首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of M3 muscarinic receptors in HT-29 cells by carbachol rapidly increases polyphosphoinositide breakdown. Pretreatment of these cells with carbachol (0.1 mM) for 5 h completely inhibits the subsequent ability of carbachol to increase [3H]inositol monophosphate ([3H]InsP) accumulation, paralleled by a total loss of muscarinic binding sites. In contrast, protein kinase C (PK-C)-mediated desensitization by incubation with phorbol esters [PMA (phorbol 12-myristate 13-acetate)], leading to a time- and dose-dependent inhibition of cholinergically stimulated InsP release (95% inhibition after 4 h with 0.1 microM-PMA), is accompanied by only a 40% decrease in muscarinic receptor binding, which suggests an additional mechanism of negative-feedback control. Neither carbachol nor PMA pretreatment had any effect on receptor affinity. Incubation with carbachol for 15 min caused a small increase of membrane-associated PK-C activity (15% increase, P less than 0.05) as compared with the potency of phorbol esters (PMA) (3-4-fold increase, P less than 0.01). Long-term incubation (4-24 h) with PMA resulted in a complete down-regulation of cytosolic and particulate PK-C activity. Stimulation of InsP release by NaF (20 mM) was not affected after a pretreatment with phorbol esters or carbachol, demonstrating an intact function of G-protein and phospholipase-C (PL-C) at the effector side. Determination of PL-C activity in a liposomal system with [3H]PtdInsP2 as substrate, showed no change in PL-C activity after carbachol (13 h) and short-term PMA (2.5 h) pretreatment, whereas long-term preincubation with phorbol esters (13 h) caused a small but significant decrease in PL-C activity (19%, P less than 0.05). Our results indicate that agonist-induced desensitization of phosphoinositide turnover occurs predominantly at the receptor level, with a rapid loss of muscarinic receptors. Exogenous activation of PK-C by phorbol esters seems to dissociate the interaction between receptor and G-protein/PL-C, without major effects on total cellular PL-C activity.  相似文献   

2.
When the phorbol ester, 4 beta-phorbol-12-myristate-13-acetate (PMA) or bacterial phospholipase C (PL-C) is added to a preparation of purified adult rat Leydig cells, containing 2 mM CaCl2, a time- and dose-dependent decreases of LH-stimulated testosterone production is observed. After a 3 h stimulation with oLH (100 ng/ml), PMA (100 ng/ml) and PL-C (1.6 U/ml) do not affect the cell viability or the hCG specific binding, while cAMP accumulation is significantly reduced; cAMP-stimulated steroidogenesis is diminished only in the presence of PL-C. These observations suggest that in vitro: (i) activated Ca2+- and phospholipid-dependent protein kinase is implicated in the regulation of rat Leydig cell steroidogenesis by LH at a step before the adenylate cyclase; (ii) phospholipids play an important role in cAMP-stimulated testosterone synthesis.  相似文献   

3.
The specific binding of 125I-labelled [D-Ser(tBu)6,des-GlyNH2(10)] LHRH ethylamide (LHRH-A) to testicular intertubular cells fractionated on Percoll density gradients was investigated. The greatest binding per cell occurred in the density region which contained the largest proportion of Leydig cells (sp. gr. 1.0820-1.0585). Autoradiographs of the cells from this region confirmed that silver stains were predominantly located over the Leydig cell, significantly (P less than 0.01) more grains were observed over this cell type in the total binding fractions than in the non-specific binding fractions. However, 5.9% of cells other than Leydig cells (testicular macrophages and indeterminate connective tissue cells) from this region also displayed significant displaceable binding (P less than 0.01). The location of [125I]LHRH-A binding to cells in other density regions, which did not contain identifiable Leydig cells, could not be established by autoradiography. These results confirm that the Leydig cell possesses LHRH receptors, but also indicate that other testicular cells have specific, high-affinity binding sites for LHRH-A, and may either be responsive to direct stimulation by LHRH, or may partially mediate the effects of LHRH and its agonists on Leydig cell function.  相似文献   

4.
One single injection of ethylene dimethane sulfonate (EDS) to mature rats causes specific degeneration of testicular Leydig cells which is complete after 3 days. At this time no steroidogenic activities can be detected, indicating that Leydig cells are the source of steroids. The mechanism of this cytotoxic effect of EDS has been investigated with isolated cells. Extensive protein alkylation has been shown to occur in Leydig cells, Sertoli cells and hepatocytes. Steroid production by Leydig cells is always inhibited by EDS, but cytotoxic effects of EDS could only be demonstrated in Leydig cells from mature rats or tumour tissue and not in Leydig cells from immature rats. A new population of Leydig cells develops during the next 2-5 weeks after EDS treatment. In hypophysectomized rats this repopulation only occurs when hCG is given daily. FSH has no effects. The proliferative activity in the interstitial tissue increases within 2 days after administration of hCG or EDS and there are indications that LH and locally produced factors are involved in the proliferation of Leydig cells or Leydig cell precursor cells. Inhibition of cAMP production with inhibitors of adenylate cyclase results in an enhancement of the LH-stimulated steroid production similar to that observed with an LHRH agonist and phospholipase C (PLC). Since the effects of LHRH and PLC on protein phosphorylation and steroid production are similar and different from LH or active phorbol esters, it is proposed that LHRH and PLC may stimulate steroid production via liberation of calcium from a specific intracellular pool. Sterol carrier protein2 (SCP2) which is specifically localized in Leydig cells and regulated by LH probably plays a role in the delivery of cholesterol to the mitochondria although the mechanism of this carrier function is not clear. The results indicate that regulation of Leydig cell development and the steroidogenic activities by gonadotrophins and locally produced factors occur via different transducing systems and regulatory pathways.  相似文献   

5.
Effects of adenosine and related compounds on the regulation of steroid production by isolated Leydig cells have been investigated. Steroid production by freshly isolated Leydig cells from testes of immature or mature rats and mice, or from Leydig tumor tissue could not be stimulated with adenosine, nicotinamide-adenine dinucleotide (phosphate) [NADPH, NAD(P)] or N6-(1-2-phenylisopropyl)-adenosine (PIA) (50 microM), whereas luteinizing hormone (LH) stimulated steroid production more than 10-fold. After 24 h incubation all adenosine-related compounds, but not inosine, stimulated steroid production to 20-100% of the maximal LH-stimulated activity. LH- or 22R -hydroxycholesterol-stimulated steroidogenesis in Leydig cells from immature rats did not decrease during the 24-h culture period, whereas ATP levels increased. The first significant effect of adenosine on steroid production in these cells was found after an incubation period of 3 h. In cells incubated for 1 h and 24 h, LH stimulated cyclic adenosine 3':5'-monophosphoric acid (cAMP) production 10-fold. Significant effects of adenosine and PIA on cAMP production or protein phosphorylation could only be shown in cells incubated for 24 h. Effects of adenosine on Leydig cells in intact testis tissue of immature rats could not be determined. The results suggest that after isolation of Leydig cells, specific alterations in the cell membrane occur, causing increased sensitivity to adenosine and related compounds. Adenosine apparently does not play a role in the role of steroid production in Leydig cells in vivo.  相似文献   

6.
The results of our recent studies on purified rat Leydig cells indicate that there are no major qualitative differences in the stimulating effects of LH and LHRH agonists on steroidogenesis via mechanisms that are dependent on calcium. This was demonstrated by using inhibitors of calmodulin and the lipoxygenase pathways of arachidonic acid metabolism. Using the fluorescent indicator quin-2, it was shown that LH and LHRH agonist increase intracellular calcium levels; LH was more potent than LHRH agonist (max increase in concentrations obtained were 500 nM and 60 nM respectively). This difference was probably the result of a direct effect of cyclic AMP (whose production is stimulated by LH but not by LHRH) because cyclic AMP analogues were as potent as LH in increasing calcium levels. These studies indicate a major role for calcium in the control of steroidogenesis in testis Leydig cells.  相似文献   

7.
The requirements of purified rat Leydig cells for intra- and extra-cellular Ca2+ during steroidogenesis stimulated by LH (lutropin), cyclic AMP analogues and LHRH (luliberin) agonist were investigated. The intracellular Ca2+ concentrations ([Ca2+]i) were measured by using the fluorescent Ca2+ chelator quin-2. The basal [Ca2+]i was found to be 89.4 +/- 16.6 nM (mean +/- S.D., n = 25). LH, 8-bromo cyclic AMP and dibutyryl cyclic AMP increased [Ca2+]i, by 300-500 nM at the highest concentrations of each stimulator, whereas LHRH agonist only increased [Ca2+]i by a maximum of approx. 60 nM. Low concentrations of LH (less than 1 pg/ml) and all concentrations of LHRH agonist increased testosterone without detectable changes in cyclic AMP. With amounts of LH greater than 1 pg/ml, parallel increases in cyclic AMP and [Ca2+]i occurred. The steroidogenic effect of the LHRH agonist was highly dependent on extracellular Ca2+ concentration ([Ca2+]e), whereas LH effects were only decreased by 35% when [Ca2+]e was lowered from 2.5 nM to 1.1 microM. No increase in [Ca2+]i occurred with the LHRH agonist in the low-[Ca2+]e medium, whereas LH (100 ng/ml) gave an increase of 52 nM. It is concluded that [Ca2+]i can be modulated in rat Leydig cells by LH via mechanisms that are both independent of and dependent on cyclic AMP, whereas LHRH-agonist action on [Ca2+]i is independent of cyclic AMP. The evidence obtained suggests that, at sub-maximal rates of testosterone production, Ca2+, rather than cyclic AMP, is the second messenger, whereas for maximum steroidogenesis both Ca2+- and cyclic-AMP-dependent pathways may be involved.  相似文献   

8.
The mechanism(s) of the development of response to catecholamines (CA) by Leydig cells in culture was investigated with the use of primary culture of purified Leydig cells of adult rats. The interactions of a CA agonist, isoproterenol (ISOP), with luteinizing hormone (LH) and a luteinizing hormone-releasing hormone agonist analog (LHRHa) on production of androgen by the Leydig cells were also studied. Cells incubated with ISOP for 3 h increased release of cyclic adenosine 3',5'-monophosphate (cAMP) to similar extents at 0, 3, and 24 h of culture. The beta-agonist did not increase androgen release at 0 h but had a concentration-dependent effect at 3, 24, and 48 h of culture, with maximal effects at 24 h. LH stimulated high increases in production of cAMP and androgen by the cells at 0-24 h of culture. Leydig cell beta-receptors decreased with culture time. Low concentrations but not high levels of LH had additive effects with ISOP on androgen release. ISOP showed a complex interaction with LHRHa on androgen release. Chronic exposure of Leydig cells to LHRHa reduced basal androgen release as well as release of androgen stimulated by ISOP, forskolin, and LH. These studies suggest that the development of response to CA by rat Leydig cells is a postreceptor, postcAMP event and showed that CA can interact with LH or LHRH to regulate Leydig cell function.  相似文献   

9.
L R Chaudhary  D M Stocco 《Biochimie》1988,70(10):1353-1360
The tumor-promoting phorbol ester, phorbol-12-myristate-13-acetate (PMA) markedly stimulated progesterone production in MA-10 Leydig tumor cells. A slight but significant increase (35%) in the activity of the cholesterol side-chain cleavage (CSCC) enzyme was observed in mitochondria isolated from the PMA-treated MA-10 Leydig cells when compared to mitochondria isolated from non-treated cells. However, this stimulation of CSCC activity appears to be of limited importance when compared to the 240-fold increase observed in progesterone production following PMA stimulation. In contrast, the inactive phorbol ester 4 alpha-phorbol-12,13-didecanoate (alpha-PD) had no effect on either progesterone production or CSCC activity. PMA had no effect on the conversion of 25-hydroxycholesterol and 22R-hydroxycholesterol into progesterone suggesting that one of the mechanism(s) of PMA action may involve the delivery of cholesterol to the mitochondria and/or the affinity of cholesterol with cytochrome P-450scc. Stimulation of steroidogenesis by PMA was also shown to be inhibited by cycloheximide. When PMA was added together with a submaximal dose of hCG, hCG-stimulated steroidogenesis was inhibited. However, at a maximal dose of human chorionic gonadotropin (hCG), PMA inhibited steroid synthesis at 1 and 2 h but had no significant effect at 3 h. Conversely, PMA had an additive effect on cAMP induced steroidogenesis. It was further demonstrated that PMA resulted in a decrease in the hCG-induced accumulation of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of single or combined daily treatment with an LHRH agonist and low or high doses of LH upon the testes of adult hypophysectomized rats were studied for up to 2 weeks in which changes in testicular histology, particularly the interstitial tissue, were examined by morphometry and related to functional assessment of the Leydig cells in vivo and in vitro. Compared to saline-treated controls, LHRH agonist treatment did not alter testis volume or the composition of the seminiferous epithelium or any of the interstitial tissue components although serum testosterone and in-vitro testosterone production by isolated Leydig cells were significantly reduced. With 2 micrograms LH for treatment, testis volume was increased, spermatogenesis was qualitatively normal, total Leydig cell volume was increased, serum testosterone values were initially elevated but subsequently declined and in-vitro testosterone production was enhanced. Testis volume with 20 micrograms LH treatment was unchanged compared to saline treatment, the seminiferous epithelium exhibited severe disruption but total Leydig cell volume was greatly increased due to interstitial cell hyperplasia. This group showed elevated serum testosterone concentrations and major increases in testosterone production in vitro. Treatment with LHRH agonist with either dose of LH resulted in reduced testis volume, moderate to very severe focal spermatogenic disruption and increased total Leydig cell volume although serum testosterone values and in-vitro testosterone production were markedly reduced compared to control rats. It is concluded that, in the absence of the pituitary, LHRH agonist fails to disrupt spermatogenesis and the previously described antitesticular action of LHRH agonists in intact rats is therefore dependent upon the presence of LH, which alone or in combination with LHRH agonist, may focally disrupt spermatogenesis in hypophysectomized rats whereas the Leydig cells undergo hyperplasia. The findings show that impairment of spermatogenesis is accompanied by alterations of the interstitial tissue and suggest that communication between these two compartments is involved in the regulation of testicular function.  相似文献   

11.
Addition of concentrated rat Sertoli cell conditioned medium (rSCCM) to isolated Leydig cells from immature rats stimulated steroid production more than 13-fold within 4 h. LH-stimulated steroidogenesis was not enhanced by addition of rSCCM. The biological activity of the concentrated rSCCM was higher after incubation of Sertoli cells with FSH, whereas FSH alone did not stimulate steroid production. This effect of rSCCM was not due to inhibin, since highly purified 32 kDa rat inhibin, in doses equivalent to those present in rSCCM, had no effect on steroidogenesis during the 4 h incubation period. Furthermore, inhibin could be separated from the Leydig cell stimulating factor by anion-exchange chromatography. These results indicate a short-term paracrine control of Leydig cell steroidogenesis by Sertoli cell derived factors, which differ from inhibin.  相似文献   

12.
This study was conducted to shed light on the so far unexplored intracellular mechanisms underlying negative modulation of Leydig cell steroidogenesis by histamine (HA). Using the MA-10 cell line and highly purified rat Leydig cells as experimental models, we examined the effect of the amine on biochemical steps known to be modulated by HA or involved in LH/hCG action. In agreement with previous findings, HA at 10 microM showed a potent inhibitory effect on hCG-stimulated steroid synthesis, regardless of the gonadotropin concentration used. Moreover, HA decreased not only LH/hCG-induced cAMP production but also steroid synthesis stimulated by the permeable cAMP analog dibutyryl cAMP (db-cAMP). Considering the post-cAMP sites of HA action, it is shown herein that HA markedly inhibited db-cAMP-stimulated steroidogenic acute regulatory (STAR) protein expression, as well as steps catalyzed by P450-dependent enzymes, mainly the conversion of cholesterol to pregnenolone by cholesterol side-chain cleavage enzyme (CYP11A). The antisteroidogenic action of HA was blocked by addition of the phospholipase C (PLC) inhibitor U73122, and HA significantly augmented inositol triphosphate (IP3) production, suggesting a major role for the PLC/IP3 pathway in HA-induced inhibition of Leydig cell function. Finally, HA increased nitric oxide synthase (NOS) activity, and the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) markedly attenuated the effect of the amine on steroid synthesis. On the basis of our findings, HA antagonizes the gonadotropin action in Leydig cells at steps before and after cAMP formation. NOS activation is the main intracellular mechanism by which HA exerts its antisteroidogenic effects.  相似文献   

13.
A Leydig cell culture system has been used to study the in vitro modulation by luteinizing hormone (LH) of steroidogenesis in Leydig cells isolated from mice and immature rats. Mouse Leydig cells precultured for 24 h in the presence of increasing concentrations of LH (1 ng-1 microgram/ml) showed a dose-dependent decrease of the maximal LH-stimulated testosterone production. After pretreatment with 1 microgram LH/ml, maximal LH-stimulated testosterone production. After production in the presence of excess 20 alpha-hydroxycholesterol (a cholesterol side-chain cleavage substrate) were reduced to approx. 50% of control values. The possible site of action of LH is probably prior to pregnenolone, because testosterone production in the presence of excess pregnenolone was not affected by the LH pretreatment. Immature rat Leydig cells showed no decrease of maximal steroid production after 24 h culture in the presence of 1 microgram LH/ml. These results indicate that the regulation of the cholesterol side-chain cleavage activity during long-term LH action is different in mouse and rat Leydig cells. The properties of the cholesterol side-chain cleavage enzyme in mouse and rat Leydig cells were further investigated with different hydroxylated cholesterol derivatives as substrates. Steroid production by mouse Leydig cells in the presence of (22R)-22 hydroxycholesterol was similar as in the presence of LH. In contrast, steroidogenesis in rat Leydig cells in the presence of (22R)-22 hydroxycholesterol was at least 10-fold higher than in the presence of LH. It is concluded that the cholesterol side-chain cleaving enzyme in the mouse Leydig cell operates at its maximal capacity during short-term LH stimulation and can be inhibited after long-term LH action, whereas in the rat Leydig cell only a fraction of the potential activity is used during short-term LH stimulation, which is not affected during long-term LH action.  相似文献   

14.
Numerous studies have indicated that treatment of Leydig cells with gonadotropin results in increased levels of intracellular cAMP, binding of cAMP to and activation of protein kinase A, phosphorylation of proteins, synthesis of new proteins and eventually, stimulation of steroidogenesis. In addition, recent studies have indicated that protein phosphorylation is an indispensable event in the production of steroids in response to hormone stimulation in adrenal cells. Because of the important role of phosphorylation in steroidogenic regulation, we investigated the effects of human chorionic gonadotropin (hCG), dibutyryl cyclic AMP (dbcAMP), forskolin and the phorbol ester, phorbol-12-myristate 13-acetate (PMA) on protein phosphorylation in MA-10 mouse Leydig tumor cells. Cells were stimulated with different steroidogenic compounds in the presence of [32P]orthophosphoric acid for 2 h and phosphoproteins analyzed by two-dimensional polyacrylamide gel-electrophoresis (PAGE). Results demonstrated an increase in the phosphorylation of four proteins (22 kDa, pI 5.9; 24 kDa, pI 6.7 and 30 kDa, pI 6.3 and 6.5) in response to 34 ng/ml hCG, 1 mM dbcAMP and 100 microM forskolin. Conversely, treatment of cells with PMA increased the phosphorylation of only one of these proteins (30 kDa, pI 6.3). At least two of these proteins (30 kDa, pI 6.5 and 6.3) appear to be identical to proteins which we and others have shown to be synthesized in response to trophic hormone stimulation in adrenal, luteal and Leydig cells. In addition, they also appear to be identical to adrenal cell mitochondrial proteins demonstrated to be phosphorylated in response to ACTH. These data indicate that proteins similar to those phosphorylated in adrenal cells in response to ACTH are phosphorylated in hormone stimulated testicular Leydig cells and that these proteins may be involved in steroidogenic regulation.  相似文献   

15.
The effect of transforming growth factor beta on testicular steroidogenesis was studied by using a model of immature porcine Leydig cells cultured in a chemically defined medium. Leydig cells were cultured in the presence of human or porcine purified TGF beta and the following parameters were measured: cell proliferation, LH/hCG binding, and hCG-stimulated steroid hormone productions (DHEA, DHEAS and testosterone). Whereas TGF beta from the two sources had no effect on Leydig cell multiplication, it markedly inhibited LH/hCG-stimulated DHEA and DHEAS in a time- and dose-dependent manner. The maximal inhibitory effect of this peptide on LH/hCG binding (65% decrease), hCG-stimulated DHEA (77% decrease) and DHEAS (92% decrease) productions was observed with 2 ng/ml for 48 h of treatment. In contrast, TGF beta exerted a biphasic effect on hCG-stimulated testosterone production: stimulating (110% increase) until 2 ng/ml and inhibiting (35% decrease) for higher concentrations. [125I]TGF beta was cross-linked to Leydig cells using disuccinimidyl suberate; cells affinity labelled with [125I]TGF beta exhibit a major labelled band of approx 280 kDa, which has the properties expected from a TGF beta receptor. These data demonstrate that TGF beta is a direct potent regulator of Leydig cell steroidogenic function and its effects are probably mediated via a specific receptor.  相似文献   

16.
Effects of ethane dimethyl sulfonate (EDS) on Leydig cells have been studied using the following parameters: morphology, histochemistry of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) and esterase, quantitative activity of esterase, testosterone concentrations in plasma, and steroid production by isolated interstitial cells in vitro. Degenerating Leydig cells were observed within 16 h after the injection of mature rats with EDS (75 mg/kg body weight). At that time the testosterone concentration in plasma and the specific activity of esterase in testis tissue were decreased to approximately 35% and 60% of the control value, respectively. At 48 h after EDS only a few normal Leydig cells were left and the plasma testosterone concentration was less than 5% of the control value. The specific activity of esterase in total testis tissue was similar to the activity of dissected tubules from untreated rats. At 72 h no Leydig cells could be detected and no 3 beta-HSD and esterase-positive cells were present. At that time macrophages were still present in the interstitium and the appearance of the spermatogenic epithelium was normal, but 1 wk after EDS the elongation of spermatids was disturbed, probably due to a lack of testosterone. In some of the animals the cytotoxic effects of EDS on Leydig cells could be partly inhibited by human chorionic gonadotropin treatment. The basal steroid production by interstitial cells from mature rats 72 h after EDS was not significant and no stimulation by LH was observed, whereas no effect of EDS could be detected on steroid production by interstitial cells isolated from immature rats and mice 72 h after treatment. Other compounds with similar structures, such as butane dimethyl sulfonate (busulfan) and ethane methyl sulfonate (EMS) had no effect on Leydig cells from mature rats. It is concluded that EDS specifically destroys Leydig cells in mature rats.  相似文献   

17.
The involvement of PKC in GnRH action is still controversial. Discrepancies between different results could be due to the endocrine status of cells used for the studies. In order to determine a putative role for PKC in GnRH action and if gonadal steroids could be implicated in the PKC contribution to GnRH action, we have conducted a study of LH release in response to GnRH and to PMA, an activator of PKC, using an anterior pituitary cell culture system. The direct effects of E2 were considered coupled or not with the effect of PKC depletion. GnRH and PMA induced LH releases in a dose-dependent manner. Both are increased by E2. The PKC depletion had no effect on GnRH stimulated LH release in cells deprived of gonadal steroid influence but induced a significant decrease in cells which had been treated by E2. These results indicate that E2 alters cell sensitivity to GnRH by affecting post-receptor intracellular pathways such as PKC activation.  相似文献   

18.
The effect of phorbol esters on the stimulation of testosterone production in response to LH was studied in mouse Leydig cells incubated in vitro. The tumor promoting phorbol esters, Phorbol-12-myristate-13-acetate and Phorbol-12-13-didecanoate at nanomolar concentrations effectively inhibited testosterone production by Leydig cells in response to stimulation by LH, whereas non-tumor promoting phorbol esters were ineffective. When the cells were stimulated by 8Br-cAMP, instead of LH, the testosterone production was stimulated similarly as in the presence of LH, but phorbol esters were without any effect. This suggests that the tumor promoting phorbol esters may act in the Leydig cells by suppressing the stimulation of cAMP production in response to hormonal activation and/or by interfering with the hormone-receptor interaction.  相似文献   

19.
Treatment of immature, hypophysectomized male rats with 50 micrograms ovine FSH (NIH-FSH-S12) twice a day for 5 days stimulated the maximum quantity of 17 beta-hydroxyandrogen produced by isolated Leydig cells in response to hCG. Pretreatment of the FSH preparation with an LH antiserum in one study markedly reduced and in another study completely abolished this stimulatory effect of FSH, but only slightly impaired the capacity of the hormone to stimulate the Sertoli cell in vivo (epididymal androgen-binding protein). Administration of another highly potent FSH preparation (LER-1881) had no discernible effects on the dose-response characteristics of the Leydig cells but was superior to the NIH-FSH-S12 in its capacity for stimulating the Sertoli cell. When all hormone preparations were tested for their ability to stimulate steroid secretion from normal Leydig cells in vitro, a close correlation was obtained between their Leydig cell-stimulating activity (a measure of LH contamination) and their capacity to alter Leydig cell responsiveness after in-vivo treatment. FSH treatment had no effects on specific LH binding per 10(6) Leydig cells. It is concluded that the stimulatory influence of FSH on rat Leydig cells may to some extent be a result of the LH contaminating the hormone preparation.  相似文献   

20.
The effect of prostaglandins (PG) A1, E1, E2 and F2 alpha in the concentration range of 10(-7)--10(-4) M were studied in vitro on a rat hypothalamic tissue, collagenase-digested isolated anterior pituitary cell and Leydig cell suspension system by measuring the testosterone production of incubated Leydig cells. PGs did not change the testosterone production and the hCG sensitivity of the Leydig cells, nor the LH secretion and the LHRH sensitivity of the anterior pituitary cells. PGE2 at concentrations of 10(-6), 10(-5) and 10(-4) M significantly increased the hypothalamic tissue-induced pituitary-testicular activation, and this stimulatory effect of PGE2 was dose dependent. PGA1, PGE1 and PGF2 alpha did not alter hypothalamic LHRH release measured in vitro. The results suggest that PGE2 has a direct stimulatory effect on hypothalamic LHRH release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号