首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To test whether fire contributed to the expansion and compositional change of evergreen forests in the Mediterranean region during the Holocene. Location The peri‐Adriatic region, encompassing the Italian peninsula, Sicily and the western and southern Balkans between latitudes 46° and 37° N. Methods New high‐resolution pollen and microscopic charcoal data from Lago dell’Accesa (Tuscany, Italy) were used to estimate the response of the evergreen oak, Quercus ilex L., to fire during its expansion phase at 8500 cal. yr bp . The data were compared with the pollen and charcoal series from other Mediterranean sites (Lago di Massaciuccoli in Tuscany, Malo Jezero in Croatia, Biviere di Gela in Sicily) and analysed using numerical techniques (redundancy analysis, detrended canonical correspondence analysis) to identify long‐term fire–vegetation linkages and the degree of compositional change. Results Microscopic charcoal and pollen of evergreen oaks were negatively correlated during the period of quasi‐natural fire regime (Mesolithic, 10,000–8000 cal. yr bp ). In addition, there was no such positive correlation during periods when the fire regime was potentially more influenced by people (Neolithic–Bronze Age, 8000–3000 cal. yr bp ). Compared with inland sites, coastal sites that are currently located at a distinct ecotone showed more compositional change. Main conclusions The analyses suggest that climatic change, without an additional effect of fire regimes, favoured the expansion and compositional change of evergreen forests across the peri‐Adriatic region. Strikingly different patterns occurred along a north–south gradient. In the north (Tuscany and Croatia, meso‐Mediterranean belt), Q. ilex replaced deciduous forests when conditions became drier; in the south (Sicily, thermo‐Mediterranean belt) the species replaced maquis or steppe vegetation when climatic conditions became moister. We conclude that the projected increase in fire activity may lead to the loss of most of the remaining relict forests of Q. ilex in southern Europe.  相似文献   

2.
1 If, within a vegetation type, fire regimes are climate dependent, then fire patterns should be synchronous at regional scales. If they are not synchronous, then fires may be dependent on local processes such as human-induced disturbances.
2 Two fire chronologies were developed using 34-radiocarbon dating measured by accelerator mass spectrometry (AMS) from wood charcoal buried in soil. These charcoal fragments were sampled in two study sites 10 km apart in the Maurienne valley (Southern Vanoise massif, Savoy, France).
3 Asynchronous temporal fire patterns were seen at Aussois and Saint-Michel-de-Maurienne. This demonstrates the dependence of fires on local- or stand-scale environmental forcing; any direct relationship with climate is therefore rejected.
4 Slash-and-burn practices are probably the main source of Holocene fires in the Maurienne valley. However, deforestation did not occur throughout a site in any period, nor simultaneously at the same elevation in two different sites 10 km apart. The cultural landscape was shaped as early as the Neolithic and the Bronze Age, between 6000 and 3000 bp .
5 Deforestation at both study sites probably occurred in many stages in many small areas. The fire intervals were c. 500–1000 years. Deforested areas increased in extent over 2000–4000 years, until the present-day cultural landscape was established. This process stopped c. 2500  bp at Saint-Michel-de-Maurienne but is still active at Aussois.  相似文献   

3.
Aim There remains some uncertainty concerning the causes of extinctions of Madagascar’s megafauna. One hypothesis is that they were caused by over‐hunting by humans. A second hypothesis is that their extinction was caused by both environmental change and hunting. This paper systematically addresses the second hypothesis through examination of two new pollen records from south‐eastern Madagascar alongside other published records across the island. Location South‐eastern Madagascar. Methods We reconstructed past vegetation and fire dynamics over the past 6000 years at two sites in south‐eastern Madagascar (Ste‐Luce) using fossil pollen and charcoal contained in sedimentary sequences. We investigated drivers of vegetation changes and how these, in turn, influenced faunal species in the south‐east, using published climatic, archaeological and faunal records. Further, we also used published records to provide a synthesis of environmental changes on the whole island. Results Vegetation reconstructions indicate that the mosaic vegetation in the region of Ste‐Luce was highly dynamic in response to climatic changes. The open woodland, surrounding the littoral forest, transformed into an ericoid grassland between c. 5800 and 5200 cal. yr bp , possibly in response to a moderate drought recorded during this period. The littoral forest was more stable between c. 5100 and 1000 cal. yr bp , with only some minor compositional changes c. 2800 cal. yr bp and between c. 1900 and 1000 cal. yr bp . Significant forest decline, however, is observed at c. 950 cal. yr bp , coinciding with a drought and a marine surge. A comparison of these results with a synthesis of published vegetation records across the island shows asynchronous vegetation changes in response to various droughts during the Holocene, except for the 950 cal. yr bp drought event, with evidence of widespread vegetation transformations and fires across the island. Main conclusions Pronounced climatic desiccation between 1200 and 700 cal. yr bp may have been the slow driver framing and triggering vegetation transformations and decline in megafaunal populations. In addition, hunting by drought‐impacted human inhabitants and competition with newly introduced cattle would have amplified the impacts on megafaunal populations, leading to numerous extinctions in this period.  相似文献   

4.
Abstract: The local fire history of a coastal swamp catchment in New South Wales was reconstructed using two proxy records of fire: sedimentary macroscopic charcoal and fire‐scar analyses of Xanthorrhoea johnsonii. The charcoal analysis provided a record of fire activity spanning the last 2800 years, while the Xanthorrhoea record covered the last approx. 300 years. The ability of each method to accurately record fire events was verified by cross referencing against the recent (post 1968) historic fire record. Fire history was then extrapolated beyond the historic record, to reveal an unprecedented level of fire activity in the last 35 years, which coincides with increased human activity in the area. In the prehistoric period charcoal and fire scars are comparatively rare, which is most parsimoniously ascribed to little fire activity, but perhaps represents skilful fire manipulation, as is often attributed to Aboriginal people. The comparatively minor fluctuations in macroscopic charcoal during the prehistoric period were approximately coeval with previous evidence of late Holocene environmental change in south‐eastern Australia, suggesting that fire frequency at the site responded to climatic variability. The longer temporal perspective of this palaeoenvironmental approach provides information for the contemporary management of fire in this conservation reserve.  相似文献   

5.
Aim We analysed lake‐sediment pollen records from eight sites in southern New England to address: (1) regional variation in ecological responses to post‐glacial climatic changes, (2) landscape‐scale vegetational heterogeneity at different times in the past, and (3) environmental and ecological controls on spatial patterns of vegetation. Location The eight study sites are located in southern New England in the states of Massachusetts and Connecticut. The sites span a climatic and vegetational gradient from the lowland areas of eastern Massachusetts and Connecticut to the uplands of north‐central and western Massachusetts. Tsuga canadensis and Fagus grandifolia are abundant in the upland area, while Quercus, Carya and Pinus species have higher abundances in the lowlands. Methods We collected sediment cores from three lakes in eastern and north‐central Massachusetts (Berry East, Blood and Little Royalston Ponds). Pollen records from those sites were compared with previously published pollen data from five other sites. Multivariate data analysis (non‐metric multi‐dimensional scaling) was used to compare the pollen spectra of these sites through time. Results Our analyses revealed a sequence of vegetational responses to climate changes occurring across southern New England during the past 14,000 calibrated radiocarbon years before present (cal yr bp ). Pollen assemblages at all sites were dominated by Picea and Pinus banksiana between 14,000 and 11,500 cal yr bp ; by Pinus strobus from 11,500 to 10,500 cal yr bp ; and by P. strobus and Tsuga between 10,500 and 9500 cal yr bp . At 9500–8000 cal yr bp , however, vegetation composition began to differentiate between lowland and upland sites. Lowland sites had higher percentages of Quercus pollen, whereas Tsuga abundance was higher at the upland sites. This spatial heterogeneity strengthened between 8000 and 5500 cal yr bp , when Fagus became abundant in the uplands and Quercus pollen percentages increased further in the lowland records. The differentiation of upland and lowland vegetation zones remained strong during the mid‐Holocene Tsuga decline (5500–3500 cal yr bp ), but the pattern weakened during the late‐Holocene (3500–300 cal yr bp ) and European‐settlement intervals. Within‐group similarity declined in response to the uneven late‐Holocene expansion of Castanea, while between‐group similarity increased due to homogenization of the regional vegetation by forest clearance and ongoing disturbances. Main conclusions The regional gradient of vegetation composition across southern New England was first established between 9500 and 8000 cal yr bp . The spatial heterogeneity of the vegetation may have arisen at that time in response to the development or strengthening of the regional climatic gradient. Alternatively, the differentiation of upland and lowland vegetation types may have occurred as the climate ameliorated and an increasing number of species arrived in the region, arranging themselves in progressively more complex vegetation patterns across relatively stationary environmental gradients. The emergence of a regional vegetational gradient in southern New England may be a manifestation of the increasing number of species and more finely divided resource gradient.  相似文献   

6.
Impact of a drier Early-Mid-Holocene climate upon Amazonian forests   总被引:1,自引:0,他引:1  
This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.  相似文献   

7.
We present a high‐resolution pollen and charcoal record of a 218 cm long sediment core from the Serra dos Órgãos, a subrange of the coastal Serra do Mar, located at 2130 m altitude in campos de altitude (high elevation grass‐ and shrubland) vegetation near Rio de Janeiro in southeastern Brazil to reconstruct past vegetation, climate and fire dynamics. Based on seven AMS 14C ages, the record represents at least the last 10 450 14C yr bp (12 380 cal years bp ), The uppermost region was naturally covered by campos de altitude throughout the recorded period. Diverse montane Atlantic rain forest (ARF) occurred close to the studied peat bog at the end of the Late‐glacial period. There is evidence of small Araucaria angustifolia populations in the study area as late as the early Holocene, after which point the species apparently became locally extinct. Between 10 380 and 10 170 14C yr bp (12 310–11 810 cal yr bp ), the extent of campos de altitude was markedly reduced as montane ARF shifted rapidly upward to higher elevations, reflecting a very wet and warm period (temperatures similar to or warmer than present day) at the end of the Younger Dryas (YD) chronozone. This is in opposition to the broadly documented YD cooling in the northern Hemisphere. Reduced cross‐equatorial heat transport and movement of the Intertropical Convergence Zone over northeastern Brazil may explain the YD warming. Markedly extended campos de altitude vegetation indicates dry climatic conditions until about 4910 14C yr bp (5640 cal yr bp ). Later, wetter conditions are indicated by reduced high elevation grassland and the extension of ARF into higher elevation. Fire frequency was high during the early Holocene but decreased markedly after about 7020 14C yr bp (7850 cal yr bp ).  相似文献   

8.
黔西高原MIS3-MIS2期炭屑记录与火灾模式研究   总被引:1,自引:0,他引:1  
火灾与气候、植被存在复杂的关系,搞清东亚季风区的火灾模式及其发生机制,对预测未来气候变化及火灾防治具有重要意义。通过对黔西高原MIS3—MIS2期间的古湖相沉积物进行炭屑分析并结合AMS~(14)C测年数据研究发现:MIS3晚期以来研究区的火灾主要发生于36.3—35 cal ka BP、26.2—17.6 cal ka BP期间,中粒炭屑和大炭屑分别在35、26.2、23.6 cal ka BP记录到3次地方火。研究区炭屑记录对冷干事件响应敏感,炭屑峰值区对应Heinrich事件(H事件)、末次冰盛期(LGM)等干旱事件,低值区对应DO事件,呈现千年旋回的特征。比对东亚地区的炭屑记录发现,在大范围的东亚季风区MIS2期比MIS3末期在火的强度和频率上都要高,与欧洲模式显著不同。火的发生机制可能受气候因素的控制,同时受植被类型的影响。  相似文献   

9.
Yellowstone National Park has been an important location for paleoecologic studies that focus on the use of charcoal data to reconstruct past fire activity and on the role of climate variations in shaping past vegetation and fire regimes. One hypothesis, which has been explored in other parts of the western U.S., is the idea that present-day summer-dry and summer-wet precipitation regimes were intensified during the early Holocene as a result of greater-than-present summer insolation and its effect on atmospheric circulation patterns. In Yellowstone, this hypothesis was previously examined at two sites, one in summer-wet and one in summer-dry precipitation regions. The records showed variation in both fire and vegetation history that supported the hypothesis. We present a fire and vegetation history from Blacktail Pond, located in Pseudotsuga parkland in the transitional region. The Blacktail Pond data indicate the following ecological history: prior to 12,000 cal yr BP, the site supported tundra vegetation and fire episodes were infrequent. Between 12,000 and 11,000 cal yr BP, PiceaPinus parkland was established and fire activity increased; these changes are consistent with increasing temperature, as a result of rising summer insolation. From 11,000 to 7600 cal yr BP, the presence of a closed forest of Pinus and some Picea is attributed to high levels of winter moisture, but high fire activity indicates that summers were drier than at present. After 7600 cal yr BP, the presence of forest and steppe vegetation in combination with high fire activity suggest that middle-Holocene conditions were warm and dry. The decrease in Picea and Betula in the last 4000 cal yr indicates continued drying in the late Holocene, although fire-episode frequency was relatively high until 2000 cal yr BP. The pollen data at Blacktail Pond and other low-elevation sites in the northern Rocky Mountains suggest a widespread vegetation response in summer-wet regions to effectively wetter conditions in the early Holocene and decreased moisture in the middle and late Holocene. In contrast, the more-variable fire history among the three sites implies either that (1) summer moisture stress and fire conditions are related to year-round moisture balance and not well predicted by the hypothesis, (2) the transitional area between summer-wet and summer-dry precipitation regimes experienced complicated shifts in effective moisture through time, and/or (3) fire-episode data have a limited source area that makes it difficult to separate local influences from regional climate changes in understanding long-term variations in fire-episode frequency.  相似文献   

10.
Controls on carbon consumption during Alaskan wildland fires   总被引:1,自引:0,他引:1  
A method was developed to estimate carbon consumed during wildland fires in interior Alaska based on medium‐spatial scale data (60 m cell size) generated on a daily basis. Carbon consumption estimates were developed for 41 fire events in the large fire year of 2004 and 34 fire events from the small fire years of 2006–2008. Total carbon consumed during the large fire year (2.72 × 106 ha burned) was 64.7 Tg C, and the average carbon consumption during the small fire years (0.09 × 106 ha burned) was 1.3 Tg C. Uncertainties for the annual carbon emissions ranged from 13% to 21%. Carbon consumed from burning of black spruce forests represented 76% of the total during large fire years and 57% during small fire years. This was the result of the widespread distribution of black spruce forests across the landscape and the deep burning of the surface organic layers common to these ecosystems. Average carbon consumed was 3.01 kg m?2 during the large fire year and 1.69 kg m?2 during the small fire years. Most of the carbon consumption was from burning of ground layer fuels (85% in the large fire year and 78% in small fire years). Most of the difference in average carbon consumption between large and small fire years was in the consumption of ground layer fuels (2.60 vs. 1.31 kg m?2 during large and small fire years, respectively). There was great variation in average fuel consumption between individual fire events (0.56–5.06 kg m?2) controlled by variations in fuel types and topography, timing of the fires during the fire season, and variations in fuel moisture at the time of burning.  相似文献   

11.
Aim The historical variability of fire regimes must be understood in the context of drivers of the occurrence of fire operating at a range of spatial scales from local site conditions to broad‐scale climatic variation. In the present study we examine fire history and variations in the fire regime at multiple spatial and temporal scales for subalpine forests of Engelmann spruce–subalpine fir (Picea engelmannii, Abies lasiocarpa) and lodgepole pine (Pinus contorta) of the southern Rocky Mountains. Location The study area is the subalpine zone of spruce–fir and lodgepole pine forests in the southern sector of Rocky Mountain National Park (ROMO), Colorado, USA, which straddles the continental divide of the northern Colorado Front Range (40°20′ N and 105°40′ W). Methods We used a combination of dendroecological and Geographic Information System methods to reconstruct fire history, including fire year, severity and extent at the forest patch level, for c. 30,000 ha of subalpine forest. We aggregated fire history information at appropriate spatial scales to test for drivers of the fire regime at local, meso, and regional scales. Results The fire histories covered c. 30,000 ha of forest and were based on a total of 676 partial cross‐sections of fire‐scarred trees and 6152 tree‐core age samples. The subalpine forest fire regime of ROMO is dominated by infrequent, extensive, stand‐replacing fire events, whereas surface fires affected only 1–3% of the forested area. Main conclusions Local‐scale influences on fire regimes are reflected by differences in the relative proportions of stands of different ages between the lodgepole pine and spruce–fir forest types. Lodgepole pine stands all originated following fires in the last 400 years; in contrast, large areas of spruce–fir forests consisted of stands not affected by fire in the past 400 years. Meso‐scale influences on fire regimes are reflected by fewer but larger fires on the west vs. east side of the continental divide. These differences appear to be explained by less frequent and severe drought on the west side, and by the spread of fires from lower‐elevation mixed‐conifer montane forests on the east side. Regional‐scale climatic variation is the primary driver of infrequent, large fire events, but its effects are modulated by local‐ and meso‐scale abiotic and biotic factors. The low incidence of fire during the period of fire‐suppression policy in the twentieth century is not unique in comparison with the previous 300 years of fire history. There is no evidence that fire suppression has resulted in either the fire regime or current forest conditions being outside their historic ranges of variability during the past 400 years. Furthermore, in the context of fuel treatments to reduce fire hazard, regardless of restoration goals, the association of extremely large and severe fires with infrequent and exceptional drought calls into question the future effectiveness of tree thinning to mitigate fire hazard in the subalpine zone.  相似文献   

12.
A modern analogue technique is applied to two high-resolution pollen sequences from NW Romania to provide the first quantitative evidence for winter, summer and annual temperatures and for precipitation across the Holocene in this region.

The pollen-based climate reconstructions allow the identification of four main intervals: i) an early, less stable period between 11,700 and 11,200 cal. yr BP; (ii) generally stable conditions between 11,200 and 8300 cal. yr BP with winter and annual temperatures and precipitation higher than at present, and summer temperatures about the same; (iii) lower winter and annual temperatures, and higher summer temperatures and precipitation between 8000 and 2400 cal. yr BP; (iv) warmer winter and annual temperatures and lower precipitation for the last 2400 years, whereas summer temperatures became cooler at Steregoiu and remained stable at Preluca Tiganului.

The pollen-based climate reconstructions at the two sites show similar patterns in annual and winter temperatures and precipitation changes during the Holocene, but the trends appear to be less consistent for summer temperatures.

Our pollen-based reconstructions revealed several short-term climatic oscillations during the Holocene, the strongest of which occur between 10,300–10,100, 8300–8000, 6800–6400, 5100–4900, 4000–3600 and 3200–3000 cal. yr BP.  相似文献   


13.
Fire frequency is a key land management issue, particularly in tropical savannas where fire is widely used and fire recurrence times are often short. We used an extended Before‐After‐Control‐Impact design to examine the impacts of repeated wet‐season burning for weed control on bird assemblages in a tropical savanna in north Queensland, Australia. Experimentally replicated fire treatments (unburnt, singularly bunt, twice burnt), in two habitats (riparian and adjacent open woodland), were surveyed over 3 years (1 year before the second burn, 1 year post the second burn, 2 years post the second burn) to examine responses of birds to a rapid recurrence of fire. Following the second burn, species richness and overall bird abundance were lower in the twice‐burnt sites than either the unburnt or singularly burnt sites. Feeding group composition varied across year of survey, but within each year, feeding guilds grouped according to fire treatment. In particular, abundance of frugivores and insectivores was lower in twice‐burnt sites, probably because of the decline of a native shrub that produces fleshy fruits, Carissa ovata. Although broader climatic variability may ultimately determine overall bird assemblages, our results show that a short fire‐return interval will substantially influence bird responses at a local scale. Considering that fire is frequently used as a land management tool, our results emphasize the importance of determining appropriate fire‐free intervals.  相似文献   

14.
Aim This study appraises historical fire regimes for Californian mixed‐conifer forests of the Sierra San Pedro Mártir (SSPM). The SSPM represents the last remaining mixed‐conifer forest along the Pacific coast still subject to uncontrolled, periodic ground fire. Location The SSPM is a north–south trending fault bound range, centred on 31°N latitude, 100 km SE of Ensenada, Baja California. Methods We surveyed forests for composition, population structure, and historical dynamics both spatially and temporally over the past 65 years using repeat aerial photographs and ground sampling. Fire perimeter history was reconstructed based on time‐series aerial photographs dating from 1942 to 1991 and interpretable back to 1925. A total of 256 1‐ha sites randomly selected from aerial photographs were examined along a chronosequence for density and cover of canopy trees, density of snags and downed logs, and cover of non‐conifer trees and shrubs. Twenty‐four stands were sampled on‐the‐ground by a point‐centred quarter method which yielded data on tree density, basal area, frequency, importance value, and shrub and herb cover. Results Forests experience moderately intense understory fires that range in size to 6400 ha, as well as numerous smaller, low intensity burns with low cumulative spatial extent. SSPM forests average 25–45% cover and 65–145 trees per ha. Sapling densities were two to three times that of overstory trees. Size‐age distributions of trees ≥ 4 cm dbh indicate multi‐age stands with steady‐state dynamics. Stands are similar to Californian mixed conifer forests prior to the imposition of fire suppression policy. Livestock grazing does not appear to be suppressing conifer regeneration. Main conclusions Our spatially‐based reconstruction shows the open forest structure in SSPM to be a product of infrequent, intense surface fires with fire rotation periods of 52 years, rather than frequent, low intensity fires at intervals of 4–20 years proposed from California fire‐scar dendrochronology (FSD) studies. Ground fires in SSPM were intense enough to kill pole‐size trees and a significant number of overstory trees. We attribute long fire intervals to the gradual build‐up of subcontinuous shrub cover, conifer recruitment and litter accumulation. Differences from photo interpretation and FSD estimates are due to assumptions made with respect to site‐based (point) sampling of fire, and nonfractal fire intensities along fire size frequency distributions. Fire return intervals determined by FSD give undue importance to local burns which collectively use up little fuel, cover little area, and have little demographic impact on forests.  相似文献   

15.
Abstract. Invasive alien grasses can increase fuel loads, leading to changes in fire regimes of invaded ecosystems by increasing the frequency, intensity and spatial extent of fires. Andropogon gayanus Kunth. (Gamba grass), a tall perennial grass from Africa, is invading ecosystems in the Top End of northern Australia. To determine whether A. gayanus alters savanna fire regimes, we compared fuel loads and fire intensities at invaded sites with those from native grass savannas. Savanna invaded by A. gayanus had fuel loads up to seven times higher than those dominated by native grasses. This higher fuel load supported a fire that was on average eight times more intense than those recorded in native grass savannas at the same time of year (means 15700 ± 6200 and 2100 ± 290 kW m−1, respectively), and was the highest early dry season fire intensities ever recorded in the Northern Territory. These results suggest that A. gayanus is a serious threat to northern Australia's savannas, with the potential to alter vegetation structure and initiate a grass-fire cycle.  相似文献   

16.
Grasslands are globally extensive; they exist in many different climates, at high and low elevations, on nutrient‐rich and nutrient‐poor soils. Grassland distributions today are closely linked to human activities, herbivores, and fire, but many have been converted to urban areas, forests, or agriculture fields. Roughly 80% of fires globally occur in grasslands each year, making fire a critical process in grassland dynamics. Yet, little is known about the long‐term history of fire in grasslands. Here, we analyze sedimentary archives to reconstruct grassland fire histories during the Holocene. Given that grassland locations change over time, we compare several charcoal‐based fire reconstructions based on alternative classification schemes: (a) sites from modern grassland locations; (b) sites that were likely grasslands during the mid‐Holocene; and (c) sites based on author‐derived classifications. We also compare fire histories from grassland sites, forested sites, and all sites globally over the past 12,000 years. Forested versus grassland sites show different trends: grassland burning increased from the early to mid‐Holocene, reaching a maximum about 8000–6000 years ago, and subsequently declined, reaching a minimum around 4000 years ago. In contrast, biomass burning in forests increased during the Holocene until about 2000 years ago. Continental grassland fire history reconstructions show opposing Holocene trends in North versus South America, whereas grassland burning in Australia was highly variable in the early Holocene and much more stable after the mid‐Holocene. The sharp differences in continental as well as forest versus grassland Holocene fire history trajectories have important implications for our understanding of global biomass burning and its emissions, the global carbon cycle, biodiversity, conservation, and land management.  相似文献   

17.
Degraded grasslands resulting from intensive land use appear to be highly resistant to tree invasion due to interactions between land use, climate, grazing and fire. We describe long-term patterns of tropical montane forest regeneration into degraded grasslands and analyze their relationships with historical changes in rainfall, grazing and fire in Los Toldos valley (Northwest Argentina), cloud forest life zone (1600 m asl). We used dendrochronological techniques to reconstruct spatial and temporal patterns of Podocarpus parlatorei establishment (the dominant tree species in secondary forests) and grassland fires for the last 150 yr. We assessed current livestock spatial distribution along the valley through feces sampling. Inferred tree establishment patterns ( i.e ., considering age structure and mortality) were analyzed in relation to temporal and spatial patterns of grazing and fire derived from our own analyses and from government statistics, and to rainfall patterns derived from previous dendrochronological reconstructions. Current grazing intensity was higher close to the local township. Fire occurrence increased with periods of above-average rainfall (higher fuel productivity), and tended to increase with distance to township (less grazing). Tree establishment in grasslands was spatially associated with high grazing intensity and low fire frequency, and temporally associated with periods of high grazing intensity and below-average rainfall. Despite climatic and land-use changes leading to conditions potentially favorable for trees ( i.e ., more rainfall, less grazing), grasslands persist in this study area, likely due to the direct (saplings burning) and indirect (soil degradation and desiccation) effects of recurrent fires, enhanced by decreasing grazing and increasing rainfall.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

18.
Aim In this study we examine fire history (i.e. c. 500 yr bp to present) of AraucariaNothofagus forests in the Andes cordillera of Chile. This is the first fire history developed from tree rings for an AraucariaNothofagus forest landscape. Location The fire history was determined for the Quillelhue watershed on the north side of Lanin volcano in Villarrica National Park, Chile. The long‐lived Araucaria araucana was commonly associated with Nothofagus pumilio and N. antarctica in more mesic and drier sites respectively. Methods Based on a combination of fire‐scar proxy records and forest stand ages, we reconstructed fire frequency, severity, and the spatial extent of burned areas for an c. 4000 ha study area. We used a composite fire chronology for the purpose of determining centennial‐scale changes in fire regimes and comparing the pre‐settlement (pre‐1883) and post‐settlement fire regimes. In addition, we contrasted Araucaria and Nothofagus species as fire‐scar recorders. Results In the study area, we dated a total of 144 fire‐scarred trees, representing 46 fire years from ad 1446 to the present. For the period from ad 1696 to 2000, using fire dates from Araucaria and Nothofagus species, the composite mean fire interval varied from 7 years for all fires to 62 years for widespread events (i.e. years in which ≥ 25% of recorder trees were scarred). Sensitivity to fire was different for Araucaria and Nothofagus species. More than 98% of the fires recorded by Nothofagus species occurred during the 1900s. The lack of evidence for older fire dates (pre‐1900) in Nothofagus species was due to their shorter longevity and greater susceptibility to being killed by more severe fires. Whereas the thin‐barked N. pumilio and N. antarctica are often destroyed in catastrophic fire events, large and thick‐barked Araucaria trees typically survive. The spatial extent of fires ranged from small patchy events to those that burned more than 40% of the entire landscape (c. > 1500 ha). Main conclusions Fire is the most important disturbance shaping the AraucariaNothofagus landscape in the Araucarian region. The forest landscape has been shaped by a mixed‐severity fire regime that includes surface and crown fires. High‐severity widespread events were relatively infrequent (e.g. 1827, 1909 and 1944) and primarily affected tall AraucariaN. pumilio forests and woodlands dominated by AraucariaN. antarctica. Although there is abundant evidence of the impact of Euro‐Chilean settlers on the area, the relative influence of this settlement on the temporal pattern of fire could only be tentatively established due to the relatively small number of pre‐1900 fire dates. An apparent increase in fire occurrence is evident in the fire record during Euro‐Chilean settlement (post‐1880s) compared with the Native American era, but it may also be the result of the destruction of evidence of older fires by more recent stand‐devastating fires (e.g. 1909 and 1944). Overall, the severe and widespread fires that burned in AraucariaNothofagus forests of this region in 2002, previously interpreted as an ecological novelty, are within the range of the historic fire regimes that have shaped this forested landscape.  相似文献   

19.
Aim To provide insights concerning changes in fire regime in north‐eastern Cambodia over the course of the Holocene, and discuss implications of these long‐term data for fire management in the present day. Location Southern Ratanakiri Province, north‐eastern Cambodia. The lake sites sampled here are embedded in a mosaic of mostly open, strongly deciduous dipterocarp forest, with patches of riparian, semi‐evergreen and evergreen forests. Methods Background information on the environmental and cultural setting comes from informal and semi‐structured interviews of local villagers to determine present‐day burning patterns and customs. Primary data come from analysis of changes in charcoal concentration within sediments from small, closed basin lakes. Charcoal data are compared with changes in pollen and sediment physical characteristics, and to present‐day local customs, to infer or speculate on changes in human use of fire. Results Interviews with local people reveal two general types of human‐induced fires, one type for swidden cultivation in denser forests, the other type for clearance of ground layer vegetation in more open forests. A 9300‐year sediment record of microscopic charcoal deposition shows strongest fire activity ending by 8000 years ago, and the remainder of the early Holocene reflecting a strong summer monsoon and low fire activity. Beginning c. 5500 years ago, forest disturbance and fire activity increased. A subtle change in the record at c. 3500 years ago and more marked change at c. 2500 years ago suggest that fire frequency, and maybe human control over fire, became more important during that period and continuing up to the present. Main conclusions With this type of empirical data from only one site, it is impossible to make accurate conclusions about long‐term human impacts from burning. However, this record does show that present‐day charcoal input from fire activity is among the lowest for the last 9300 years. Considered together with other changes in the record and with present‐day customs, there is a suggestion that anthropogenic fire is an adaptation to the monsoonal environment, and may be conservative of forest cover in open forest formations. This long‐term perspective on the role of indigenous land‐use customs in landscape evolution should be considered in forest management and biological conservation, as it differs significantly from the traditional rationale for policies of fire suppression in tropical forests.  相似文献   

20.
Abstract

High-resolution pollen, macrofossil and charcoal data, combined with multivariate analysis, were used to reconstruct Holocene vegetation and fire dynamics at Manaderos. The studied mire is located in a highly valued location in the supra-Mediterranean belt of the Gredos Range (central Iberian Peninsula). The record started at 1260?calendar years (cal yrs) BP, according to eight radiocarbon dates, with the occurrence of an open Quercus pyrenaica forest and Pinus nigra stands. The palynological data show a dramatic change ~380?cal yrs BP, when the oak forest was progressively replaced by a maritime pine one. The interpretation of this record is related to an increase in agricultural and livestock activities and changes in the role of fire, thus Pyrenean oak canopy was consumed by fires providing openings for Pinus pinaster, better adapted to fire. The results are compared with other sequences from the Spanish Central System in order to better understand the past dynamics of the main forest constituents and to provide a critical view of the role of fire, anthropic dynamics and climatic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号