首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chondroitin sulfate lyase (EC 4.2.2.4) was present constitutively at low levels (0.06 to 0.08 U/mg of protein) in cells of Bacteroides thetaiotaomicron which were growing on glucose or other monosaccharides. When these uninduced bacteria were incubated with chondroitin sulfate A (5 mg/ml), chondroitin sulfate lyase specific activity increased more than 10-fold within 90 min. Synthesis of ribonucleic acid and of protein was required for induction, and induction was sensitive to oxygen. The disaccharides which resulted from chondroitinase action did not act as inducers, nor did tetrasaccharides or hexasaccharides obtained by digestion of chondroitin sulfate with bovine testicular hyaluronidase. None of these substances was taken up by uninduced cells; they may not have been able to penetrate the outer membrane. The smallest oligomer capable of acting as an inducer was the outer membrane. The smallest oligomer capable of acting as an inducer was the octassacharide. Oligomers larger than the octassacharide induced chondroitin lyase activity nearly as well as intact chondroitin sulfate.  相似文献   

2.
Bacteroides thetaiotaomicron produces two inducible chondroitin lyases (I and II) when it is grown on chondroitin sulfate. Both enzymes have very similar biochemical properties. To determine whether both enzymes are required for growth on chondroitin sulfate, we constructed a Bacteroides suicide vector, pE3-1, and used it to create an insertional mutation that interrupts the chondroitin lyase II gene of Bacteroides thetaiotaomicron. pE3-1 contains a 4.4-kilobase cryptic B. eggerthii plasmid (pB8-51), the Escherichia coli cloning vector pBR328, and the EcoRI D fragment from the conjugative B. fragilis plasmid pBF4. A 0.8-kilobase fragment from the center of the B. thetaiotaomicron chondroitin lyase II gene was inserted in pE3-1 to create pEG817. Although, pEG817 is stably maintained in E. coli and can be mobilized into B. thetaiotaomicron by the IncP plasmid R751, pEG817 is not maintained as a plasmid in Bacteroides spp. When pEG817 was mobilized into B. thetaiotaomicron, with selection for a drug marker on pEG817, transconjugants were obtained which had pEG817 inserted into the chondroitin lyase II gene. Western blot analysis was used to confirm that intact chondroitin lyase II is not produced in the mutant. The mutant was able to utilize chondroitin sulfate as a sole source of carbon, although no active chondroitin lyase II was produced. Thus chondroitin lyase I alone appears to be sufficient for growth on chondroitin sulfate. The mutant also had some minor changes in its outer membrane protein profile. However, there was no evidence that any of the major chondroitin sulfate-associated polypeptides in the outer membrane were affected by the insertion in the chondroitin lyase II gene.  相似文献   

3.
The chondroitin lyase II gene from Bacteroides thetaiotaomicron has previously been cloned in Escherichia coli on a 7.8-kilobase (kb) fragment (pA818). In E. coli, the chondroitin lyase II gene appeared to be expressed from a promoter that was about 0.5 kb from the beginning of the gene. However, when a subcloned 5-kb fragment from pA818 which contained the chondroitin lyase II gene and the promoter from which the gene is expressed in E. coli was introduced into B. thetaiotaomicron on a multicopy plasmid (pEG800), the chondroitin lyase specific activity of B. thetaiotaomicron was not altered. Further evidence that the promoter that is recognized in E. coli may not be the promoter from which the chondroitin lyase II gene is transcribed in B. thetaiotaomicron was obtained by making an insertion in the B. thetaiotaomicron chromosome at a point which is 1 kb upstream from the chondroitin lyase II gene. This insertion stopped synthesis of the chondroitin lyase II gene product, as would be predicted if the gene was part of an operon and was transcribed in B. thetaiotaomicron from a promoter that was at least 1 kb upstream from the chondroitin lyase II gene. A region of pA818 which was adjacent to the chondroitin lyase II gene and which included the region used to make the insertional mutation was found to code for chondro-4-sulfatase, an enzyme that breaks down one of the products of the chondroitin lyase reaction. The upstream insertion mutant of B. thetaiotaomicron which stopped synthesis of chondroitin lyase II had no detectable chondro-4-sulfatase activity. This mutant was still able to grow on chondroitin sulfate, although the rate of growth was slower than that of the wild type.  相似文献   

4.
Three species of colonic bacteria can ferment the mucopolysaccharide chondroitin sulfate: Bacteroides ovatus, Bacteroides sp. strain 3452A (an unnamed DNA homology group), and B. thetaiotaomicron. Proteins associated with the utilization of chondroitin sulfate by B. thetaiotaomicron have been characterized previously. In this report we compare chondroitin lyases and chondroitin sulfate-associated outer membrane polypeptides of B. ovatus and Bacteroides sp. strain 3452A with those of B. thetaiotaomicron. All three species produce two soluble cell-associated chondroitin lyases, chondroitin lyase I and II. Purified enzymes from the three species have similar pH optima, Km values, and molecular weights. However, peptide mapping experiments show that the chondroitin lyases from B. ovatus and Bacteroides sp. strain 3452A are not identical to those of B. thetaiotaomicron. A cloned gene that codes for the chondroitin lyase II from B. thetaiotaomicron hybridized on a Southern blot with DNA from B. ovatus or Bacteroides sp. strain 3452A only when low-stringency conditions were used. Antibody to chondroitin lyase II from B. thetaiotaomicron did not cross-react with chondroitin lyase II from B. ovatus or Bacteroides sp. strain 3452A. Chondroitin lyase activity in all three species was inducible by chondroitin sulfate. B. ovatus and Bacteroides sp. strain 3452A, like B. thetaiotaomicron, have outer membrane polypeptides that appear to be regulated by chondroitin sulfate, but the chondroitin sulfate-associated outer membrane polypeptides differ in molecular weight. Despite these differences, the ability of intact bacteria to utilize chondroitin sulfate, as indicated by growth yields in carbohydrate-limited continuous culture and the rate at which the chondroitin lyases were induced, was the same for all three species.  相似文献   

5.
Three species of colonic bacteria can ferment the mucopolysaccharide chondroitin sulfate: Bacteroides ovatus, Bacteroides sp. strain 3452A (an unnamed DNA homology group), and B. thetaiotaomicron. Proteins associated with the utilization of chondroitin sulfate by B. thetaiotaomicron have been characterized previously. In this report we compare chondroitin lyases and chondroitin sulfate-associated outer membrane polypeptides of B. ovatus and Bacteroides sp. strain 3452A with those of B. thetaiotaomicron. All three species produce two soluble cell-associated chondroitin lyases, chondroitin lyase I and II. Purified enzymes from the three species have similar pH optima, Km values, and molecular weights. However, peptide mapping experiments show that the chondroitin lyases from B. ovatus and Bacteroides sp. strain 3452A are not identical to those of B. thetaiotaomicron. A cloned gene that codes for the chondroitin lyase II from B. thetaiotaomicron hybridized on a Southern blot with DNA from B. ovatus or Bacteroides sp. strain 3452A only when low-stringency conditions were used. Antibody to chondroitin lyase II from B. thetaiotaomicron did not cross-react with chondroitin lyase II from B. ovatus or Bacteroides sp. strain 3452A. Chondroitin lyase activity in all three species was inducible by chondroitin sulfate. B. ovatus and Bacteroides sp. strain 3452A, like B. thetaiotaomicron, have outer membrane polypeptides that appear to be regulated by chondroitin sulfate, but the chondroitin sulfate-associated outer membrane polypeptides differ in molecular weight. Despite these differences, the ability of intact bacteria to utilize chondroitin sulfate, as indicated by growth yields in carbohydrate-limited continuous culture and the rate at which the chondroitin lyases were induced, was the same for all three species.  相似文献   

6.
When Bacteroides thetaiotaomicron, an obligate anaerobe from the human colonic flora, was grown in continuous culture with the mucopolysaccharide chondroitin sulfate as the limiting source of carbohydrate, growth yields ranged from 48 g of cell dry weight per mol of equivalent monosaccharide at a growth rate of 3.5 h per generation to 32 g per mol at a growth rate of 24 h per generation. The theoretical maximum growth yield (61 g of cell dry weight per mol of equivalent monosaccharide) was comparable to that of 54 g per mol, which was obtained previously when glucuronic acid, a component of chondroitin sulfate, was the limiting carbohydrate (S. F. Kotarski and A. A. Salyers, J. Bacteriol. 146:853-860, 1981). However, the maintenance coefficient was three times higher when chondroitin sulfate was the substrate than when glucuronic acid was the substrate. The specific activity of chondroitin lyase (EC 4.2.2.4), an enzyme which cleaves chondroitin sulfate into disaccharides, declined by nearly 50% as growth rates decreased from 3.5 to 24 h per generation. By contrast, the specific activities of several glycolytic enzymes and disaccharidases remained constant over this range of growth rates. Although chondroitin sulfate was growth limiting, some carbohydrate was detectable in the extracellular fluid at all growth rates. At rapid growth rates (1 to 2 h per generation), this residual carbohydrate included fragments of chondroitin sulfate having a wide range of molecular weights. At slower growth rates (2 to 24 h per generation), the residual carbohydrate consisted mainly of a small fragment which migrated on paper chromatograms more slowly than the disaccharides produced by chondroitin lyase but faster than a tetrasaccharide. This small fragment may represent the reducing end of the chondroitin sulfate molecule.  相似文献   

7.
By analyzing outer membrane proteins of Bacteroides thetaiotaomicron on two-dimensional polyacrylamide gels, we were able to identify 10 protein spots that were associated with growth on chondroitin sulfate but not with growth on glucuronic acid or other monosaccharides. These proteins were distinct from the outer membrane polypeptides that were associated with growth on two other negatively charged polysaccharides, polygalacturonic acid and heparin. Of the 10 protein spots that were associated with growth on chondroitin sulfate, 4 could be detected on immunoblots with antiserum that had been raised against outer membranes from bacteria grown on chondroitin sulfate and then cross-adsorbed with membranes from bacteria grown on glucose. Synthesis of these four proteins appeared to be regulated coordinately with synthesis of the two enzymes that degrade chondroitin sulfate, chondroitin lyase I and II. Although one of the four proteins (Mr 110,000) was similar in molecular weight to the chondroitin lyases, the cross-adsorbed antiserum which detected this outer membrane protein did not cross-react with either of these two enzymes.  相似文献   

8.
Capillary zone electrophoresis (CZE) was used to separate eight commercial disaccharide standards of the structure delta UA2X(1----4)-D-GlcNY6X (where delta UA is 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid, GlcN is 2-deoxy-2-aminoglucopyranose, S is sulfate, Ac is acetate, X may be S, and Y is S or Ac). These eight disaccharides had been prepared from heparin, heparan sulfate, and derivatized heparins. A similar CZE method was recently reported for the analysis of eight chondroitin and dermatan sulfate disaccharides (A. Al-Hakim and R.J. Linhardt, Anal. Biochem. 195, 68-73, 1991). Two of the standard heparin/heparan sulfate disaccharides, having an identical charge of -2, delta UA2S(1----4)-D-GlcNAc and delta UA(1----4)-D-GlcNS, were not fully resolved using standard sodium borate/boric acid buffer. This buffer had proven effective in separating chondroitin/dermatan sulfate disaccharides of identical charge. Resolution of these two heparin/heparan sulfate disaccharides could be improved by extending the capillary length, preparing the buffer in 2H2O, or eliminating boric acid. Baseline resolution was achieved in sodium dodecyl sulfate in the absence of buffer. The structure and purity of each of the eight new commercial heparin/heparan sulfate disaccharide standards were confirmed using fast-atom-bombardment mass spectrometry and high-field 1H-NMR spectroscopy. Heparin and heparan sulfate were then depolymerized using heparinase (EC 4.2.2.7), heparin lyase II (EC 4.2.2.-), heparinitase (EC 4.2.2.8), and a combination of all three enzymes. CZE analysis of the products formed provided a disaccharide composition of each glycosaminoglycan. As little as 50 fmol of disaccharide could be detected by ultraviolet absorbance.  相似文献   

9.
Bacteroides thetaiotaomicron can utilize a variety of polysaccharides, including charged mucopolysaccharides such as chondroitin sulfate (CS) and hyaluronic acid (HA). Since the enzymes (chondroitin lyases I and II) that catalyze the first step in breakdown of CS and HA are located in the periplasm, we had proposed that the first step in utilization of these polysaccharides was binding to one or more outer membrane proteins followed by translocation into the periplasm, but no such outer membrane proteins had been shown to play a role in CS or HA utilization. Previously we have isolated a transposon-generated mutant, CS4, which was unable to grow on CS or HA but retained the ability to grow on disaccharide components of CS. This phenotype suggested that the mutation in CS4 either blocked the transport of the mucopolysaccharides into the periplasmic space or blocked the depolymerization of the mucopolysaccharides into disaccharides. We have mapped the CS4 mutation to a single gene, csuF, which is capable of encoding a protein of 1,065 amino acids and contains a consensus signal sequence. Although CsuF had a predicted molecular weight and pI similar to those of chondroitin lyases, it did not show significant sequence similarity to the Bacteroides chondroitin lyase II, a Proteus chondroitin ABC lyase, or two hyaluronidases from Clostridium perfringens and Streptococcus pyogenes, nor was any CS-degrading enzyme activity associated with csuF expression in Bacteroides species or Escherichia coli. The deduced amino acid sequence of CsuF exhibited features suggestive of an outer membrane protein. We obtained antibodies to CsuF and demonstrated that the protein is located in the outer membrane. This is the first evidence that a nonenzymatic outer membrane protein is essential for utilization of CS and HA.  相似文献   

10.
A strain of Arthrobacter aurescens which secretes a large amount of chondroitinase into a culture broth, was isolated from soil. The chondroitinase was purified 380-fold over culture broth in 24% yield and crystallized. Some properties of the purified enzyme were studied and described: thermal stability (below 45 degrees), pH stability (pH 4.9 to 7.4), optimum temperature (50 degrees), and optimum pH (pH 6.0). Chrondroitin sulfate A and C, chondroitin, and hyaluronic acid were split by the enzyme but dermatan sulfate could not be. The initial rates of enzymic degradation of chondroitin sulfate C, chondroitin, and hyaluronic acid were 1.1, 1.95, and 3.2, respectively, compared to that of chondroitin sulfate A. When the enzyme was allowed to act on chondroitin sulfate A and C, the reducing power and the ultraviolet absorption at 232 nm increased proportionally to the decrease in viscosity of the substrate solution. Finally these substrates were degraded to the extent of 100% to disaccharides. By the enzyme action the main products from chondroitin sulfate A and C were deta 4,5-unsaturated disaccharides, which were identified as 2-acetamido-2-deoxy-3-O-(Beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose and 2-acet-amido-2-deoxy-3-O-(Beta-D-gluco-4-enepyranosyluronic acid)-6-O-sulfo-D-galactose by paper chromatography, ultraviolet absorption spectroscophy, and infrared spectroscopy. Thus it is suggested that the chondroitinase is a chondroitin sulfate A and C lyase, one of the hyaluronate lyases (EC 4.2.99.1).  相似文献   

11.
Oligosaccharides prepared from glycosaminoglycans (GAGs) including heparin, heparan sulfate, chondroitin sulfates, dermatan sulfate, and keratan sulfate were analyzed using reverse-phase ion-pairing HPLC and ion-exchange HPLC with suppressed conductivity detection. The results were compared with those obtained by strong anion-exchange HPLC using uv detection. These oligosaccharides were first prepared by enzymatically depolymerizing the GAGs with enzymes including heparin lyase (EC 4.2.2.7), heparan sulfate lyase (EC 4.2.2.8), chondroitin ABC lyase (EC 4.2.2.4), and keratan sulfate hydrolase (EC 3.2.1.103). Analysis was then performed without derivitization under isocratic conditions with a limit of sensitivity in the picomole range. Preliminary studies suggest that this approach may be particularly useful in examining oligosaccharides having no uv chromophore such as those prepared from keratan sulfate.  相似文献   

12.
In medium supplemented with chondroitin sulfate, Flavobacterium heparinum synthesizes and exports two chondroitinases, chondroitinase AC (chondroitin AC lyase; EC 4.2.2.5) and chondroitinase B (chondroitin B lyase; no EC number), into its periplasmic space. Chondroitinase AC preferentially depolymerizes chondroitin sulfates A and C, whereas chondroitinase B degrades only dermatan sulfate (chondroitin sulfate B). The genes coding for both enzymes were isolated from F. heparinum and designated cslA (chondroitinase AC) and cslB (chondroitinase B). They were found to be separated by 5.5 kb on the chromosome of F. heparinum, transcribed in the same orientation, but not linked to any of the heparinase genes. In addition, the synthesis of both enzymes appeared to be coregulated. The cslA and cslB DNA sequences revealed open reading frames of 2,103 and 1,521 bp coding for peptides of 700 and 506 amino acid residues, respectively. Chondroitinase AC has a signal sequence of 22 residues, while chondroitinase B is composed of 25 residues. The mature forms of chondroitinases AC and B are comprised of 678 and 481 amino acid residues and have calculated molecular masses of 77,169 and 53,563 Da, respectively. Truncated cslA and cslB genes have been used to produce active, mature chondroitinases in the cytoplasm of Escherichia coli. Partially purified recombinant chondroitinases AC and B exhibit specific activities similar to those of chondroitinases AC and B from F. heparinum.  相似文献   

13.
Two novel chondroitinases, chondroitin ABC lyase (EC 4.2.2.4) and chondroitin AC lyase (EC 4.2.2.5), have been purified from Bacteroides stercoris HJ-15, which was isolated from human intestinal bacteria with glycosaminoglycan degrading enzymes. Chondroitin ABC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and Sephacryl S-300 column chromatography with a final specific activity of 45.7 micromol.min-1.mg-1. Chondroitin AC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and phosphocellulose column chromatography with a final specific activity of 57.03 micromol.min-1.mg-1. Chondroitin ABC lyase is a single subunit of 116 kDa by SDS/PAGE and gel filtration. Chondroitin AC lyase is composed of two identical subunits of 84 kDa by SDS/PAGE and gel filtration. Chondroitin ABC and AC lyases showed optimal activity at pH 7.0 and 40 degrees C, and 5.7-6.0 and 45-50 degrees C, respectively. Both chondroitin lyases were potently inhibited by Cu2+, Zn2+, and p-chloromercuriphenyl sulfonic acid. The purified Bacteroidal chondroitin ABC lyase acted to the greatest extent on chondroitin sulfate A (chondroitin 4-sulfate), to a lesser extent on chondroitin sulfate B (dermatan sulfate) and C (chondroitin 6-sulfate). The purified chondroitin AC lyase acted to the greatest extent on chondroitin sulfate A, and to a lesser extent on chondroitin C and hyaluronic acid. They did not act on heparin and heparan sulfate. These findings suggest that the biochemical properties of these purified chondroitin lyases are different from those of the previously purified chondroitin lyases.  相似文献   

14.
15.
High-voltage capillary zone electrophoresis (CZE) has been used for the first time in the analysis of non-, mono-, di-, and trisulfated disaccharides derived from chondroitin sulfate, dermatan sulfate, and hyaluronic acid. These glycosaminoglycans are first depolymerized using polysaccharide lyases. The resulting unsaturated disaccharide products can be detected by their ultraviolet absorbance at 232 nm. Different retention times were obtained for each unsaturated disaccharide analyzed by CZE. The application of a constant voltage across a 70-cm fused silica capillary using a single, simple buffer system resolved an eight-component mixture within 40 min. Quantitation of disaccharides derived from chondroitin sulfate using chondroitin ABC lyase (EC 4.2.2.4) and mixtures of unsaturated disaccharide standards was possible requiring only picogram quantities of sample. The disaccharides examined had a net charge of from -1 to -4 and were resolved primarily on the basis of net charge and secondarily on the basis of charge distribution. Two unsulfated disaccharides both containing the same unsaturated uronic acid residue were analyzed. One was from chondroitin having an N-acetylgalactosyl residue and one from hyaluronate having an N-acetylglycosyl residue. Despite the fact that they differed only by the chirality at one center, these disaccharides were resolved by CZE. CZE is a fast and simple method that represents a powerful new tool for analysis and separation of acidic disaccharide components of glycosaminoglycans.  相似文献   

16.
Digestion of proteoglycan by Bacteroides thetaiotaomicron   总被引:1,自引:1,他引:0       下载免费PDF全文
It has been shown previously that Bacteroides thetaiotaomicron, a human colonic anaerobe, can utilize the tissue mucopolysaccharide chondroitin sulfate as a source of carbon and energy and that the enzymes involved in this utilization are all cell associated (A. A. Salyers and M. B. O'Brien, J. Bacteriol. 143:772-780, 1980). Since chondroitin sulfate does not generally occur in isolated form in tissue, but rather is bound covalently in proteoglycan, we investigated the extent to which chondroitin sulfate which is bound in such a sterically hindered complex can be utilized by intact bacteria. Intact cells of B. thetaiotaomicron were able to digest chondroitin sulfate in proteoglycan, although at a slightly slower rate than free chondroitin sulfate. Prior digestion of proteoglycan with trypsin to produce small fragments of protein with several chondroitin sulfate chains attached did not increase the rate at which the bound chondroitin sulfate was digested. Accordingly, the slower rate of digestion was probably due to attachment of chondroitin sulfate chains to the protein backbone rather than to steric hindrance by other components of the proteoglycan. When proteoglycan which had been incubated with intact bacteria was treated with sodium borohydride to release the undigested fragments of chondroitin sulfate from the protein backbone, the size and composition of the fragments indicated that intact bacteria were able to digest all but three monosaccharides of the chondroitin sulfate chains. Thus, despite steric hindrance due to attachment of the chondroitin sulfate chains to the protein backbone, digestion of bound chondroitin sulfate by intact bacteria was nearly complete.  相似文献   

17.
Human basophils were obtained from three donors with myelogenous leukemia. Proteoglycans were labeled by using [35S]sulfate as precursor and were extracted in 1 M NaCl with protease inhibitors to preserve their native structure. [35S]proteoglycans filtered on Sepharose 4B with an average m.w. similar to that of a rat heparin proteoglycan that has an estimated m.w. of 750,000. The [35S]glycosaminoglycan side chains filtered with an average m.w. slightly smaller than a 60,000-m.w. glycosaminoglycan marker. The [35S]glycosaminoglycans were resistant to heparinase and susceptible to degradation by chondroitin AC lyase and chondroitin ABC lyase. The intact [35S]glycosaminoglycans chromatographed on DEAE Sepharose as a single peak eluting just before an internal heparin marker. These findings indicate that the [35S]glycosaminoglycans were made up only of chondroitin sulfates. No heparin was identified. The chondroitin sulfate disaccharides that resulted from the action of chondroitin ABC lyase on the basophil glycosaminoglycans consisted of 92% delta Di-4S, 6% delta Di-6S, and 2% disulfated disaccharides. The [35S]chondroitin sulfate proteoglycans were susceptible to cleavage with proteases and could be shown to be released intact from basophils during degranulation initiated by the calcium ionophore A23187. The basophil proteoglycans and glycosaminoglycans were capable of binding histamine in water, but not in phosphate-buffered saline, and had no anticoagulant activity.  相似文献   

18.
Radioactivity was significantly incorporated from ascorbate 2-[35S]sulfate into chondroitin sulfate by embryonic chick cartilage epiphyses. The extent of incorporation was comparable with that from inorganic [35S]sulfate. The radioactive chondroitin sulfate formed from ascorbate 2-[35S]sulfate gave two radioactive disaccharides on chondroitinase-ABC [EC 4.2.2.4] digestion. The incorporation was markedly decreased by inorganic sulfate. The time course of incorporation from ascorbate 2-[35S]sulfate and inorganic [35S]sulfate into chondroitin sulfate and the constituent disaccharides suggest that the incorporation rates from the two radioactive substances are different.  相似文献   

19.
[3H,35S]Dermatan/chondroitin sulfate glycosaminoglycans produced during culture of fibroblasts in medium containing varying concentrations of sulfate were tested for their susceptibility to chondroitin ABC lyase and chondroitin AC lyase. Chondroitin ABC lyase completely degraded [3H]hexosamine-labeled and [35S] sulfate-labeled dermatan/chondroitin sulfate to disaccharides. Chondroitin AC lyase treatment of the labeled glycosaminoglycans produced different results. With this enzyme, dermatan/chondroitin sulfate formed at high concentrations of sulfate yielded small glycosaminoglycans and larger oligosaccharides but almost no disaccharide. This indicated that the dermatan/chondroitin sulfate co-polymer contained mostly iduronic acid with only an occasional glucuronic acid. As the medium sulfate concentration was progressively lowered, there was a concomitant increase in the susceptibility to degradation by chondroitin AC lyase. Thus, the labeled glycosaminoglycans formed at the lowest concentration of sulfate yielded small oligosaccharides including substantial amounts of disaccharide. The smaller chondroitin AC lyase-resistant [3H,35S]dermatan/chondroitin sulfate oligosaccharides were analyzed by gel filtration. Results indicated that, in general, the iduronic acid-containing disaccharide residues present in the undersulfated [3H,35S]glycosaminoglycan were sulfated, whereas the glucuronic acid-containing disaccharide residues were non-sulfated. This work confirms earlier reports that there is a relationship between epimerization and sulfation. Moreover, it demonstrates that medium sulfate concentration is critical in determining the proportions of dermatan to chondroitin (iduronic/glucuronic acid) produced by cultured cells.  相似文献   

20.
Previously, we isolated two mutants of Bacteroides thetaiotaomicron that were unable to grow on the mucopolysaccharide chondroitin sulfate (CS). One of these mutants (46-1) was outcompeted by the wild type in the intestinal tracts of germfree mice, whereas the other mutant (46-4) competed equally with the wild type. In the present article, we report a detailed characterization of these two mutants. Assays of enzymes in the CS utilization pathway revealed that 46-1 did not express one of these enzymes, chondro-6-sulfatase. The absence of chondro-6-sulfatase activity in extracts from 46-1 allowed us to detect a previously unknown activity of another enzyme in the CS breakdown pathway, beta-glucuronidase. In addition to hydrolyzing its normal substrate (an unsulfated disaccharide), beta-glucuronidase also hydrolyzed the 6-sulfated disaccharide subunit of CS. Two-dimensional gel analysis of polypeptides produced by 46-1 showed that several proteins other than the 6-sulfatase were either missing or expressed aberrantly. Thus, 46-1 could be a regulatory mutant. Mutant 46-4 was unable to grow on CS, hyaluronic acid, or disaccharides of CS. Thus, expression of the CS pathway enzymes could not be induced. Nonetheless, the growth pattern of 46-4 and some other findings indicate that the structural genes for these enzymes were still intact. The most likely target of mutant 46-4 is a regulatory locus that is required for expression of CS utilization genes. A surprising characteristic of 46-1 was its inability to grow on heparin, a mucopolysaccharide which is structurally similar to CS but is utilized by a different pathway.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号