15).  相似文献   

2.
1,2:5,6-Di-O-isopropylidene-alpha-D-glucofuranose by the sequence of mild oxidation, reduction, fluorination, periodate oxidation, borohydride reduction, and sulfonylation gave 3-deoxy-3-fluoro-1,2-O-isopropylidene-5-O-p-toluenesulfonyl-alpha-D-xylofuranose (5). Tosylate 5 was converted to thioacetate derivative 6, which after acetolysis gave 1,2-di-O-acetyl-5-S-acetyl-3-deoxy-3-fluoro-5-thio-D-xylofuranose (7). Condensation of 7 with silylated thymine, uracil, and 5-fluorouracil afforded nucleosides 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) thymine (8), 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) uracil (9), and 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) 5-fluorouracil (10). Compounds 8, 9, and 10 are biologically active against rotavirus infection and the growth of tumor cells.  相似文献   

3.
4.
Michael addition of 1,2:3,4-di-O-isopropylidene-6-thio-alpha-D-galactose (2) to 2-propyl 6-O-acetyl-3,4-dideoxy-alpha-D-glycero-hex-3-enopyranosid-2-ulose (1) afforded, as the major diastereoisomer, 2-propyl 6-O-acetyl-3-deoxy-4-S-(6-deoxy-1,2:3,4-di-O-isopropylidene-alpha-D-galactopyranos-6-yl)-4-thio-alpha-D-threo-hexopyranosid-2-ulose (3, 91% yield). Reduction of the carbonyl group of 3, followed by O-deacetylation gave the two epimers 7 (alpha-D-lyxo) and 8 (alpha-D-xylo) in a 1:2 ratio. On removal of the protecting groups of 8 by acid hydrolysis, formation of an 1,6-anhydro bridge was observed in the 3-deoxy-4-thiohexopyranose unit (10). The free non-glycosidic thioether-linked disaccharide 3-deoxy-4-S-(6-deoxy-alpha,beta-D-galactopyranos-6-yl)-4-thio-alpha,beta-D-xylo-hexopyranose (11) was obtained by acetolysis of 10 followed by O-deacetylation. A similar sequence starting from the enone 1 and methyl 2,3,4-tri-O-benzoyl-6-thio-alpha-D-glucopyranoside (12) led successfully to 2-propyl 3-deoxy-4-S-(methyl 6-deoxy-alpha-D-glucopyranos-6-yl)-4-thio-alpha-D-lyxo-hexopyranoside (17) and its alpha-D-xylo analog (19, major product). In this synthetic route, orthogonal sets of protecting groups were employed to preserve the configuration of both reducing ends and to avoid the formation of the 1,6-anhydro ring.  相似文献   

5.
The trans 5-(R), 6-(R) and 5-(S), 6-(S) diastereoisomeric forms of 5-bromo-5,6-dihydro-6-hydroxythymidine were obtained by the action of bromine upon thymidine in aqueous solution. Treatment of these compounds with warm M hydrobromic acid both rearranges the sugar moiety and cleaves the glycosylamine bond; the yields of both processes were determined. Reduction of the halohydrins gave three isomeric compounds derived from thymidine : 1-(2-deoxy-α-D-erythro-pentofuranosyl)thymine, 1-(2-deoxy-β-D-erythro-pentopyranosyl)thymine and 1-(2-deoxy-α-D-erythro-pentopyranosyl)thymine. These isomerisations were also shown in the treatment of thymidine with hydrobromic acid, but, in the latter case, the process is less productive than in the former one. A mechanism for these reactions is discussed.  相似文献   

6.
Incubation of o-nitrophenyl 6-deoxy-β-d-xylo-hex-5-enopyranoside (1) with emulin β-d-glucosidase gave, instead of the expected 6-deoxy-d-xylo-hexos-5-ulose (3), o-nitrophenyl 6-deoxy-3-O-(6-deoxy-β-d-xylo-hex-5-enopyranosyl)-β-d-xylo-hex-5-enopyranoside (2) in high yield (≈90% under optimal conditions). The structure of 2 was established from spectroscopic data and by correlation with compounds synthesised definitively. The specificity of the transfer reaction is discussed as an argument for an acceptor or aglycon binding-site.  相似文献   

7.
A novel series of exomethylene- and keto-exomethylene-d-glucopyranonucleosides with thymine, uracil, and 5-fluorouracil as heterocyclic bases have been designed and synthesized. Wittig condensation of the 3-keto glucoside 1 gave the corresponding 1,2:5,6-di-O-isopropylidene-3-deoxy-3-methylene-d-glucofuranose (2), which after hydrolysis and acetylation led to the precursor 1,2,4,6-tetra-O-acetyl-3-deoxy-3-methylene-d-glucopyranose (4).Compound 4 was condensed with silylated thymine, uracil, and 5-fluorouracil, respectively, deacetylated and acetalated to afford 1-(3′-deoxy-4′,6′-O-isopropylidene-3′-methylene-β-d-glucopyranosyl)pyrimidines 7ac. Oxidation of the free hydroxyl group in the 2′-position of the sugar moiety led to the formation of the labile 1-(3′-deoxy-4′,6′-O-isopropylidene-3′-methylene-β-d-glucopyranosyl-2′-ulose)pyrimidines 8ac. Finally, deisopropylidenation of the resulted derivatives 8ac afforded the diol nucleosides 9ac. The target keto-exomethylene analogs 9ac were more cytostatic against a variety of tumor cell lines than the corresponding saturated-hydroxy-exomethylene derivatives 6. In particular, the 5-fluorouracil derivative 9c was highly cytostatic at an IC50 (50% inhibitory concentration) ranging between 0.56 and 9.4 μg/mL, which was comparable to the free parental 5-fluorouracil base.  相似文献   

8.
Methyl 4,6-dideoxy-3-C-methyl-4-(N-methyl-N-phenylsulfonylamino)-alpha-L- mannopyranoside and methyl 4-amino-4,6-dideoxy-3-C-methyl-alpha-L-mannopyranoside, derivatives of the branched-chain amino sugars sibirosamine and kansosamine, respectively, were synthesized by nucleophilic ring-opening of methyl 3,4-anhydro-6-deoxy-3-C-methyl-alpha-L-talopyranoside. Catalytic reduction of methyl 6-deoxy-2,3-O-isopropylidene-3-C-methyl-alpha-L-lyxo-hexopyrano sid-4-ulose gave the axial alcohol methyl 6-deoxy-2,3-O-isopropylidene-3-C-methyl-alpha-L-talopyranoside, a known precursor to vinelose.  相似文献   

9.
Uhrig ML  Varela O 《Carbohydrate research》2002,337(21-23):2069-2076
Michael addition of common thiols to the enone system of (2S)-2-benzyloxy-2H-pyran-3(6H)-one (1) afforded the corresponding 3-deoxy-4-thiopentopyranosid-2-ulose derivatives (2-4). The reaction was highly diastereoselective, and the addition was governed by the quasiaxially disposed 2-benzyloxy substituent of the starting pyranone. As expected from the enantiomeric excess of 1 (ee > 86%) the corresponding thiouloses 2-4 exhibited the same optical purity. However, the enantiomerically pure thioulose 5 was obtained by reaction of 1 with the chiral thiol, N-(tert-butoxycarbonyl)-L-cysteine methyl ester. The thio derivative 7 was also synthesized by reaction of 6 (enantiomer of 1) with the same chiral thiol. Alternatively, 4-thiopent-2-uloses 9-12 were prepared in high optical purity by 1,4-addition of thiols to (2S)-[(S)-2'-octyloxy]dihydropyranone 8. Similarly, reaction of 13 (enantiomer of 8) with benzenemethanethiol afforded 14 (enantiomer of 10). This way, the stereocontrol exerted by the anomeric center on the starting dihydropyranone led to 4-thiopentuloses of the D and L series. Sodium borohydride reduction of the carbonyl function of uloses 10 and 12 gave the corresponding 3-deoxy-4-thiopentopyranosid-2-uloses (16-19). The diastereomers having the beta-D-threo configuration (16, 18) slightly predominated over the beta-D-erythro (17, 19) analogues. However, the reduction of the enantiomeric pyranones 10 and 14 with K-Selectride was highly diastereofacial selective in favor of the beta-D- and beta-L-threo isomers 16 and 20, respectively.  相似文献   

10.
(5'R)-5'-Methyl-5'-[methyl (4S)-2,3-O-isopropylidene-beta-L-erythrofuranosid-4-C-yl]-imidazolidin-2',4'-dione was synthesised starting from methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranosid-5-ulose applying the Bucherer-Bergs reaction. Its 5'-R configuration was confirmed by X-ray crystallography. Corresponding alpha-amino acid-methyl (5R)-5-amino-5-C-carboxy-5,6-dideoxy-alpha-D-lyxo-hexofuranoside (alternative name: 2-[methyl (4S)-2,3-O-isopropylidene-beta-L-erythrofuranosid-4-C-yl]-D-alanine) was obtained from the above hydantoin by acid hydrolysis of the isopropylidene group followed by basic hydrolysis of the hydantoin ring. Total deprotection afforded 5-C-carboxy-6-deoxymannojirimycin. Analogously, methyl (5S)-5-amino-5-C-carboxy-5,6-dideoxy-alpha-L-lyxo-hexofuranoside and 5-C-carboxy-6-deoxy-L-mannojirimycin were prepared from the corresponding (5'S)-5'-methyl-5'-[methyl (4R)-2,3-O-isopropylidene-beta-D-erythrofuranosid-4-C-yl]-imidazolidin-2',4'-dione starting from methyl 6-deoxy-2,3-O-isopropylidene-alpha-L-lyxo-hexofuranosid-5-ulose.  相似文献   

11.
Methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-beta-D-ribofuranoside (3) was obtained in three steps from D-ribose. Exchange of the isopropylidene group for benzoate groups and acetolysis gave 1-O-acetyl-2,3-di-O-benzoyl-5-deoxy-5-iodo-D-ribofuranose which was coupled with 6-benzamidochloromercuripurine by the titanium tetrachloride method to afford the blocked nucleoside. Treatment with 1,5-diazabicyclo[5.4.0]undec-5-ene in N,N-dimethylformamide and removal of the blocking groups have 9-(5-deoxy-beta-D-erythro-pent-4-enofuranosyl)adenine (9). A similar route starting from methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-alpha-D-lyxofuranoside (14) afforded the enantiomeric nucleoside, 9-(5-deoxy-beta-L-erythro-pent-4-enofuranosyl)adenine (20). Methyl 2,3-O-isopropylidene-alpha-D-mannofuranoside was treated with sodium periodate and then with sodium borohydride to give methyl 2,3-O-isopropylidene-alpha-D-lyxofuranoside (11). Acid hydrolysis afforded D-lyxose. Tosylation of 11 gave methyl 2,3-O-isopropylidene-5-O-p-tolylsulfonyl-alpha dp-lyxofuranoside (12) which was converted into 14 with sodium iodide in acetone. Reduction of 12 gave methyl 5-deoxy-2,3-O-isopropylidene-alpha-D-lyxofuranoside which was hydrolyzed to give 5-deoxy-D-lyxose.  相似文献   

12.
Methyl 6-C-alkyl-6-deoxy-alpha-D-mannofuranoside derivatives have been synthesized from methyl 2,3-O-isopropylidene-5,6-O-sulfuryl-alpha-D-mannofuranoside (1). In a Path A, reaction of the 5,6-cyclic sulfate 1 with 2-lithio-1,3-dithiane afforded 2-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane (2). Treatment of 2 with n-butyllithium then alkyl iodide gave the corresponding 2-(methyl 5-O-alkyl-6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl )-1,3- dithiane. Reaction of 2 with n-butyllithium and 5,6-cyclic sulfate 1 furnished 2-[methyl 6-deoxy-2,3-O-isopropylidene-5-O-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-manno-furanosid-6-yl)-alpha-D - mannofuranosid-6-yl]-1,3-dithiane. 2-(Methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid- 6-yl)-1,3-dithiane was converted into the lithiated anion, which after treatment with alkyl halide afforded the corresponding 2-alkyl-C-(methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid-6-y l)-1,3- dithiane. In a Path B, 5,6-cyclic sulfate 1 reacted with 2-alkyl-2-lithio-1,3-dithiane derivatives, which led after acidic hydrolysis to 2-alkyl-2-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane accompanied by methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranos-5-u loside as the by-product. This methodology was applied to synthesize 2-(methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid-6-y l)-2- (methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane.  相似文献   

13.
The chemical synthesis of 1,2,4-tri-O-acetyl-3-deoxy-3-fluoro-5-thio-D-xylopyranose, 1,2,4,6-tetra-O-acetyl-3-deoxy-3-fluoro-5-thio-alpha-D-glucopyranose and their corresponding nucleosides of thymine is described. Treatment of 3-fluoro-5-S-acetyl-5-thio-D-xylofuranose, obtained by hydrolysis of the isopropylidene group of 3-fluoro-1,2-O-isopropylidene-5-S-acetyl-5-thio-D-xylofuranose, with methanolic ammonia and direct acetylation, led to triacetylated 3-deoxy-3-fluoro-5-thio-D-xylopyranose. Condensation of acetylated 3-fluoro-5-thio-D-xylopyranose with silylated thymine afforded the corresponding nucleoside. Selective benzoylation and direct methanesulfonylation of 3-fluoro-1,2-O-isopropylidene-alpha-D-glucofuranose gave the 6-O-benzoyl-5-O-methylsulfonyl derivative, which on treatment with sodium methoxide afforded the 5,6-anhydro derivative. Treatment of the latter with thiourea, followed by acetolysis, gave the 3-fluoro-5-S-acetyl-6-O-acetyl-1,2-O-isopropylidene-5-thio-alpha-D-glucofuranose. 3-fluoro-5-S-acetyl-6-O-acetyl-5-thio-D-glucofuranose, obtained after hydrolysis of 5-thiofuranose isopropylidene, was treated with ammonia in methanol and directly acetylated, giving tetraacetylated 3-deoxy-3-fluoro-5-thio-alpha-D-glucopyranose. Condensation of the latter with silylated thymine afforded the desired 3-deoxy-3-fluoro-5-thio-beta-D-glucopyranonucleoside analogue.  相似文献   

14.
Hydrogenation of 2'-deoxy-2'-difluoromethylene-5'-O-dimethoxytrityluridine (1) and 3'-deoxy-3'-difluoromethylene-5'-O-dimethoxytrityluridine (7), gave the corresponding 2'- and 3'-difluoromethyluridine derivatives 2a and 8a. Detritylation of compounds 2a, 2b and 8a, 8b resulted in the formation of 1-(2-deoxy-2-C-difluoromethyl-beta-D-arabino-pentofuranosyl)uracil (3a) and 1-(3-deoxy-3-C-difluoromethyl-beta-D-xylo-pento furanosyl)- uracil (9a) as well as corresponding minor isomers 3b and 9b. Compounds 3a and 3b were also obtained from 2'-deoxy-2'-difluoromethylene-3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)uridine (4). Finally, phosphitylation of 2a and 8a provided the title 2'- and 3'-O-phosphoramidites 6 and 10.  相似文献   

15.
Abstract

The mono- and diamino analogues of 9-(2-deoxy-α-D-erythro-pen-tofuranosyl)adenine la, 9-(2-deoxy-α-D-threo-pentofuranosyl)adenine 4a, 9-(3-deoxy-α-D-erythro-pentofuranosyl)adenine 2a and 9-(3-deoxy-α-D-threo-pentofuranosyl)adenine 3a were synthesized by triphenylphosphine reduction of the corresponding azido compounds. The azido group was introduced by a substitution reaction with lithium azide on mesylates or, more directly, by reaction with lithium azide, triphenylphosphine and carbon tetrabromide. Of the newly synthesized compounds, only 3′-amino-2′,3′-dideoxyadenosine proved, albeit slightly, inhibitory to murine leukemia L1210 and mammary carcinoma FM3A, and human B-lymphoblast Raji, T-lymphoblast Molt/4F and T-lymphocyte MT-4 cell proliferation in vitro (50 % inhibitory dose : 43.1-323 μM). None of the compounds inhibited human immunodeficiency virus-induced cytopathogenicity in MT-4 cells.  相似文献   

16.
Three triazole-linked nonionic xylo-nucleoside dimers TL-t-TxL, TL-t-ABzxL and TL-t-CBzxL have been synthesized for the first time by Cu(I) catalyzed azide-alkyne [3 + 2] cycloaddition reaction (CuAAC) of 1-(3′-azido-3′-deoxy-2′-O,4′-C-methylene-β-D-ribo-furanosyl)thymine with different alkynes, i.e., 1-(5′-deoxy-5′-C-ethynyl-2′-O,4′-C-methylene-β-D-xylofuranosyl)thymine, 9-(5′-deoxy-5′-C-ethynyl-2′-O,4′-C-methylene-β-D-xylo-furanosyl)-N6-benzoyladenine and 1-(5′-deoxy-5′-C-ethynyl-2′-O,4′-C-methylene-β-D-xylofuranosyl)-N4-benzoylcytosine in 90%–92% yields. Among the two Cu(I) reagents, CuSO4.5H2O-sodium ascorbate in THF:tBuOH:H2O (1:1:1) and CuBr.SMe2 in THF used for cycloaddition (click) reaction, the former one was found to be better yielding than the latter one.  相似文献   

17.
Abstract

Phosphorylation of 1-(2-deoxy-β-D-xylofuranosyl)thymine (1) or 9-(2-deoxy-β-D-xylofuranosyl)adenine (3) with phosphoryl chloride gives the cyclic 3′,5′-phosphates (2 and 4a) but not the 5′-monophosphates 8a or 8b. The latter are obtained by phosphorylation of the 3′-0-benzoylated 2′-deoxy-β-D-xylonucleosides (7a, b) and subsequent base-catalyzed removal of the benzoyl groups. Compound 3, as the parent dA, depurinates in acidic medium, a reaction which is facilitated in the case of the N6-benzoyl derivative 9b and reduced after the introduction of an amidine protecting group. N-Glycosylic bond hydrolysis of 2′-deoxy-β-D-xylofuranosyl nucleosides is enhanced by a factor of two compared to 2′-deoxy-β-D-ribofuranosyl nucleosides.  相似文献   

18.
The reaction of 1-(2,3-anhydro-5-O-trityl-beta-D-lyxofuranosyl)-2-O-methyluracil (1a) and its thymine analogue (1b) with dilithium tetrahalocuprate (Li2CuX4) revealed excellent to perfect regioselectivity, yielding 2,2'-anhydro-3'-halonucleosides (2a-d), while the same reactions with 2,3-anhydro uracil and thymine nucleosides (4a,b) gave arabinosyl (5a-d) and xylosyl halohydrins (6a-d) with the respective product ratio of 7:3 to 8:2. compounds 5 and 6 were isolated as the 2-O-(7) and 3- O-mesyl derivatives (8).  相似文献   

19.
(5'R)-5'-Isobutyl-5'-[methyl (4R)-2,3-O-isopropylidene-beta-L-erythrofuranosid-4-C-yl]-imidazolidin-2',4'-dione was synthesised starting from methyl 2,3-O-isopropylidene-alpha-D-lyxo-pentodialdo-1,4-furanoside via methyl 6-deoxy-6-isopropyl-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranosid-5-ulose applying the Bucherer-Bergs reaction. Its 5'-R configuration was confirmed by X-ray crystallography. Corresponding alpha-amino acid-methyl (5R)-5-amino-5-C-carboxy-5,6-dideoxy-6-isopropyl-alpha-D-lyxo-hexofuranoside (alternative name: 2-[methyl (4R)-beta-L-erythrofuranosid-4-C-yl]-D-leucine) was obtained from the above hydantoin by acid hydrolysis of the isopropylidene group followed by basic hydrolysis of the hydantoin ring. Analogous derivatives with 5S configuration, formed in a minority, were also isolated and characterised.  相似文献   

20.
SN2-type reaction of 3-O-(1-imidazyl)sulfonyl-1,2:5,6-di-O-isopropylidene-alpha-D-gluco furanose with benzoate gave the 3-O-benzoyl-alpha-D-allo derivative 2, which was hydrolysed to give the 5,6-diol 3. Compound 3 was converted into the 6-deoxy-6-iodo derivative 4 which was reduced with tributylstannane, and then position 5 was protected by benzyloxymethylation, to give 3-O-benzoyl-5-O-benzyloxymethyl-6-deoxy-1,2-O-isopropylidene-alpha -D- allofuranose (6). Debenzoylation of 6 gave 7, (1-imidazyl)sulfonylation gave 8, and azide displacement gave 3-azido-5-O-benzyloxymethyl-3,6-dideoxy- 1,2-O-isopropylidene-alpha-D-glucofuranose (9, 85%). Acetolysis of 9 gave 1,2,4-tri-O-acetyl-3-azido-3,6-dideoxy-alpha,beta-D-glucopyranose (10 and 11). Selective hydrolysis of AcO-1 in the mixture of 10 and 11 with hydrazine acetate (----12), followed by conversion into the pyranosyl chloride 13, treatment with N,N-dimethylformamide dimethyl acetal in the presence of tetrabutylammonium bromide, and benzylation gave 3-azido-4-O-benzyl-3,6-dideoxy-1,2-O-(1-methoxyethylidene)-alpha-D -glucopyranose (15). Treatment of 15 with dry acetic acid gave 1,2-di-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranose (16, 86% yield) that was an excellent glycosyl donor in the presence of trimethylsilyl triflate, allowing the synthesis of cyclohexyl 2-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranoside (17, 90%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号