首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: This study used [3H] dizocilpine ([3H] MK-801) binding to the N-methyl-D-aspartate (NMDA) receptor to examine redox, polyamine, and glycine modulatory sites in membranes derived from the superior frontal and the superior temporal cortex of patients with Alzheimer's disease. In control subjects the competitive polyamine site antagonist arcaine inhibited [3H] dizocilpine binding in a dose-dependent fashion and this curve was shifted to the right by the addition of 50 μM spermidine. Arcaine inhibition of binding was more potent in the temporal cortex than in the frontal cortex, in both the absence and presence of 50 μMspermidine. In Alzheimer's disease, arcaine inhibition of [3H] dizocilpine binding (in both the absence and the presence of spermidine) was not different from control in either of the two brain areas examined. The sulfhydryl redox site of the NMDA receptor was assessed using the oxidizing agent 5, 5′-dithio-bis(2-nitrobenzoic acid), which inhibited binding in a dose-dependent fashion. This inhibition was similar in patients with Alzheimer's disease and control subjects. Glycine-stimulated [3H] dizocilpine binding was also unaffected in patients with Alzheimer's disease. However, in the temporal cortex there was a significant age-associated decline in [3H] dizocilpine binding in the presence of 100 μM glutamate (R8=-0.71) and 100 μM glutamate plus 30 μM glycine (R8=?0.90). There was also an age-related increase in arcaine IC50 (which reflects an age-related decrease in arcaine affinity) in the frontal cortex, determined both in the absence (R8= 0.83) and the presence (R8= 0.79) of spermidine. These data indicate that the NMDA receptor and its modulatory redox, polyamine, and glycine subsites are intact in patients with Alzheimer's disease and that the modulatory activity of polyamine and glycine sites decline with aging.  相似文献   

2.
Abstract: The effects of ethanol, glycine, and spermidine on the specific binding of [3H]MK-801 were characterized in Triton-treated membranes prepared from the hippocampus and cortex of ethanol-withdrawal seizure-prone (WSP) and -resistant (WSR) mice. Glycine, an allosteric agonist at the NMDA receptor-linked ion channel complex, caused an increase in specific [3H]MK-801 binding to hippocampal membrane preparations. There were no significant differences in EC50 values between the selected lines for the effect of glycine (WSP, 391.7 ± 48.4 nM; WSR, 313.4 ± 77 nM) in the presence of 10 µM NMDA or in the maximal response to the agonist (WSP, 1.75 ± 0.26 pmol/mg of protein; WSR, 1.67 ± 0.22 pmol/mg of protein). The EC50 values for the spermidine-induced increase in [3H]MK-801 binding in membranes from hippocampus in the absence (WSP, 11.7 ± 0.83 µM; WSR, 9.98 ± 1.29 µM) or in the presence of 10 µM glycine and 10 µM NMDA (WSP, 2.1 ± 0.35 µM; WSR, 2.37 ± 0.42 µM) also did not differ. Similar results were obtained in cortical membranes. Saturation isotherms indicated that there was no difference in the density of [3H]MK-801 binding sites, or in their affinity for the radioligand, between the mouse lines. In addition, administration of ethanol by inhalation (24 h) to WSP and WSR mice did not cause an increase in the density of [3H]MK-801 binding sites, and there was no difference in the density or affinity of binding sites between the mouse lines. Withdrawal from ethanol (6 h), which causes an increase in the severity of handling-induced convulsions in WSP mice, also did not alter the binding site density or affinity for radioligand. The results suggest that the characteristics of the NMDA receptor-linked ion channel complex in the tissue preparations described here do not differ in WSP and WSR mice. Thus, genetic differences in seizure susceptibility during ethanol withdrawal can be dissociated from the total density of hippocampal or cortex NMDA receptors under activating conditions.  相似文献   

3.
Abstract: This study investigated the binding of [3H] CGP 39653, a novel high-affinity antagonist of the N-methyl-D- aspartate (NMDA) recognition site of the NMDA receptor complex. [3H] CGP 39653 bound to the NMDA receptor in well washed rat brain membranes with an affinity of about 15 nM. Other NMDA site drugs inhibited [3H] CGP 39653 binding with the following order of potency: DL-(tetrazol-5- yl)glycine > glutamate > CGS 19755 > DL-2-amino-5- phosphonovalerate (DL-AP5) > NMDA. Glycine and 5, 7- dichlorokynurenate partially inhibited binding. The poly-amines spermine and spermidine increased [3H] CGP 39653 binding (EC50 values of 10 and 22 μM, respectively). This effect was mimicked by arcaine, 1, 5-diethylaminopiperidine, diaminodecane, diethylenetriamine, and Mg2+. The increase in [3H] CGP 39653 was a result of an increased affinity of the binding site for the ligand with very little effect on binding site density. Spermine and Mg2+also increased the affinity of the antagonists DL-AP5 and CGS 19755, but had only minor effects on the affinity of glutamate and NMDA. Arcaine did not reverse the enhancement of [3H] CGP 39653 binding by spermine, spermidine, or Mg2+. Channel-blocking dissociative anesthetics, including dizocilpine and ketamine, did not alter basal or Mg2+-stimulated [3H] CGP 39653 binding. Spermine did not alter either the enhancement of [3H]- dizocilpine by glutamate or the inhibition of [3H]dizocilpine by DL-AP5 or CGS 19755. These studies show that poly-amines and divalent cations selectively enhance the affinity of antagonists for the agonist binding site on the NMDA receptor complex. However, this effect is mediated by a site independent of the primary polyamine site defined using [3H] dizocilpine binding.  相似文献   

4.
Abstract: The NMDA receptor exhibits increased sensitivity to stimulation during early development compared with the adult. In this study, we examined modulation of the NMDA receptor by polyamines during development to see if it correlates with differences in the functional responsiveness of the NMDA receptor. [3H]MK-801 binding was measured in discrete brain regions in the presence and absence of polyamines in 3-, 7-, 15-, 25-, and 60-day-old Sprague-Dawley rats. [3H]MK-801 binding increased between postnatal days 3 and 15, with adult levels of binding being reached between days 15 and 25. Spermidine (75 μM) caused maximal stimulation of [3H]MK-801 binding during early development, ranging from 250% in the thalamus to 450% in the caudate putamen at postnatal day 3. This effect gradually declined to levels seen in the adult by postnatal days 15–25. During all developmental stages, the stimulation seen was greater in the caudate putamen compared with the hippocampus. Diethylenetriamine (1 μM) exhibited similar developmental and regional heterogeneity in its effects on [3H]MK-801 binding, producing substantial stimulation of binding in the neonate, but not in the adult. The EC50 and Emax values for the stimulatory effect of spermidine were significantly higher at day 7 compared with the adult. Unlike spermidine and diethylenetriamine, there was no regional variation in the effects of the putative “polyamine site” inverse agonist 1,10-diaminodecane at any age and only a slightly attenuated inhibition at postnatal day 3 compared with the adult. This lack of complementarity in the regional and developmental profiles of spermidine and diethylenetriamine, on the one hand, and 1,10-diaminodecane, on the other, suggests that their effects on [3H]MK-801 binding are mediated at different sites. The altered sensitivity of the NMDA receptor to polyamines during development could reflect the expression of molecular variants with different sensitivities to modulation by polyamines.  相似文献   

5.
Abstract

Cooperative modulation of [3H]MK-801 binding to extensively washed pig cortical brain membranes in the presence of various concentrations of L-glutamate, glycine, spermine, CPP and DCKA was evaluated in association experiments. In saturation experiments [3H]MK-801 labelled a homogeneous population of binding sites with a Kd-value of 1.26 ± 0.18 nmol 1?1 and a Bmax-value of 2130 ± 200 fmol/mg protein. The pharmacological profile of this site was further evaluated in competition experiments with known NMDA receptor channel blockers. In nonequilibrium binding experiments EC50-values of reference compounds acting at the L-glutamate, at the glycine, and at the polyamine site, were determined by increasing or decreasing [3H]MK-801 binding. Ifenprodil reduced [3H]MK-801 binding in a biphasic manner. All the data obtained are in agreement with results from [3H]MK-801 binding to rodent as well as human brain membranes. This study therefore strongly suggests, that pig cortical membranes are a suitable alternative to rodent brain membranes, and an acceptable substitute for human brain membranes in [3H]MK-801 binding experiments.  相似文献   

6.
Summary The possibility to visualize the NMDA recognition site with [3H]CGS 19755in vitro autoradiography was evaluated in rat brain and spinal cord sections and thereafter used to study the distribution of the NMDA recognition site in rat and mouse spinal cord. The [3H]CGS 19755 binding was concentrated to the dorsal horn, in particular to the substantia gelatinosa. Notable binding was also seen in the intermediate area and ventral horn, while some binding was observed in the funiculi. No major differences were seen in [3H]CGS 19755 binding at various levels of the rat or mouse spinal cord, although a more dense binding was seen in the mouse. A similar distribution of the [3H]CGS 19755 specific binding and the NMDA receptor associated ion-channel site, labeled with [3H]TCP, was found in the mouse spinal cord. Taken together, our data indicate that the NMDA recognition site can be visualized in rat and mouse spinal cord byin vitro [3H]CGS 19755 autoradiography.Abbreviations NMDA N-methyl-D-aspartate - CGS 19755 Cis-4-phosphonomethyl-2-piperidine carboxylic acid - D-AP5 D(—)-2-Amino-5-phosphonopentanoic acid - TCP N-(1-2-thienylcyclohexyl)-3,4-piperidine - MK-801 (±)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate - AMPA -Amino-3-hydroxy-5-methyl-isoxazolepropionic acid - kainate 2-Carboxy-3-carboxymethyl-4-isopropenyl pyrrolidine - CGP 39653 D,L-(E)-2-amino-4-propyl-5-phosphonopentenoic acid  相似文献   

7.
Abstract: Pretreatment with Triton X-100 more than doubled the binding of radiolabeled 5,7-dichlorokynurenic acid (DCKA), a proposed antagonist at a glycine (Gly) recognition domain on the N-methyl-d -aspartate (NMDA) receptor ionophore complex, in rat brain synaptic membranes. The binding exhibited an inverse temperature dependency, reversibility, and saturability, the binding sites consisting of a single component with a high affinity (27.5 nM) and a relatively low density (2.87 pmol/mg of protein). The binding of both [3H]DCKA and [3H]Gly was similarly displaced by numerous putative agonists and antagonists at the Gly domain in a concentration-dependent manner at a concentration range of 100 nM to 0.1 mM. Among the 24 putative ligands tested, DCKA was the second most potent displacer of the binding of both radioligands with no intrinsic affinity for the binding of [3H]kainic acid and α-amino-3-hydroxy-5-[3H]methylisoxazole-4-propionic acid (AMPA) to the non-NMDA receptors. In contrast, the other proposed potent Gly antagonist, 5,7-dinitroquinoxaline-2,3-dione, was active in displacing the binding of [3H]glutamic ([3H]Glu) and D,L-(E)-2-amino-4-[3H]propyl-5-phosphono-3-pentenoic acids to the NMDA recognition domain with a relatively high affinity for the non-NMDA receptors. In addition, the proposed antagonist at the AMPA-sensitive receptor, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline, not only displaced weakly the binding of both [3H]- Gly and [3H]DCKA, but also inhibited the binding of (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) to an ion channel associated with the NMDA-sensitive receptor in the presence of added Glu alone in a manner sensitive to antagonism by further added Gly. Clear correlations were seen between potencies of the displacers to displace [3H]DCKA binding and [3H]Gly binding, in addition to between the potencies to displace [3H]-DCKA or [3H]Gly binding and to potentiate or inhibit [3H]MK-801 binding. All quinoxalines tested were invariably more potent displacers of [3H]DCKA binding than [3H]Gly binding, whereas kynurenines were similarly effective in displacing the binding of both [3H]Gly and [3H]-DCKA. These results undoubtedly give support to the proposal that [3H]DCKA is one useful radioligand available in terms of its high selectivity and affinity for the Gly domain in the brain. Possible multiplicity of the Gly domain is suggested by the differential pharmacological profiles between the binding of [3H]Gly and [3H]DCKA.  相似文献   

8.
Spermine and spermidine enhance the binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a, d]cyclohepten-5,10-imine ([3H]MK-801) to N-methyl-D-aspartate (NMDA) receptors in membranes prepared from rat brain. These polyamines also enhance binding of [3H]MK-801 to NMDA receptors that have been solubilized with deoxycholate. Other polyamines selectively antagonize this effect, a finding indicating that the polyamine recognition site retains pharmacological and structural specificity after solubilization. In the presence of spermidine, an increase in the affinity of the solubilized NMDA receptor for [3H]MK-801 is observed. However, the rates of both association and dissociation of [3H]MK-801 binding to solubilized NMDA receptors are accelerated when assays are carried out in the presence of spermidine. When kinetic data are transformed, pseudo-first-order association and first-order dissociation plots are nonlinear in the presence of spermidine, an observation indicating a complex binding mechanism. Effects of spermidine on solubilized NMDA receptors are similar to effects previously described in studies of membrane-bound receptors. The data indicate that polyamines interact with a specific recognition site that remains associated with other components of the NMDA receptor complex after detergent solubilization.  相似文献   

9.
Abstract: Polyamines have pronounced effects on N-methyl-D-aspartate (NMDA) receptors in vitro and may be important modulators of NMDA receptor activity in vivo. There is considerable regional heterogeneity in the effects of polyamines on [3H]MK-801 binding in rat brain sections. For example, spermidine enhances the binding of [3H]MK-801 to a much greater extent in the striatum than in the cortex. To further explore the basis for this regional heterogeneity, the effects of polyamines on [3H]MK-801 binding were measured in well-washed membranes prepared from frontal cortex and striatum. There was no difference in the concentration-response relationship for spermidine or the KD for [3H]MK-801 in the presence of 75 μM spermidine, suggesting that the regional difference seen in tissue sections is due to an endogenous factor that is either removed or inactivated during the preparation of membranes. Comparison of spermidine concentration-response curves in washed and unwashed tissue sections revealed that washing selectively enhanced the Emax value in the ventromedial caudate putamen without changing the EC50. This is consistent with the possibility that a noncompetitive polyamine antagonist is being removed from this region during washing. There was no regional variability in the effects of the putative inverse agonist 1, 10-diaminodecane, consistent with recent suggestions that this polyamine inhibits the NMDA receptor at a site distinct from the one at which polyamines act to enhance NMDA receptor function. Agents that modulate the redox state of the NMDA receptor did not eliminate the regional heterogeneity of polyamine effects. Furthermore, the stimulatory effect of glycine in these regions did not correlate with that of spermidine. These results suggest the existence of one or more endogenous factors that noncompetitively influence the effects of polyamines in a regionspecific manner.  相似文献   

10.
In extensively washed rat cortical membranes [3H](+)-5-methyl-10,11-dihydro-5 H-dibenzo [a,d]cyclohepten-5,10-imine ([3H]MK-801) labeled a homogeneous set of sites (Bmax = 1.86 pmol/mg protein) with relatively low affinity (KD = 45 nM). L-Glutamate, glycine, and spermidine produced concentration-dependent increases in specific [3H]MK-801 binding due to a reduction in the KD of the radioligand. In the presence of high concentrations of L-glutamate, glycine, or spermidine, the KD values for [3H]MK-801 were reduced to 11 nM, 18 nM, and 15 nM, respectively. Maximally effective concentrations of combinations of the three compounds further increased [3H]MK-801 binding affinity as follows: L-glutamate + glycine, KD = 6.2 nM; L-glutamate + spermidine, KD = 2.2 nM; glycine + spermidine, KD = 8.3 nM. High concentrations of spermidine did not inhibit either [3H]glycine orf [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid binding to the N-methyl-D-aspartate (NMDA) receptor complex. The concentration of L-glutamate required to produce half-maximal enhancement (EC50) of [3H]MK-801 binding was reduced from 218 nM to 52 nM in the presence of 30 microM glycine and to 41 nM in the presence of 50 microM spermidine. The EC50 value for glycine enhancement of [3H]MK-801 binding was 184 nM. This was lowered to 47 nM in the presence of L-glutamate and to 59 nM in the presence of spermidine. Spermidine enhanced [3H]MK-801 binding with an EC50 value of 19.4 microM which was significantly reduced by high concentrations of L-glutamate (EC50 = 3.9 microM) or glycine (EC50 = 6.2 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract: Glutathione, both reduced (GSH) and oxidized (GSSG), was effective in displacing binding of l -[3H]-glutamic acid (l -[3H]Glu) and dl -(E)-2-[3H]amino-4-propyl-5-phosphono-3-pentenoic acid ([3H]CGP-39653) in rat brain synaptic membranes, with less potent displacement of binding of dl -α-amino-3-hydroxy-5-[3H]-methylisoxazole-4-propionic and [3H]kainic acids. Liquid chromatographic analysis revealed that both GSH and GSSG were contaminated with l -Glu by <1%. Both GSH and GSSG potentiated (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) binding in a manner similar to that found with l -Glu. Pre-treatment with glutamate dehydrogenase (GDH) induced a marked rightward shift of the concentration-response curve for l -Glu in the presence of NAD without affecting that in its absence, whereas GDH was ineffective in affecting the potentiation by both GSH and GSSG even in the presence of NAD. In the presence of GSH at a maximally effective concentration, both glycine (Gly) and spermidine potentiated [3H]MK-801 binding to a somewhat smaller extent than that found in the presence of l -Glu at a maximally effective concentration. The potentiation of [3H]MK-801 binding by GSH was invariably attenuated by addition of CGP-39653, d -2-amino-5-phosphonovaleric acid (d -AP5), and 5,7-dichlorokynurenic acid (DCKA), whereas GSH was effective in diminishing potencies of CGP-39653, d -AP5, DCKA, and 6,7-dichloroquinoxaline-2,3-dione to inhibit [3H]MK-801 binding when determined in the presence of both l -Glu and Gly. These results suggest that glutathione may be an endogenous agonist selective for the N-methyl-d -aspartate (NMDA) recognition domain on the NMDA receptor ionophore complex.  相似文献   

12.
The inhibitory effects of the polyamine antagonist, arcaine, and magnesium on N-methyl-D-aspartate (NMDA) induced hippocampal [3H]norepinephrine release and [piperidyl-3,4-3H(N)]-[N-1-(2- thienyl)cyclohexyl]-3,4-piperidine (TCP) binding were studied. We report that the inhibitory effect of arcaine and magnesium on NMDA-induced [3H]norepinephrine release is diminished by increasing the extracellular K+ concentration, presumably reflecting a voltage-dependent block for both. However, unlike MK-801, the block by arcaine shows no evidence of use dependence. Further, the IC50 value for magnesium inhibition of [piperidyl-3,4-3H(N)]TCP binding varies with the state of activation of the channel, being the lowest when the channel is maximally activated and the highest when the channel is least activated. On the other hand, the apparent affinity of arcaine is not significantly affected by the activation of the channel by glutamate and glycine, but is decreased by the polyamine agonist, spermidine. These data suggest that the polyamine antagonist binding site is distinct from either the phencyclidine/MK-801 site or the voltage-dependent channel site for magnesium. Nonetheless, these data suggest that the site must be located in a region of the NMDA receptor ionophore complex capable of sensing transmembrane potential.  相似文献   

13.
The receptor-ionophore complex of the N-methyl-D-aspartate (NMDA)-sensitive receptor was solubilized by deoxycholic acid from rat brain using (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne ([3H]MK-801) binding as a marker for the receptor. Gel filtration of the solubilized preparations on a Sephadex G-25 column revealed significant [3H]MK-801 binding sensitive to potentiation by glutamate and glutamate/glycine, which was prevented by competitive antagonists for the NMDA and strychnine-insensitive glycine (GlyB) sites. In contrast to NMDA and glycine, spermidine markedly potentiated the amount of [3H]MK-801 binding in solubilized preparations by increasing the apparent affinity of the ligand. In the presence of all three stimulants, the solubilized preparations exhibited pharmacological profiles similar to those in the membrane preparations. These results clearly indicate that the whole macromolecular NMDA receptor-ionophore complex is solubilized under the experimental conditions used.  相似文献   

14.
The binding of (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate ([3H]MK-801) and N-[1-(2-thienyl)cyclohexyl]-3,4-[3H]piperidine ([3H]TCP) to the N-methyl-D-aspartate (NMDA) receptor complex of human brain has been investigated. Significant differences were noted between the binding of the two ligands in the same tissue samples. Binding of both ligands was stimulated by addition of glutamic acid or glycine. However, addition of both compounds resulted in an additional effect with [3H]MK-801 but not [3H]TCP binding. Saturation analysis revealed approximately twice as many high-affinity sites for [3H]MK-801 (Bmax, 1,500 +/- 300 fmol/mg of protein) than for [3H]TCP (Bmax, 660 +/- 170 fmol/mg of protein). In addition, a low-affinity site was detected for [3H]MK-801 binding but not [3H]TCP binding. The pharmacology of the high-affinity [3H]MK-801 and [3H]TCP binding sites was similar with rank order of potency of inhibitors being MK801 greater than TCP greater than phencyclidine greater than N-allylnormetazocine (SKF 10047). 2-Amino-5-phosphonopentanoate inhibited binding of both ligands with comparable potency whereas both 7-chlorokynurenic acid and ZnCl2 were more potent inhibitors of [3H]MK-801 than of [3H]TCP binding. All compounds examined exhibited Hill coefficients of significantly less than unity. Saturation analysis performed in the striatum revealed that the number of binding sites was the same for both [3H]MK-801 (Bmax, 1,403 +/- 394 fmol/mg) and [3H]TCP (Bmax, 1,292 +/- 305 fmol/mg). Addition of glutamate or glycine stimulated striatal binding but there was no further increase on addition of both together.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The N-methyl-D-aspartate (NMDA) receptor is thought to contain several distinct binding sites that can regulate channel opening. In the present experiments, the effects of ligands for these sites have been examined on [3H]MK-801 binding to a soluble receptor preparation, which had been passed down a gel filtration column to reduce the levels of endogenous small-molecular-weight substances. Glycine site agonists, partial agonists, and antagonists gave effects similar to those observed in membranes [EC50 values (in microM): glycine, 0.31; D-serine, 0.20; D-cycloserine, 1.46; (+)-HA-966, 4.06; and 7-chlorokynurenic acid, 1.81]. Spermine and spermidine enhanced [3H]MK-801 binding to the soluble receptor preparation (EC50, 4.3 and 20.1 microM, respectively), whereas putrescine and cadaverine gave small degrees of inhibitions. When spermine and spermidine were tested under conditions where [3H]MK-801 binding approached equilibrium, their ability to enhance [3H]MK-801 binding was much reduced, a result suggesting that the polyamines increase the rate to equilibrium. Putrescine antagonised the effects of spermine. Ifenprodil reduced [3H]MK-801 binding under both equilibrium and nonequilibrium conditions, although the high-affinity component of inhibition described in membranes was not observed. Ifenprodil antagonised spermine effects in an apparently noncompetitive manner. Desipramine was able to give total inhibition of specific [3H]MK-801 binding under nonequilibrium conditions with an IC50 of 4 microM, and this value was unaltered when [3H]MK-801 binding was allowed to reach equilibrium. These results suggest that the sites mediating the effects of glycine and its analogues, polyamines and desipramine are integral components of the NMDA receptor protein.  相似文献   

16.
Abstract: The N-methyl-d -aspartate (NMDA) receptor possesses two distinct amino acid recognition sites, one for glutamate and one for glycine, which appear to be allosterically linked. Using rat cortex/hippocampus P2 membranes we have investigated the effect of glutamate recognition site ligands on [3H]glycine (agonist) and (±)4-trans-2-car-boxy-5,7-dichloro-4-[3H]phenylaminocarbonylamino-1,2,3,4-tetrahydroquinoline ([3H]l -689,560; antagonist) binding to the glycine site and the effect of glycine recognition site ligands on l -[3H]glutamate (agonist), dl -3-(2-carboxypiperazin-4-yl)-[3H]propyl-1 -phosphonate ([3H]-CPP; “C-7” antagonist), and cis-4-phosphonomethyl-2-[3H]piperidine carboxylate ([3H]CGS-19755; “C-5” antagonist) binding to the glutamate site. “C-7” glutamate site antagonists partially inhibited [3H]l -689,560 binding but had no effect on [3H]glycine binding, whereas “C-5” antagonists partially inhibited the binding of both radioligands. Glycine, d -serine, and d -cycloserine partially inhibited [3H]CGS-19755 binding but had little effect on l -[3H]-glutamate or [3H]CPP binding, whereas the partial agonists (+)-3-amino-1-hydroxypyrrolid-2-one [(+)-HA-966], 3R-(+)cis-4-methyl-HA-966 (l -687,414), and 1-amino-1-carboxycyclobutane all enhanced [3H]CPP binding but had no effect on [3H]CGS-19755 binding, and (+)-HA-966 and l -687,414 inhibited l -[3H]glutamate binding. The association and dissociation rates of [3H]l -689,560 binding were decreased by CPP and d -2-amino-5-phosphonopentanoic acid (“C-5”). Saturation analysis of [3H]l -689,560 binding carried out at equilibrium showed that CPP had little effect on the affinity or number of [3H]l -689,560 binding sites. These results indicate that complex interactions occur between the glutamate and glycine recognition sites on the NMDA receptor. In addition, mechanisms other than allosterism may underlie some effects, and the possibility of a steric interaction between CPP and [3H]l -689,560 is discussed.  相似文献   

17.
[3H]Glycine binding and glycine modulation of [3H]MK-801 binding have been used to study the glycine allosteric site associated with the N-methyl-D-aspartate receptor complex in postmortem human brain. The effect of glycine on [3H]MK-801 binding appeared sensitive to duration of terminal coma, and possibly postmortem delay. Thirty percent of the binding occurred in a subfraction of brain tissue and did not show enhancement by glycine and glutamic acid. [3H]Glycine binding to a subfraction free from this component was studied and showed high specific binding. KD and Bmax values showed considerable intersubject variability which did not appear to be due to demographic features or to tissue content of amino acids with an affinity for this site. The pharmacological characteristics of binding in this subfraction and a correlation between Bmax values and the maximal enhancement of [3H]MK-801 binding by glycine are consistent with [3H]glycine binding occurring to an N-methyl-D-aspartate receptor complex associated site. Further support for this is provided by a significantly lower Bmax value for [3H]glycine binding in subjects with Alzheimer's disease and reduced glycine enhancement of [3H]MK-801 binding. However, the effect of perimortem factors makes it difficult to confidently attribute this solely to a disease-related change in the receptor. The possible role of the glycine allosteric site in the treatment of neuropsychiatric disorders is discussed.  相似文献   

18.
These studies addressed the possible involvement between sensitivity to the hypnotic action of ethanol and function of the NMDA receptor. The studies were carried out using high-alcohol sensitive (HAS) and low-alcohol sensitive (LAS) rats, two rats having differential sensitivity to the acute hypnotic action of ethanol. The animal models were developed by a selective breeding experiment. Using a quantitative autoradiograph technique, it was demonstrated that [3H]MK-801 binding to the NMDA receptor was highest in hippocampus in both HAS and LAS rats, but significant [3H]MK-801 binding was also detected in cortex, caudate-putamen, and thalamus of HAS and LAS rats. The density of [3H]MK-801 binding was lower only in cerebellar granule layers of untreated HAS rats as compared to the same brain area in untreated LAS rats. Activation of protein kinase C (PKC) by 100 nM PDBu, increased [3H]MK-801 binding in cortex, caudate-putamen, thalamus, central gray, and cerebellum of HAS rats but activation of PKC did not influence [3H]MK-801 binding in LAS rats. These activation of PKC differentiates between [3H]MK-801 binding of HAS and LAS rats in frontal cortex (layer II-IV and cingulate), caudate-putamen, and ventral lateral thalamic nuclei. The basal level of PKC- mRNA was higher in HAS rats than that of LAS rats. These results suggest that the activation of PKC potentiates NMDA receptor function of the rat line which is more sensitive to alcohol (HAS) but does not affect [3H]MK-801 binding of alcohol resistant (LAS) rats.  相似文献   

19.
Book Review     
1-Aminocyclopropane carboxylic acid (ACPC) competitively inhibited (IC50, 38 +/- 7 nM) [3H]glycine binding to rat forebrain membranes but did not affect [3H]strychnine binding to rat brainstem/spinal cord membranes. Like glycine, ACPC enhanced 3H-labelled (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate ([3H]MK-801) binding to N-methyl-D-aspartate receptor-coupled cation channels (EC50, 135 +/- 76 nM and 206 +/- 78 nM for ACPC and glycine, respectively) but was approximately 40% less efficacious in this regard. The maximum increase in [3H]MK-801 binding produced by a combination of ACPC and glycine was not different from that elicited by glycine, but both compounds potentiated glutamate-stimulated [3H]MK-801 binding. These findings indicate that ACPC is a potent and selective ligand at the glycine modulatory site associated with the N-methyl-D-aspartate receptor complex.  相似文献   

20.
Multiple binding sites on the N-methyl-D-aspartate (NMDA) receptor complex were examined using rat brain synaptic membranes treated with Triton X-100. Binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne ([3H]MK-801), a noncompetitive NMDA antagonist, in the presence of 10 microM L-glutamate not only was inhibited by different types of antagonists, such as 6,7-dichloro-3-hydroxy-2-quinoxaline-carboxylate, 7-chlorokynurenate, and 6,7-dichloroquinoxaline-2,3-dione (DCQX), but also was abolished by non-NMDA antagonists, including 6-cyano-7-nitroquinoxaline-2,3-dione and 6,7-dinitroquinoxaline-2,3-dione. The inhibition of [3H]MK-801 binding by these compounds was invariably reversed or attenuated by addition of 10 microM glycine. Among these novel antagonists with an inhibitory potency on [3H]MK-801 binding, only DCQX abolished [3H]glycine binding without inhibiting [3H]glutamate and [3H](+-)-3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate bindings. Other antagonists examined were all effective as displacers of the latter two bindings. These results suggest that DCQX is an antagonist highly selective to the strychnine-insensitive glycine binding sites with a relatively high affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号